
 

IMMIGRATION AND INNOVATION IN EUROPEAN REGIONS* 
 
 

Ceren Ozgen1, Peter Nijkamp2 and Jacques Poot3 
 

 
 
 

Abstract  

The pooling of people with diverse backgrounds in particular areas may boost the creation 
of new ideas, knowledge spillovers, entrepreneurship and economic growth. In this paper 
we measure the impact of the size, skills and diversity of immigration on innovativeness of 
host regions. For this purpose we construct a panel of data on 170 regions in Europe (NUTS 
2 level) for the period 1991-2001. Innovation outcomes are measured by means of the 
number and types of patent applications. Given the geographical concentration and 
subsequent diffusion of innovation activity, and the spatial selectivity of immigrant 
settlement patterns, we take account of spatial dependence and of endogeneity of 
immigrant settlement in the econometric modelling. We find that an increase in patent 
applications in a region is associated with (i) net immigration; (ii) the share of foreigners in 
the population of the region; (iii) the average skill level of the immigrants; and (iv) the 
cultural diversity of the immigrants. The magnitude of these effects varies between types of 
patents. 
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IMMIGRATION AND INNOVATION IN EUROPEAN REGIONS 
 

 
1. Introduction 
 

The more than doubling of the number of foreign-born residents of developed countries 

since 1980 triggered a high level of research activity regarding the economic consequences 

of immigration. Yet many issues remain of concern to researchers, politicians and the 

general public. Much of the literature provides rather conclusive evidence that the short-run 

economic impact of an influx of foreigners on the host population is either positive (for 

example, an increase in demand; an increase in wages of those whose skills complement 

those of the arrivals; lower prices; a greater variety of goods and services) or only mildly 

negative (for example, a slight decrease of wages of those who are close substitutes for the 

new arrivals; an increase in the price of rental accommodation; a trade balance 

deterioration).1 Far less is known about the long-run economic impact. Yet the preference of 

many host countries to recruit highly skilled workers (as revealed by their selection 

processes) is grounded in the belief that such workers will integrate more easily, lower the 

public funding that is required for education and training,2 and boost long-run economic 

growth. 

  

In this paper we focus on a specific driver of economic growth, namely innovation, and 

investigate empirically whether there is a positive impact of immigration on innovation. 

Migrants can contribute to innovation in various ways. They contribute to the population 

growth of cities, which reinforces agglomeration – with positive benefits for innovation and 

growth (e.g., Audretch, 1998; Gordon and McCann, 2005; Kerr, 2010). Moreover, their skills, 

their youthfulness and their self-selection in terms of ability, risk-taking and 

entrepreneurship may all have positive impacts on innovation (e.g., Poot, 2008). 

Furthermore, migrants increase the ethnic and cultural diversity of the cities they settle in 

and it is well known, particularly since the work of Jacobs (1961, 1969), that more diverse 

cities are more innovative and prosperous.  

 

However, the empirical research on the links between immigration and innovation is still 

very recent and limited to about ten studies using predominantly North American data. 

Given that growth in the foreign-born population since 1980 has been faster in Europe than 

anywhere else in the world (e.g. Longhi et al. 2010b), research on the impact of this 

immigration on innovation activity in Europe is warranted and had not been conducted 

previously, except for a study of innovation in German regions (Niebuhr, 2010) and another 

in the city of London (Lee and Nathan, 2010). The present paper takes therefore a European 

                                                           
1
 Recent reviews include Hanson (2008), Pekkala Kerr and Kerr (2009) and Longhi et al. (2010a). 

2
 However, Hunt (2009) finds with U.S. data that the graduate training in the US of foreign-born workers yields 

a greater net benefit than recruiting a worker with equivalent foreign training. 
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perspective and aims to identify the impact of immigration on patenting at a regional level 

across 12 European countries. 

 

Essentially, there are five mechanisms through which immigration may boost innovation. 

These may be referred to as the population scale effect, the population density effect, the 

migrant share effect, the skill composition effect and the migrant diversity effect. The first 

two of these effects applies to the domestic population also and will be taken into account 

with other local determinants of immigration. The second, third and fourth effect are 

specific to immigration only and are the focus of the paper. Our empirical research 

considers these effects individually, but also jointly. Of course, to operationalise such 

effects, we must define these more precisely. For example, the host economy may benefit 

from an influx of highly skilled immigrants, but also from an influx of immigrants 

representing a wide range of occupations. In that respect, occupational diversity may be just 

as important as cultural diversity. However, limited data availability necessitates the 

measurement of diversity in terms of countries of citizenship only. 

 

Effectively our research aims to find answers to three research questions. Firstly, do regions 

with a greater share of immigrants in the population innovate more? Secondly, what is the 

impact of the skill composition of the stock of immigrants on innovativeness? Thirdly and 

finally, does a culturally diverse society form a “contextually-enabling environment” for 

innovativeness (Glaeser et al. 2010)? We therefore estimate the effects of the share of 

immigrants in the population, the composition of the immigrant flows and the contribution 

of immigrants to diversity of the work force on innovativeness of host regions. The 

econometric estimation exploits a panel of data on 170 NUTS 2 regions in Europe over the 

period 1991-2001. Innovation outcomes are measured by means of the total number and 

types of patent applications. Given the geographical concentration and subsequent diffusion 

of innovation activity, and the spatial selectivity of immigrant settlement patterns, we take 

account of spatial dependence and of endogeneity of immigrant settlement in the 

econometric modelling.  

 

The perspective we take is restricted to that of the host country. The extent to which the 

emigration of highly skilled workers from developing countries (the “brain drain”), impacts 

on such countries either positively (raising post-compulsory schooling enrolment) or 

negatively (leading to shortages of workers in education, health, ICT and other knowledge 

industries) is not considered here, but we note that if a freeing up of the international 

exchange of skilled labour increases the global level of innovation, diffusion of new 

knowledge may benefit sending nations as well and raise welfare there also (for a review, 

see Duncan, 2008).  

 

Our results suggest that an increase in the share of the foreign born in the population of a 

region or an increase in the average skill level of migrants has a positive and statistically 
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significant effect on patent applications. The size of this effect varies between types of 

patents. Besides migrant share of population and migrant skills, innovation levels are also 

positively associated with migrant diversity. In Section 2 we provide a brief review of the 

previous literature on the effects of migration on innovation. The European data set that 

has been compiled to test for the impact of immigration on innovation is described in 

Section 3. Various measurement issues are addressed in this section also. Section 4 

discusses the methodology and econometric modelling. Section 5 provides a short 

descriptive analysis. In Section 6 we discuss a range of econometric models that measure 

the joint impact on innovation of the immigrant share of the population and the skill level 

and ethnic diversity of the immigrants. Section 7 sums up and suggests avenues for further 

research. 

 

 

2. Channels of Influence of Immigration on Innovation 

 

As noted above, there may be many channels through which migration contributes to 

innovation. In a standard neoclassical setting, the main impact of immigration is 

distributional (Borjas, 1999). The “immigration surplus” associated with the expanding 

economy, accruing to the owners of capital and workers who are complements in 

production to migrants, is quantitatively small. While the associated shift of income from 

those supplying labour to the owners of capital may be in principal much larger, various 

adjustment mechanism such as an inflow of capital in an open economy and internal 

migration may reduce the distributional impacts as well (e.g. Longhi et al., 2010a). However, 

such comparative static analysis of the impact of immigration ignores the dynamic benefits 

flowing from new investment, knowledge exchange, greater product variety and 

consumption externalities associated with the presence of diverse immigrant groups 

(Ottaviano and Peri, 2006; Bellini et al., 2008).  

 

Population scale and population share effects of immigration result from the fact that 

immigration boosts local aggregate demand. Such demand is partially met through 

additional imports, but predominantly through greater levels and greater variety of local 

production (Mazzolari and Neumark, 2009). While such output growth in the short-run may 

be met by greater capacity utilization and additional labour supply (predominantly provided 

by the immigrants themselves), in the long run additional investment will be needed. Such 

new investment will embody the latest technologies and the associated investment 

behaviour of firms will encourage product and process innovation. Moreover, the resulting 

expansion of the host economy may lead to firm growth or additional start-up firms, which 

will also boost innovation (e.g. Freeman and Soete, 1997). Moreover, by migrants being 

predominantly attracted to the larger urban areas where job opportunities are the greatest 

they contribute to urban population growth and increasing population density and thereby 
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strengthen the forces of agglomeration which, as we noted in the introduction, encourages 

greater innovation. 

 

Given that in the modern knowledge economy technological change is an endogenous 

process in which the production of new ideas is a function of the number of ideas workers 

(e.g., Lucas, 1988), the global competition for highly skilled migrants has been intensifying. 

Moreover, Borjas (1999) argues that immigrants are not randomly selected samples from 

sending countries. There is a process of self-selection in which the skilled workers who 

migrate may also be more entrepreneurial and less risk averse (e.g., Kloosterman and Rath, 

2003). Additionally, immigration is very selective of age, with the majority of migrants being 

young adults in their twenties or thirties. Consequently, immigration slows down ageing of 

the population and the resulting more youthful workforce may be expected to be more 

innovative (Poot, 2008). Finally, they may also have a considerable ability to adapt to 

changing circumstances. In sum, their self-selection and the host country entry regulations 

serve jointly as a pre-arrival melting pot. Hence, the second mechanism through which 

immigration boosts innovation is through the way in which it transforms the local work 

force. 

 

Probably the main way through which the composition of immigration can make the host 

economy more innovate is through explicit admission policies that favour highly skilled 

workers. In the traditional immigrant receiving countries of Canada, Australia and New 

Zealand the instrument for such policies is a quota system in which visa applicant are given 

points for favourable human capital attributes, such as education and experience, and those 

with the highest points are admitted. Additionally, the global mobility of highly skilled 

workers has been increasing sharply due to globalization, the growing importance of the 

knowledge economy, and transfers within transnational corporations (e.g., Poot et al. 2008). 

Professional migrants often make multiple moves over the life course or even commute 

between multiple residences. This mobility behaviour generates spillover benefits to host 

countries in terms of transfers of new ideas and work practices that may encourage process 

and product innovations.  

 

Both historically and at present, the world’s greatest cities are inhabited by large and 

diverse foreign populations.3 The issue of whether an economy containing such a diverse 

group of inhabitants is more productive and more creative than a more homogeneous one, 

is becoming increasingly important. The emerging diversity literature shares roots broadly 

with the consumption externalities literature (Florida, 2003; Clark et al., 2002; Shapiro, 

2003). The main argument is that the amenities offered by cities are a major attraction to 

highly skilled labour. Florida (2003) draws from this the policy recommendation that cities 

that aim to develop high-value knowledge-intensive sectors should enhance the local quality 

                                                           
3
 For instance, more than 130 nationalities are represented among the residents of Amsterdam, even though 

this city only has a modest population of about 800,000. 
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of life in terms of leisure activities and services they offer to their residents. Such services 

will also attract various highly skilled immigrants and a concentration of talented immigrants 

will contribute to boosting economic growth. Of course, the skills of these entrepreneurial 

people and the city’s resources should complement each other to create an enabling 

environment for creativity (Glaeser et al., 2010). Obviously, the variety of services provided 

in a city is enhanced by the presence of a culturally diverse society. The seminal work by 

Jacobs (1969) strengthens this view by emphasizing the importance of economic diversity 

for an innovative society. Greater diversity promotes diversified information spillovers 

across production sectors and processes (Glaeser et al., 1992). 

 

Consequently, the third mechanism through which immigration can boost innovation is 

through generating greater cultural diversity in the host economy. This diversity manifests 

itself both on the demand side and the supply side. Jacobs (1961) argues that the city is the 

engine of growth of the economy and immigrants are predominantly drawn to cities. The 

diversity one finds in cities in terms of the variety of commercial and cultural activities, and 

the ways in which new ideas and creativity are boosted in diverse urban environments, is 

highly beneficial for long-run development. City economies are complex, efficient, dynamic, 

and made up myriad interacting small enterprises. In large cities many of these are run by 

migrant entrepreneurs, or employ migrant workers. Such enterprises increase the cultural 

diversity of these cities. This, in turn, encourages the proliferation of new firms and also 

leads to more innovative behaviour among the local firms. Similarly, firms producing 

differentiated outputs are also attracted to the large cities. Rapid advancements in 

technologies have drastically reduced the product life-cycles, which increased the pace of 

product evolution. These changes encourage firms to locate in agglomerated area, which 

also attract people from various backgrounds. The benefits of size, density and diversity in 

large cities yield higher returns to capital. In turn, this encourages new investment and, 

consequently, economic growth. Scale economies reduce transaction costs in production 

through generating better labour market matching between available skills and job 

requirements. The greater availability of heterogeneous skills in the labour market 

decreases costly job search and imperfect matching. Therefore, complementarities in 

production yield higher returns to physical and human capital (Quigley, 1998).  

 

However, this does not necessarily imply that increasing diversity is always beneficial. While 

it can be shown that even in the standard neoclassical model the economic benefits of 

immigration for the host population tend to be larger, the more dissimilar migrants and 

native born are (e.g., Borjas, 1999), excessive diversity can increase transaction costs, 

reduce social capital and lead to social tensions. Bellini et al. (2008) review various studies 

that suggest that diversity is detrimental to economic growth. Clearly, the relationship 

between diversity and economic performance in general may have an inverted U-shape. 

However, in terms of the narrower focus of diversity and innovation a positive, but 

potentially concave, relationship may be posited.  
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As noted in the introduction, empirical evidence on the association between immigration 

and innovation has only emerged in recent years. Patent applications are often used as a 

proxy for innovation. A common feature of this empirical work so far is a strong focus on 

North America and highly skilled immigrant populations. We review the US and Canadian 

evidence first. Hunt and Gauthier-Loiselle (2008) find that high-skilled immigrants boost 

patenting at the state-level in the US without crowding out native patenting. To control for 

reverse causality they instrument skilled immigration with an initial share of immigrant high 

school dropouts. They find that a college graduate immigrant contributes to patenting at 

least twice as much as their native counterpart does. This is clearly related to the 

disproportionate share of immigrants in the fields of science and engineering in the US. 

Chellaraj et al. (2008) use US time series data to show that an increase in foreign students 

raises patent applications; and more so than an increase in skilled immigration. A similar 

finding is also reported by Hunt (2009) by means of the 2003 US national survey of college 

graduates. Hunt (2009) emphasizes that migrants who enter with student or trainee visas 

have better outcomes in wages, patenting, commercializing and licensing patents than 

native college graduates. Kerr and Lincoln (2010) and Kerr (2010) use an exogenous surge in 

the immigration of scientists and engineers in the U.S., due to the 1990 Immigration Act, as 

the means to identify the impact of immigration on the level and spatial patterns of US 

innovation. Especially the increase in Chinese and Indian patenting, referred as ‘ethnic 

invention’, has a strong correlation with admissions of foreigners by the H-1B type of visa in 

the US. 

 

Zucker and Darby (2007) focus on the geographic movements of “star scientists” in the US 

and other countries that are ranked high in science and technology (S&T). They find a link 

between their movements and innovative activity in receiving countries and regions. Star 

scientists, many of whom are foreign born, tend to cluster in particular places that also 

attract high-tech firms, and have a strong incentive and ambition to commercialise 

innovations. Zucker and Darby conclude that return migration and fewer opportunities for 

gifted students to remain in the US after graduation may be detrimental to firm start-up and 

growth in the S&T sector in that country. 

 

Partridge and Furtan (2008) find that skilled immigrants from developed countries boost 

patenting in the provinces of Canada. They find that a 10% increase in immigrants with a 

sufficient level of language proficiency increases the provincial patent flow by 7.3% in 

Canada. Particularly immigrants with backgrounds from Western Europe and North America 

have such an impact. This highlights the importance of communication skills, as well as 

complementarities between immigrants and natives. Maré et al. (2010) use surveys of 

innovation activity reported by New Zealand firms (both product and process innovations) 

to check for a link with the presence of immigrants and find that such an association exists 
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at a broad spatial scale (labour market areas) but not at the level of local neighbourhoods in 

that country. 

 

Niebuhr (2010) shows how cultural diversity (in terms of workers’ nationalities) boosts 

patent applications across German regions. She uses the geography of prior immigration 

patterns as an instrument to identify the causal effect. Finally, Lee and Nathan (2010) use a 

2007 survey of London businesses and find a significant positive relationship between 

cultural diversity of the workforce of these firms and innovation. The review of the available 

studies suggests that there is widespread, but not always robust, evidence of a positive link 

between immigration and innovation. Moreover, as noted earlier, this linkage has been 

rather under-researched in Europe. The present paper aims to fill this gap.  

 

 

3. Data and Measurement Issues 

 

The major source of the data used in this study is Eurostat’s General and Regional Database. 

The 12 European countries are included in our dataset are: Austria, Belgium, Denmark, 

France, Germany (western), Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and 

United Kingdom. The dataset contains information on 170 regions in those countries over a 

period of 11 years, starting in 1991. It consists of four sets of indicators: (i) patent 

applications, (ii) population & labour force, (iii) immigration, and (iv) production structure & 

performance (See Table 1).  

 

The available data have several limitations. Firstly, data on patent applications to the 

European Patent Office (EPO) by regions are available only at NUTS 2 level.4 This limited the 

analysis to this level, even though some regional information is available at the NUTS 3 level. 

Consequently, where data were only available at the NUTS 3 level, such data had to be 

aggregated to NUTS 2 level. The aggregation proved to be very time consuming as the 

coding and classification of NUTS 3 regions have changed over time.  

 

There are two major branches of patent data, namely patent applications to the EPO by IPC 

(International Patents Classification) sections (with eight sub-sections), and by high-

technology fields (with three sub-sections).5 We consider both the aggregate of all patents 

                                                           
4
 The Nomenclature of Units for Territorial Statistics (NUTS) is a geocode standard for referencing the 

subdivisions of European countries for statistical purposes. The NUTS 1 level refers roughly to states or large 
regions, level 2 to provinces and level 3 to counties. 
5
 We use the EPO International Patents Classification (IPC) data to measure the patent applications per million 

inhabitants by priority year. The priority year refers to the first filing worldwide. This is therefore the year 
closest to the invention date. The total patent applications per million inhabitants used in this study consist of 
two large patent sub-groups, namely the IPC sections and High Technology Patents sections. The sub-
categories of these two broad groups are as follows: IPC Sections: a) Human necessities, b) Performing 
operations; transporting, c) Chemistry; metallurgy, d) Textiles; paper, e) Fixed constructions, f) Mechanical 
engineering; lighting; heating; weapons; blasting, g) Physics, h) Electricity. High Technology Patents Sections: a) 
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and the various sub-sections. Patent applications are regionally allocated according to the 

inventors’ place of residence. If there is more than one co-inventor, then a patent count will 

be equally divided by the number of inventors, which implies that fractions of a patent may 

be assigned to different regions and/or countries. This eliminates multiple counting and 

avoids overestimation of the importance of some regions as being the main generators of 

patent applications. The inventors of these patent applications are obviously not exclusively 

immigrants and the dataset includes both non-native and native applicants. 6 Given the fact 

that patent applications require a costly and time-consuming registration process, 

researchers face three major problems when using patents. Firstly, patent application 

procedures, which are determined by each country’s central government, may vary 

substantially between different countries (Furman et al., 2002). Secondly, the propensity to 

register innovations may be culturally dependent. Thirdly, it is questionable that the 

residential location of the patent applicant always corresponds with the region where the 

impact is felt the most strongly.  

 

The literature provides a range of theories on the geography of innovation, ranging from 

incubation theory to product life-cycle theory and diffusion theory (e.g., Davelaar and 

Nijkamp, 2004). Nonetheless, there is broadly consensus on the local determinants of 

innovation production (Gordon and McCann, 2005). For instance, the demographic 

structure of the local population, and the information and institutional infrastructure drive 

the innovative potential of localities. Since innovations are indicators of the creativity of 

society, and have an economic value in terms of their impact on economic growth, 

considerable effort has been devoted to proxy visible innovations by means of patent 

applications or research grants. As a result of different classifications and intrinsic variability, 

it is well accepted that patents are an imperfect proxy of innovation, although this would 

actually depend on the research task (Griliches, 1990). 

 

Another data limitation is that, although many variables are available annually for the 

period of 1990-2005, the ‘share of foreigners in the population’ data are available in some 

countries only in 1991 and 2001 from population censuses.7 Moreover, the share of 

                                                                                                                                                                                     
High Tech: Total high tech, Computer and automated business equipment, Micro-organism and genetic 
engineering, Aviation, Communication technology, Semiconductors, Laser. b) ICT: Consumer electronics, 
Computer-office machinery, Telecommunications, other ICT, total ICT.c) Biotechnology. 
6
 Although the patent applications database gathered from the Eurostat website is fairly complete, there are 

some missing values for the UK and some other countries. Such values were imputed through interpolation by 
means of compound growth rates of patent applications. Also, in some years in some regions patent 
applications were zero. Given the use of the natural logarithm of patents as the dependent variable, patent 
activity was imputed in those cells at a non-zero level that is smaller than the smallest value in the number of 
patent applications in the given dataset. Effectively zeros in the matrix of patent applications were replaced by 
total patent applications per million inhabitants being 1.03. 
7
 The data for 1991 were kindly provided by Giovanni Prarolo at the NUTS 3 level. German data on the share of 

immigrants by citizenship is available only for western Germany and the 2001 data were provided by IAB 
Nuremberg, using information from the social security administration. The data refer to people who are active 
in the labour market, but not to their families. An estimate of the foreign born population is obtained by 
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foreigners in the population could only be disaggregated by country of citizenship at the 

NUTS 2 level in 2001. Furthermore, no information was available on the skill levels of the 

immigrants at NUTS 2 level, so we use the country of citizenship information as a proxy for 

the skills and the influence of culture that are specific to the country of citizenship. This is 

appropriate where the available data at the national level allows us to categorise 

immigrants in groups that are known to be predominantly skilled or unskilled. We created 

five major categories (Africa, America, Asia, Europe, and Oceania) as well as broader 

regional categories within the continents (e.g. North-America, North-Africa, Middle East and 

Central and Eastern European (CEE) countries).  

 

No information is available on time the immigrants have spent in the host country or region, 

the skills acquired in the process of integration to the host country, or on the number of 

foreign born migrants who were subsequently naturalized. We aim to measure the diversity 

effect of immigrants on the innovativeness of the host regions by means of a 

fractionalization index that is calculated on the basis of the regional population by country 

of citizenship.8 However, since the population by country of citizenship dataset is available 

only in 2001, we cannot account for a change in diversity over the 1991-2001 period. 

 

Data on human resources in science and technology as a percentage of the active 

population aim to measure the stock of aggregate knowledge in the regions, which acts as 

the major input in the production of new ideas. GDP per capita in purchasing power parity is 

used as an indicator of the ability of regions to convert the available knowledge into 

economic value (Furman et al., 2002). In general, the share of GDP devoted to R&D 

spending is quite constant over time, and often increasing with the development level of the 

region. Given that R&D spending per capita in a region is endogenous; GDP per capita is a 

better measure of the resources that are available to the knowledge industries rather than 

R&D expenditures themselves (Hunt, 2008; Kleinknecht et al., 2002). 

 

The size of a region’s population and its density are commonly used variables to account for 

the impact of agglomeration on innovation. Average population size captures the available 

resources, the scale of production of non-traded goods and services, and the market size of 

the regions. Population density measures the likely intensity of knowledge spillovers 

(Carlino et al., 2007). We also obtained data on the ratio of the value added of services over 

value added of the industrial sector in a region. We expect this variable to have a negative 

effect on patent applications, because patents are disproportionately generated in the high-

end manufacturing sector.  

                                                                                                                                                                                     
dividing the number of foreign-born workers by the regional labour force participation rate. This estimate of 
the foreign born population in each German region is then used to calculate the share of immigrants in the 
population. 
8 A major limitation of our measure of diversity is the absence of comparable data on the linguistic or ethnic 

diversity of the European regions. It is possible to extract some ethnic and linguistic diversity information from 
various sources mentioned in Alesina et al. (2003) but this information is available only at country level. 
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A final issue of importance is that of accessibility. Clearly knowledge spillovers require face 

to face interaction and the cost of travel between the various innovation clusters is likely to 

matter. The accessibility index used in this study was provided by ESPON.9 The theoretical 

assumption behind potential accessibility is that the attractiveness of a destination 

increases with the size of the population and decreases with distance, travel time or cost. 

These aspects are combined multiplicatively to calculate the potential accessibility: 

 

 (1) 

 

where Ai is the accessibility of area i, Wj is the opportunity (population) to be reached in 

area j, and cij is the generalised cost of reaching area j from area i. Ai is the total of the 

activities reachable at all areas j weighted by the ease of getting from i to each area j. The 

interpretation is that the greater the number of attractive destinations in areas j is and the 

better areas j are reachable from area i, the greater is the accessibility of area i. In turn, the 

generalised cost cij is calculated as follows: 

 

        (2) 

 

where cijm is the cost of travel by mode m between i and j, and λ is a parameter indicating 

the sensitivity to travel cost. This formulation of composite travel cost is superior to average 

travel cost because it makes sure that the removal of a mode with higher cost (i.e. closure of 

a rail line) does not result in a - false - reduction in aggregate travel cost (ESPON, 2009). 

 

The information on all variables is summarised in Table 1. With respect to diversity, the 

voice that this may have significant economic benefits has become stronger in recent 

years.10 Since the turn of the millennium, several studies provide fairly robust results 

between innovation and diversity, starting with Duranton and Puga (2000). Diversity and 

cultural coherence evolve over time and through interactions between people and places. In 

order to measure the impact of cultural diversity on an economy, we need to acknowledge 

that diversity is a multi-layered concept in which ethnic, linguistic, religious and personal 

perceptions of belonging overlap. Among these, ethnicity may be considered a general 

concept which is formed by common culture and ancestry. The other dimensions such as 

language or religion are sub-types of ethnicity (Wimmer, 2008). Unfortunately, Eurostat 

data do not permit us to make such distinctions at the NUTS 2 regional level.  

 

 

                                                           
9
 See ESPON (2009). 

10
 A good example is Page (2007). See also the review of this book by Ioannides (2010). 
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The diversity effect is measured by means of the fractionalization index (Alesina et al., 

2003), which is calculated as follows: 

 

 Divj =           (3) 

  

in which sij is the share of the group i (i=1, ..., N) in region j.11 The index represents the 

probability that two individuals randomly selected from a sample will belong to different 

population groups. The minimum value of the index is 0 (complete concentration in one 

type) and the maximum value is 1-1/N. The natives are excluded from the diversity index 

calculations because diversity in the form of having immigrants present is already captured 

by the share of immigrants in the population. 

 

 

4. Methodology and Econometric Modelling 

 

The nature of the data, a pooled cross-section time-series panel of regional average 

characteristics, suggests that panel data techniques that account for heteroscedasticity, 

endogeneity and spatial spillovers are the most appropriate. Where panel models are 

employed, both fixed and random effects specification are considered. However, the 

availability of data on the share of foreigners at only two points in time (1991 and 2001) and 

data on the diversity among these immigrants at only one point in time (2001) limit the 

extent to which dynamic panel models can be utilised. Given that the data refer to regional 

averages rather than a random sample of individuals, the fixed effects model is both 

theoretically preferred and also confirmed by means of the Hausman test, but when we 

estimate a dynamic panel model of 11 years of patent applications (1991-2001), with the 

interpolated share of foreign residents added, or the diversity index, we are restricted to the 

random effects panel model with AR(1) error. Consequently, we devote most attention to 

specifications that take a longer time frame per observation, namely two pooled cross-

sections of average patents (1991-1995 and 2001-2005). This way we are also able to avoid 

the issue of having to specify serial autocorrelation in the presence of missing annual 

immigration data across. Arguably, the longer time frame is also theoretically preferable 

since the impact of immigration on innovation is unlikely to manifest itself fully within a year 

(Griliches, 1990). 

 

Hence, the basic specification is as follows:  

 

lnPi,t = μi +  mi,t’+ xi,t’β + εi,t εi,t ~ N(0, σ2
i), (4) 
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 Alternatively, the fractionalization index is defined as 1H, with H the Herfindahl index of concentration of 
observations in certain categories of a classification.    
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where Pi,t refers to average patent applications per million inhabitants in region i in period t, 

mi,t is the vector that measures the characteristics of immigration in the region, xi,t is a 

vector of control variables, and μi captures regional fixed effects, and εi,t is the error term.  

 

As motivated earlier in the paper, there are five ways in which immigration can influence 

patent applications. They are the population scale effect, the population density effect, the 

share of foreigners in the population, the skill composition of the migrant flow and the 

diversity of immigrants (measured by their countries of citizenship). Given the limitations of 

the data, we can only account for the varying skill levels of immigrants by grouping migrants 

on the basis of broad regions within the continents they came from.  

 

An important problem in measuring the impact of immigration on innovation is the 

presence of two-way causation. Immigration is likely to be endogenous. Particularly skilled 

migrants may be attracted to regions where per capita income is growing, where there is 

considerable R&D activity and patents applications are likely to be increasing as well. We 

will use instrumental variables estimation to deal with a possible endogeneity bias. We 

therefore instrument the share of foreigners by an exogenous variable. The instrument 

needs to be correlated with the share of foreigners in the regions, but not with the error 

term of the model that explains the spatial and temporal variation in patent applications.  

 

The literature review suggested that commonly used instruments are historical migration 

patterns, the initial share of immigrant high school dropouts or one-off major changes in 

migrant admission policies. Here we propose a novel spatial instrument that has not been 

previously used. For this, we searched for a company that has ubiquitous establishments, 

but whose innovation is largely non-spatially differentiated. The company must determine 

the location of new outlets predominantly on the basis of population density rather than 

income (given the correlation between income and R&D activity). 12 The obvious candidate 

is the distribution of McDonald’s restaurants across NUTS 2 regions. Unlike in North America 

and in some other parts of the world, McDonald’s restaurants are considered in Europe a 

symbol of cosmopolitanization rather than simply a caterer of fast food to low income 

people. The choice of McDonald’s as an instrument fits in with the consumption 

externalities literature. The chain is associated with a life style that is internationally 

connected and aims to serve a variety of people. McDonald’s is also a significant employer 

of unskilled migrants. Consequently, a higher number of McDonald’s restaurants may be 

used a proxy for the openness and international connectedness of regions. On the other 

hand, the location of McDonald’s restaurants is not in any way driven by patenting. Formal 

tests showed that the spatial distribution of McDonald’s restaurants turned out to be a 

strong instrument that explains about 20% of the cross section variation in the share of 

foreign residents.  

                                                           
12

 Opening new restaurants in the highly populated areas, but not necessarily high GDP areas, is also mentioned as a 
location choice strategy in the frequently asked questions section of the McDonald’s UK’s website. 
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The data were collected from the McDonald’s country websites by using regional locators 

that provide the addresses of the restaurants closest to the specified locality. Given the 

larger concentration of McDonald’s restaurants in large population areas and population 

scale being already a variable in the model, we adopt the number of McDonald’s restaurants 

per million inhabitants as the instrument. This weighting scheme therefore becomes an 

exogenous index of the extent of cosmopolitization and culturally openness of the NUTS 2 

regions.  

 

Besides the issue of endogenous regressors, pooled cross-section time-series of regional 

outcomes should also take into account the possibility that the error term of the regression 

model is spatially correlated. There is a vast literature that argues, and provides evidence, 

that there are spatial knowledge spillovers, and that spatial proximity matters (Döring and 

Schnellenbach, 2006).  Although it can be argued that the flows of knowledge and ideas are 

invisible (Krugman, 1991), proximity may lead to more exchange. Consequently, patent 

activity in any given region will be positively affected by patent activity in surrounding 

regions. Spatial econometric techniques are applied to incorporate the various spatial 

interactions that may exist between the regions in terms of innovation. We use a row 

standardized spatial weight matrix, with weights inversely proportional to the Euclidean 

distances between the centres of the regions.  Before we report the results of both non-

spatial and spatial econometric modelling in Section 6, we first provide some descriptive in 

the next section. 

 

 

5. Descriptive Analysis 

 

The number of patent applications per million inhabitants of NUTS 2 regions per year has 

more than doubled from 55.8 in 1991 to 121.9 in 2001. The distribution across the 170 

regions is given in Figure 1 for each year from 1991 until 2001. Many of these patent 

applications fall into the ICT sub-category. The distribution across the sub-categories is 

displayed in Figure 2. 

 

There were 26.7 million immigrants (foreign citizens) living in the EU12 area in 2001. They 

represented 7.2% of the total EU12 population. The mean (median) share of immigrants in 

the population across the 170 NUTS 2 regions increased from 5% (3.8%) in 1991 to 7.2% 

(6.0%) in 2001. In comparison with the traditional immigrant-receiving countries of North 

America and Australasia, the percentage foreign born is still relatively small in many 

European regions. Nevertheless, there has been a relative shift of the distribution of 

immigrants from Western Europe to Central and Southern Europe. In recent years, the latter 
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countries have attracted a disproportionate share of new immigrants.13 Figure 3 presents 

the distribution of the share of foreigners by NUTS 2 regions in 2001. The average across the 

EU12 regions (7.2%) is also shown in this figure.  

 

Table 2 provides descriptive for the two five-year period averages that constitute most of 

the analysis. Patent applications range from 0.2 to about 727 per million population. The 

share of foreigners ranges from 0.1 percent to 28.6 percent of the population. The diversity 

(fractionalization) index has an average value of 0.494, with a range from 0.185 to 0.781.  

 

Our analysis period coincides with the fall of the Berlin Wall as well as the war years in the 

Balkans. Until 1997 some countries, especially Germany, continued to welcome CEE (Central 

& Eastern-European countries) migrants with bilateral agreements to fill a gap in the labour 

market. Other western countries implemented soon after the fall of the Iron Curtain 

restrictions in mobility from the CEE and Balkan countries. However, ‘a migration surge from 

these regions that followed established ethnic networks’ was nonetheless observed towards 

the West (Straubhaar, 1999). Besides this network effect, other two important drivers have 

played a role in the migration decision: geographic and linguistic proximity. The language 

skills have been a crucial factor in the choice of destination (Fassmann and Hintermann, 

1997). There were relatively large migration movements from the aforementioned countries 

to Germany and Austria over the study period. Geographical proximity has also been a 

major factor in migration decision. In a survey of 4000 people from the four largest 

countries of CEE14, 48% of the respondents considered geographical proximity important 

and 43% of those considered presence of friends/relatives in the destination country central 

to their migration decision. We are unable to separate out in our measure of high-skilled 

workers in the NUTS 2 regions those who are migrants, but several studies emphasize the 

inflow of substantial number of high skilled immigrants from CEE countries (Wolburg 1997: 

32).  

 

EU citizens living in another EU country than their country of origin make up the largest 

share (about 72%) of all foreigners in the EU12 (see Table 2). Africans are the next largest 

group, followed by Asians and Americans. Internal mobility within the EU12 is only about 

2.2% in the study period (Peri, 2005). The five regions with the highest share of foreigners 

are shown in Table 3. They represent London, Brussels, Paris and Vienna. In these cities one 

fifth or more of the inhabitants have been born in another country. Table 4 shows that while 

London is also the city with the highest value of the diversity index, there are also some 

regions with a high diversity index despite a small share of foreigners in the population (NE 

Scotland, East Anglia and Berkshire, Bucks and Oxfordshire). Note that these regions include 

                                                           
13

 For instance, the foreign-born share in Vienna, Austria, became one of the highest (see Table 3), while in 
Spain the share of immigrants increased from 0.1% to 5%. Similarly, Italy experienced an increase from 0.1 % 
to 4% over the same period. 
14

 Czech Republic, Slovakia, Poland, and Hungary. 



 

15 
 

the universities of Edinburgh, Cambridge and Oxford respectively). Table 4 also shows that 

some regions with a high share of foreigners have at the same time a low diversity index, 

because their migrants are predominantly from within Europe (Austria is an extreme case). 

Even where immigrants come from different parts of the world, immigrants may be highly 

concentrated across a few source countries. For instance, despite immigrant having a large 

share of the population, almost 40% of the immigrants in Germany originated just from two 

sources (Sudekum, 2009). 

 

The scatter diagram in Figure 4 clearly shows the positive relationship between patent 

applications and the share of foreigners. Linear regression lines are also presented. These 

show that the slope of the relationship has increased between 1991 and 2001 (the 

correlation coefficients are 0.33 and 0.48, respectively). However, it is clear from the 2001 

values that the highest patent applications are not necessarily in the regions where the 

share of immigrants in the population is the highest. In any case, immigrants are not 

homogeneous and those regions with the highest level of patent applications may be 

regions where the share of highly skilled migrants in the population is the largest, even 

though the overall share if immigrants may be relatively low. Moreover, as patent 

applications increased over time they also became more dispersed. In 1991 innovation 

activity was still highly concentrated in particular regions, yet spin-offs from traditional 

patent producing regions resulted in innovation activity becoming more widespread in the 

EU12 by 2001 (see Figure 5). In the following section, we discuss our findings from 

multivariate analysis.  

 

 

6. Regression Results 

 

Standard specifications 

 

Table 5 presents the results of three specifications of the random effects panel model. 15 

Specifications I, II and II test the density effect, the skill composition effect and the diversity 

effect of migration on innovation respectively. We control in all three models for time and 

country effects to capture the influence of national institutions and trends. Robust standard 

errors are calculated to control for cross-sectional heteroscedasticity. 

 

Specification I suggests that a 1 percentage point increase in the share of foreigners 

increases patent applications by 0.23%. The positive effect of immigrants on the 

innovativeness of the regions is statistically significant at the 1% level. Similarly, a 1% 

increase in GDP per capita leads to a 1% increase in patent applications. Average population 

size is a commonly used proxy for measuring the agglomeration, demand and consumption 

potential of the regions. Our findings show that a population increase by 1% increases 
                                                           
15

 All calculations have been carried out with Stata 11. 
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patent applications by 0.30%. Both the income per capita and population scale effects are 

statistically significant at the 1% level. As expected, the ratio of services over manufacturing 

value added has a negative effect on patent applications. This effect is also significant at the 

1% level. The coefficient of the stock of human resources in science and technology is 

insignificant, although it has the expected (positive) sign. The country-level dummy variables 

(not shown in Table 5) show that patent applications are particularly high in The 

Netherlands and low in all Mediterranean countries. 

 

Specification II in Table 5 shows how the composition of the immigrant population, in terms 

of their nationalities, contributes to the innovation output of European regions. We 

imposed the same model as before, but replace the share of foreigners by variables that 

measure the shares of various continents in the distribution of the migrant nationalities. 

Regions that have relatively many migrants from North America (who are likely to be highly 

skilled) have a positive impact on the number of patent applications. In contrast, regions 

with many migrants from Asian countries have relatively fewer patent applications. The 

coefficients of the other variables are roughly similar as in Model I. All statistically significant 

variables are significant at the 1 percent level. An additional variable introduced in Model II 

is the accessibility index. It is clear that innovation activity is greater in the European regions 

that are more accessible. 

 

Specification III tests the influence of ethnic diversity of the regional population. The 

coefficient of fractionalization index is positive, which suggest that there are positive 

externalities in the form of greater innovation activity associated with culturally more 

heterogeneous societies. Our measure of diversity in the 12 European countries has a 

statistically significant effect on the patents applications. 

 

We noted earlier in the paper that annual observations may not be the appropriate unit of 

measurement for considering the impact of immigration on innovation. Consequently, we 

also consider how the share of foreigners in a year influences innovation activity in the 

subsequent five years, by using five year averages of the variables that were included in the 

specifications reported in Table 5. This approach also provides a possibility to control for 

business cycle effects, which are likely to have an influence on patent applications. In this 

set up, the fixed effects panel model is preferred. Table 6 presents the results of this model 

and OLS estimation of the effect of diversity and migrant source regions (which are only 

observed in 2001). All specifications test for the population scale effect and column (1) also 

for the density effect by means of the fixed effects (areas) of the NUTS 2 regions. The 

equations test furthermore the migration share effect (column 1), the skill composition 

effect (2), the diversity effect of migrants on innovation (3), and the joint density and 

diversity effect of immigration (4). In all four models we account also for time and country 

effects to capture the influence of national institutions and trends. The estimations also 
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include again controls for GDP per capita, regional specialization in services/industry, and 

stock of human capital in S&T fields in the regions.  

 

Specification I reports again a positive association between higher density of foreigners and 

patents applications, somewhat smaller but similar to that in Table 5. The effect size is 

significant at the 1% level. In the fixed effects panel model estimation, the time dummy 

captures a high share of time-variant effects (namely patents have grown in most regions), 

while cross-section variation seem to be much less.  

 

The share of migrants from various backgrounds may have different effects in line with the 

concentration of foreigners in particular localities, i.e. the effect may be nonlinear. To allow 

for this we classified the foreigners’ share in regions by one and two standard deviations 

from the pooled mean share, which is 6%. We are particularly interested in the category 

where the share of foreigners is greater than 11% and that corresponds about 11% of the 

observations in the structural equation. That group includes regions like Brussels, Ile de 

France, Vienna etc. The re-estimated version of column (1) in Table 6 shows that the effect 

sizes on patent applications increase with the share of immigrants up to 15%, and then it 

starts to fall. Clearly, the migrant share effect on innovation is non-linear.  

 

Specification (2) in Table 6 shows again how the composition of the immigrant population, 

in terms of their nationalities, contributes to the innovation output of the European regions. 

We were also able to disaggregate the immigrants by narrower groups within the continents 

(North Africa, other African countries, America, Middle East, East-Asia, CEE, other European 

countries, Oceania, Other). We find a significant effect for immigrants from America, (South) 

Africa, and CEE.  

 

Specification (3) tests the influence of ethnic diversity of the regional population. The 

coefficient of the diversity index is again positive, but somewhat smaller than in Table 5. 

Almost all the covariates are significant at least at 5% level, meaning that even after 

controlling for the effect of various factors that boost innovation the positive contribution of 

diversity survives, hence diverse society enhances creativity of the regions. An important 

discussion in the literature is on how much cultural diversity is beneficial on the economic 

growth. We present an empirical experiment to shed light on the expectations about the 

relationship between cultural diversity and economic growth. We measure this relationship 

by including the quadratic form of the diversity index into the structural equation (See 

Specification 2 in Table 9). In Figure 6 we indicate the estimated effect of diversity in equal 

intervals from the mean value of the composite diversity index. The large point stands for 

the estimated effect size at mean value. It is shown that indeed there is an optimal point for 

the benefits from cultural diversity. In the right-tail of the graph it is possible to see that the 

positive effect of diversity is lessened. The last interval includes the most diverse and highly 

populated regions in our sample. A crucial aspect to be emphasized is that inverted U-shape 
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occurs only when the natives are also added in calculation of the diversity index. Once 

natives are left out we observe that the gains from a small amount of diversity are not 

positive until the optimal level of having diverse population within a particular area is 

reached. After this point, the impact of diversity becomes increasingly positive (see Figure 

6).  

 

Finally, we address the joint effects of diversity, the migrant share effect of immigrants and 

skills composition on patent applications (See column (4) of Table 6). As a skills indicator, we 

focus on the American migrants, given that they are known to be a pre-dominantly high 

skills group in Europe. The result shows the strong positive impact of both diversity and 

migrant share effects on patent applications and the presence of American migrants.  

 

Controlling for potential endogeneity 

 

Table 7 reports the results of the 2SLS estimations of the FE model. The specification tests 

reports the density (relative to population) of McDonald’s restaurants as a strong 

instrument (F-test > 10) with an explanatory power of about 20% of the cross-section 

variation of the share of foreigners in regions. The diagnostic tests confirm the exogeneity of 

the instrument. The results tell a qualitatively similar story. It is noticeable that the impact 

of immigration on innovation activity has become quantitatively larger and still significant at 

1% level. The IV estimation suggests a stronger effect of the presence of a higher share of 

foreigners on increased levels of patent applications. The estimation with the cultural 

diversity index reveals similar results to that of Table 6, but the coefficient is smaller. The 

other control variables are mostly significant with the expected signs for the coefficients. In 

particular, as theoretically expected, the variable on the human capital stock of the regions 

is highly significant and positively correlated with patents. Therefore, our results are robust 

to previous findings. 

 

Spatial econometric analysis 

 

Agglomeration economies, knowledge spillovers and the role of proximity suggest that 

spatial effects in innovation are important. We generally expect that diffusion of technology 

is faster among regions that are close to each other. This effect may result from a supply-

side externality (Vaya et al., 2004). Moreover, omitted spatially correlated exogenous 

variables and random shocks coming from neighbouring regions may influence the 

outcomes of regions in close proximity (Fingleton and Lopez-Bazo, 2006). Hence, we will 

account for spatial autocorrelation by re-estimation of Table 6 by means of spatial 

econometric models.  

 

It is a common practice to use spatial weight matrices that are based on the pair-wise 

distances between the cross-section units to detect spatial correlation in the error term, 
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while spatially lagged interdependence is more a matter of socio-economic relationships. 

The spatial weight matrices specify a form of proximity or similarity (Larch and Walde, 

2008). As noted earlier, we calculated a row-standardized spatial weight matrix where we 

used the Euclidean distances between the centres of the regions. The results of the Moran’s 

I statistics calculated by means of the OLS equivalent of Model II, across 266 NUTS 2 regions 

suggests the presence of strong spatial autocorrelation in innovation modelling. Five tests 

have been performed to assess the spatial dependence in the model. In the presence of 

spatial autocorrelation the choice of the econometric specification is based on the statistical 

significance of the test statistics (Florax and de Graaff, 2004). Given heteroscedasticity of 

the errors in the model, the robust tests preferred. The robust Lagrange multiplier test 

indicates the presence of spatial autocorrelation in the error terms and the null hypothesis 

that the λ=0 is rejected at the 5% level (LM: 6.095, p-val.: 0.014). The existence of spatial 

correlation in the error component, suggests that independence of the observations is 

violated.16 An omitted variable bias due to the omission of a spatially correlated unobserved 

effect from neighbouring regions may lead to erroneous estimations.  

 

Table 8 summarizes the results of the estimations incorporating the spatial dimensions. 

Estimation with the pooled data on five year averages by the spatial error model generates 

coefficients that are highly significant, and slightly higher (0.209) than the one reported for 

the fixed effects panel model (0.155) in Table 6. Concerning the estimations with the 

diversity index, the results confirm the robustness of the previous findings. The effect size is 

similar and significant at 1% level. The coefficients of the industrial composition and stock of 

human resources in science and technology variables have become very positive and 

significant at 1% level, stressing their importance on patent applications.  

 

 

7. Conclusion 

 

This paper discusses the various effects of immigration on innovativeness of the regions. We 

estimated four different effects (and implicitly a density effect as well) that might occur as a 

result of increasing number of foreigners in particular locations. We specifically considered 

for population scale, migrant share, the skills composition and diversity effects of foreigners. 

To address various econometric issues such as omitted variable bias, endogeneity and 

spatial dependence, robustness checks were conducted through instrumental variables and 

spatial autocorrelation estimations.  

 

                                                           
16

 The spatial error model estimates the following equations under the assumption that there may always be 
spatially correlated measurement error in the estimations, since one cannot model all the aspects of a region, 
e.g. the boundaries, natural resources, climate of study areas may not overlap with the NUTS 2 areas.  

y = Xβ + ε, ε ~N(0,
2
); ε = λWε + ν, λ is spatial lag autoregressive parameter, W is a spatial weight matrix and ν 

are independently distributed errors.   
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The econometric results of this paper are supportive of the view that Jacobs’ externalities 

are important. In other words, cross-fertilization of ideas in a diverse urban environment 

creates a contextual environment where more ideas are produced and turned into 

innovative outputs. The regions with many immigrants have a positive association in 

production of higher number of patent applications. Moreover, diversity of abilities brought 

by the immigrants may be beneficial and complementary to the native workers in the host 

regions. The varying degrees of cultural differences in terms of horizontal differentiation 

create opportunities for culturally diverse regions. However, we also reported that there is 

an optimal value for the benefits that may be extracted from diversity because the benefits 

gained from diversity appear to decrease with a value of the fractionalization index that 

exceeds 0.200.  

 

Higher competitiveness and availability of knowledge spillovers in a culturally diverse setting 

contributes to the innovativeness of the regions in Europe. We found that particular 

immigrant groups have more positive and significant effect on patent applications; however 

we would need better data for in-depth research to conclude how a variation in 

composition of the immigrant flow may affect the economic output on the host economy.  

 

The robustness checks confirm the validity of our estimates and also the causal direction of 

the relationship, that is, from immigrants to innovativeness of the region. The spatial 

econometric analysis corrected for the spatial autocorrelation due to omitted variable bias 

of spatially correlated and unobserved effects.  

 

We had considerable data availability problems at the regional level that impede us to 

pursue more comprehensive research on this topic. In future research we plan to conduct 

the analysis at the micro level, combining firm data on innovation with matched data on 

employee characteristics. Such research will be helpful to designing immigration policies 

that are targeted to ensuring the best economic and social outcomes. Such targeting based 

on perceived host country outcomes is already the main motivation for the points systems 

that are used to select skilled migrants in Australia, Canada, New Zealand and the United 

Kingdom.  
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Table 1: The available data 
  Indicators Code Measures NUTS Years Datasource 

1 Patent applications p Total patent applications per million 
inhabitants (pmi) 

nuts2 1990-2005 Eurostat, EPO 

  ht High-technology patent appl. pmi nuts2 1990-2005 Eurostat, EPO 

  ict ICT patent appl.  pmi nuts2 1990-2005 Eurostat, EPO 

  bio Biotech patent appl.  pmi nuts2 1990-2005 Eurostat, EPO 

  e Electricity patent appl.  pmi nuts2 1990-2005 Eurostat, EPO 

  fc Fixed constructions patents pmi nuts2 1990-2005 Eurostat, EPO 

  ph Physics patents pmi nuts2 1990-2005 Eurostat, EPO 

  mec Mechanical engineering patents pmi nuts2 1990-2005 Eurostat, EPO 

  tx Textiles and papers patents pmi nuts2 1990-2005 Eurostat, EPO 

  hn Human necessities patents pmi nuts2 1990-2005 Eurostat, EPO 

  pot Performing operations; transporting 
patents pmi  

nuts2 
1990-2005 Eurostat, EPO 

  c  Chemicals patent nuts2 1990-2005 Eurostat, EPO 

2 Population & labour 
force 

ave Average population of the calendar year nuts3/nuts2 1990-2006 Eurostat 

  pd Average population divided by total area 
of the region 

nuts3/nuts2 1990-2006 Eurostat 

  hr Human resources in science & tech. as a 
share of active population 

nuts2 1994-2007 Eurostat 

3 Immigration shfor Share of foreigners in total pop. nuts3/nuts2 1991, 2001 Eurostat, IAB, Censi 

  
div 

Fractionalization index = 1-Herfindal 
index of nationality shares 

nuts2 2001 Own calculations 

4 Production structure 
& performance 

smv 
Service sector value added divided by 
industry sector value added 

nuts3/nuts2 1990-2008 Oxford econometrics 

  
gdp 

GDP per capita in PPP (Adjusted to 
EU25=100) 

nuts3/nuts2 1990-2005 Oxford econometrics 

5 Geography 
w 

Weight matrix based on Euclidean 
distance 

nuts2 - ETIS 

  mcd Number of McDonald’s restaurants nuts2 2009 Own calculations 

  access Accessibility index nuts2 2009 ESPON 
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Table 2: Descriptives – 170 NUTS 2 regions, 1991-1995 and 2001-2005 
  

Variables Obs Mean Std. Dev. Min Max 

Patent applications per million population* 340 90.530 101.849 0.212 727.544 

Share of foreigners in 1991 and in 2001 pooled 340 0.060 0.043 0.001 0.286 

Ratio of services over industry value added*  340 2.779 1.209 0.847 11.026 

GDP per capita* 340 109.518 33.181 10.800 384.400 

Population* 299 2,005,932 1,703,171 116,270 11,300,000 

Human resources in S&T as % of active pop.* 334 32.179 7.530 11.540 55.286 

Area of regions (km
2
) 340 14,748 18,999 161 154,000 

McDonald’s restaurants per million pop. 340 13.499 7.086 0 33.6 

Diversity index in 1991 340 0.494 0.170 0.185 0.781 

Fraction of Africans among foreign citizens in 1991  340 0.099 0.072 0.003 0.304 

Fraction of Americans among foreign citizens in 1991 340 0.066 0.084 0.003 0.437 

Fraction of Asians among foreign citizens in 1991 340 0.098 0.116 0.004 0.568 

Fraction of Europeans among foreign citizens in 1991 340 0.717 0.187 0.232 0.971 

Fraction of Oceanians among foreign citizens in 1991 340 0.002 0.005 0.000 0.037 

Fraction of Others among foreign citizens in 1991 340 0.017 0.028 0.000 0.211 

Fraction of North-Africans among foreign citizens in 1991 340 0.056 0.065 0.001 0.294 

Fraction of Other-Africans among foreign citizens in 1991 340 0.043 0.045 0.002 0.275 

Fraction of Middle-Eastern people among foreign citizens in 
1991 340 0.012 0.013 0.000 0.055 

Fraction of Asia-others among foreign citizens in 1991 340 0.086 0.110 0.004 0.551 

Fraction of Central & Eastern Europeans among foreign 
citizens in 1991 340 0.070 0.084 0.003 0.387 

Fraction of Other Europeans among foreign citizens in 1991 340 0.647 0.184 0.211 0.901 

Fraction of Natives among foreign citizens in 1991 340 0.931 0.041 0.728 0.984 

* The individual observations are the average values for the period 1991-1995 and for the period 2001-2005 for each NUTS 
2 region. 
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Table 3: Regions with the highest and lowest share of foreigners (shfor) 
 

2001 
NUTS 2 
Codes 

Regions 
Share of 

foreigners 

R
eg

io
n

s 
w

it
h

 

h
ig

h
es

t 
sh

fo
r 

UKI1 Inner London 0.333 

BE1 Brussels 0.272 

UKI2 Outer London 0.227 

AT13 Wien 0.236 

FR10 Il de France 0.180 

R
eg

io
n

s 
w

it
h

 

lo
w

es
t 

sh
fo

r UKD1 Cumbria 0.022 

ITG2 Sardegna 0.019 

BE25 Flandre Occidentale 0.017 

ES43 Extremadura 0.017 

ITF3 Campania 0.016 

 
 
 
Table 4: The most and least diverse regions with respect to the continental shares of foreigners (%) 

 

2001 
NUTS 2 
Codes 

Regions Diversity index 
Share of 

foreigners 
Afr  Ame Asi Eur Rest Total 

m
o

st
 d

iv
er

se
 

re
gi

o
n

s 

UKI1 Inner London 0.760 0.333 0.23 0.16 0.26 0.3 0.05 1 

UKM1 NE Scotland 0.732 0.045 0.12 0.17 0.25 0.4 0.06 1 

UKI2 Outer London 0.730 0.227 0.24 0.1 0.35 0.28 0.03 1 

UKJ1 Berkshire, Bucks 
and Oxfordshire 

0.730 0.108 0.16 0.13 0.31 0.36 0.04 1 

UKH1 East Anglia 0.728 0.063 0.11 0.24 0.22 0.39 0.04 1 

le
as

t 
d

iv
er

se
 

re
gi

o
n

s 

AT12 Niederosterreich 0.093 0.088 0.01 0.01 0.02 0.95 0,00 1 

AT31 Oberosterreich 0.084 0.105 0.01 0.01 0.02 0.96 0,00 1 

AT21 Karnten 0.073 0.080 0.01 0.01 0.02 0.96 0,00 1 

AT33 Tirol 0.063 0.124 0.01 0.01 0.01 0.97 0,00 1 

AT34 Vorarlberg 0.057 0.154 0,00 0.01 0.01 0.97 0,00 1 
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Table 5: Random Effects Panel Models with Annual Data 1991-2001 

VARIABLES Dep. var.: ln Pi,t Dep. var.: ln Pi,t Dep. var.: ln Pi,t 

 

I II III 

ln(share of foreigners) 0.232*** - - 

 
(0.0863) 

  african - 2.616 - 

  
(7.718) 

 americans - 39.00*** - 

  
(13.16) 

 asians - -24.17*** - 

  
(8.290) 

 europeans - 0.770 - 

  
(1.475) 

 diversity index - - 2.243*** 

   
(0.804) 

services/industry value -0.176*** -0.200*** -0.192*** 

 
(0.0390) (0.0403) (0.0420) 

ln(gdp) 1.031*** 0.768*** 0.989*** 

 
(0.159) (0.168) (0.168) 

ln(average population) 0.302*** 0.199*** 0.282*** 

 
(0.0596) (0.0665) (0.0636) 

accessibility index - 0.0124*** - 

  
(0.00285) 

 human resources 0.00740 0.00297 0.00570 

 
(0.00529) (0.00551) (0.00549) 

constant -3.933*** -3.366*** -4.396*** 

 
-1.247 -1.211 -1.195 

country dummies Yes Yes Yes 

time dummies Yes Yes Yes 

R
2
 within 0.309 0.317 0.317 

R
2
 between 0.822 0.843 0.814 

R
2
 overall 0.744 0.762 0.738 

Number of observations 1253 1201 1205 

Number of cross-sections 169 162 163 

Estimation technique 
 

Random effects  
panel with 

AR(1) errors 

Random effects 
panel with  

AR(1) errors 

Random effects 
panel with 

AR(1) errors  

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Panel models with period data (1991-1995 and 2001-2005) 
 

Dep.var.: lnPavei,t (1) (2)  (3) (4) 

ln(share of foreigners) 0.155**  
 

0.244*** 

 
(0.0550)  

 
(0.061) 

diversity index 
 

 1.546*** 1.357*** 

  
 (0.409) (0.403) 

north-Africans 
 

0.951 
  

  
(0.0717) 

  other-Africans 
 

0.167** 
  

  
(0.0824) 

  Americans 
 

0.191** 
 

2.533** 

  
(0.095) 

 
(1.169) 

Central & Eastern Europe 
 

0.363*** 
  

  
(0.100) 

  other Europeans 
 

0.277 
  

  
(0.295) 

  services/industry value  -0.0617 -0.216** -0.229*** -0.236*** 

 
(0.0681) (0.0704) (0.0633) (0.068) 

ln(gdp) 0.320 0.568** 0.372 0.281 

 
(0.217) (0.271) (0.294) (0.253) 

ln(average population) -0.182 0.161** 0.113** 0.114** 

 
(0.793) (0.0570) (0.0523) (0.0520) 

human capital stock -0.0203 0.0640*** 0.0754*** 0.0607*** 

 
(0.0328) (0.0119) (0.0110) (0.0116) 

Time/Country dummy Yes/No Yes/Yes Yes/Yes Yes/Yes 

Constant 5.685 -3.006** -1.762 0.067 

 
(11.89) (1.395) (1.275) (1.339) 

N 297 297 297 297 

R
2
 overall  0.0932 (Adj) 0.889 (Adj) 0.895 (Adj) 0.909 

R
2
 within  0.773  

  R
2
 between  0.134  

  Estimation technique FE OLS OLS OLS 
Robust standard errors in parentheses *** <0.01, ** <0.05, * <0.1. The two Asian categories Middle East and East Asia) are not reported in 
Table 5 to save space. They are not statistically significant. 
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Table 7: Instrumental Variables Estimations 

 

Dep.var.: lnPavei,t (1) (2) 

ln(share of foreigners) 0.496*** - 

 
(0.134) 

 diversity index - 0.592** 

  
(0.284) 

services/industry value 0.123 -0.230*** 

 
(0.102) (0.0616) 

ln(gdp) -0.689 0.448 

 
(0.667) (0.283) 

ln(average population) -0.0437 0.107** 

 
(0.829) (0.0541) 

human capital stock -0.0218 0.0834*** 

 
(0.0202) (0.0130) 

Time/Country dummy  Yes/No Yes/Yes 

Constant 9.257 -1.709 

 
(11.66) (1.276) 

N 297 297 

R
2
 overall  0.0231 (Adj) 0.889 

R
2
 within  0.626 

 R
2
 between  0.002 

 Estimation Technique 2SLS, FE OLS 
Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 
 
Table 8: Estimations of Spatial Effects 

Dep.var.: lnPavei,t (1) (2) 

      

ln(share of foreigners) 0.209*** - 

 
(0.0632) 

 diversity index - 1.375*** 

  
(0.403) 

services/industry value -0.242*** -0.225*** 

 
(0.0679) (0.0618) 

ln(gdp) 0.386 0.311 

 
(0.274) (0.286) 

ln(average population) 0.139** 0.163*** 

 
(0.0555) (0.0538) 

human capital stock 0.0697*** 0.0729*** 

 
(0.0112) (0.0112) 

Time/Country dummy Yes/Yes Yes/Yes 

Constant -0.449 -1.830 

 
(1.500) (1.289) 

Lambda 0.726*** 0.749*** 

 
(0.178) (0.168) 

   Observations 266 266 

LR -214.9 -215.2 

LM 7.564 10.60 
 Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0. 
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Figure 1: Distribution of patent applications across NUTS 2 regions, 1991-2001 

 
 
 
Figure 2: The distribution of patent applications across sub-categories, annual regional observations from 1991 
until 2001 pooled 

 
 
  

0

2
0

0
4
0

0
6
0

0
8
0

0
1
0

0
0

P
a
te

n
t 
a

p
p

lic
a

ti
o

n
s
 p

e
r 

in
h
a
b

it
a

n
ts

p1991p1992p1993p1994p1995 p1996p1997p1998p1999p2000 p2001

Distribution of patent applications in 1991-2001
0

2
0

0
4
0

0
6
0

0
8
0

0

P
a
te

n
t 
a
p

p
lic

a
ti
o
n

s
 p

e
r 

m
io

 i
n

h
a

b
it
a

n
ts

ict ht e ph c pot mec bio hn fc tx
Patent sub-classification

ht High-tech  

ict ICT 

bio Biotech 

e Electricity 

fc Fixed constructions 

ph Physics 

mec Mechanical engineering 

tx Textiles and papers 

hn Human necessities 

pot Performing ope.; transporting 

c  Chemicals 

 



 

31 
 

 
Figure 3: Distribution of the share of foreigners in Europe in 2001 

 
 
 

 
Figure 4: Scatter plot for patent applications per inhabitants vs share of foreigners in the regions in 1991 and 

2001 
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Figure 5: Patent Applications by Regions in 2001 

 
 
 
 
Figure 6: Estimated effect sizes for diversity index including natives  
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Figure 7: Estimated effect sizes for diversity index excluding natives  
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