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Why System Dynamics

* Transparency through visually networked variable relationships
* Easy transportability between programmers

* Fast processing time

e Can use highly non-linear algorithms

* Stability



What is UniSyD

Early development at Unitec with FRST funding 2002-2012 as part of the I 20k "
CRL/IRL project “Hydrogen Energy for the Future of New Zealand”. Al Present:
3rd stage
2012-2013:
o ) ¢ |celand
Principal UniSyD_NZ programmers: 2"d stage T—
 Andrew Baglino, Kenneth Gillingham and Luke Leaver (Stanford 2002- « lceland ——
University); Akihiro Watabe (Kanagawa University), Ehsan Shafiei 2011: —— o
(University of Iceland); Jonathan Leaver (Unitec). 1t stage ! * Revkjavik
* Unitec (NZ) University
* Unitec (NZ) * Reykjavik « Kanagawa U.
Currently used in national energy system/integrated assessment « Stanford U. University (Japan)
modelling for New Zealand, Japan, Iceland and Finland. (USA) « MIT (USA) R .
* Asia Pacific oyama =
Energy (Japan)

Research
Center
(Japan)

IP jointly owned by Unitec, University of Iceland, Kanagawa University



Profile UniSyD NZ

* 39,186 variables including arrayed expansions - 2122 primary variables

e 76 sectors with 35,091 equations including arrayed expansions

e Optimisation occurs at each time step in
meeting electricity, hydrogen, biofuel and
vehicle fleet demands.

* Dynamic market conditions influenced by

the complex interactions among:
* Resource supply costs
* Technology costs
e Infrastructure co-evolution
* Demand patterns (consumer behaviour)
* Market prices

Processing time vs time step - 35 year time span

== 8.0 hour time step
7.2 min run time - Intel i7

10 day time step
12 sec run time - Intel i7

\4

0 1 2 3 4 5 6 7 8 9 10 11

Process time = 2.099(time step) 1025 Time step (days]
R? =0.9985

Process time (min)

o B N W b~ U O N

12



Key Elements of the UniSyD Model

¢ includes imported petroleum fuels, coal, gas, solar, hydropower,
geothermal, wind, biomass.

E n e rgy Su p p Iy ¢ incorporates resource supply curves, existing/future capacities, expected

future technologies, and supply costs.

H ¢ determines refuelling station availability as an important factor changing
REfueIIIng consumer preferences.

I nfra StrUCtu re e expected profitability is used to represent fuel station viability.

¢ a market-oriented economic system to balance demand with supply
curves of production plants

- e in short term, energy price signals to determine the fuel supply.
_ e in long-term, energy prices play a crucial role in new capacity installation.
¢ anon linear MNL framework forecasts the market share of different

vehicles.

Vehicle Choice

& F u el De man d ¢ distance travelled, vehicle stock, fuel economies, vehicle & fuel switching
are taken into account in forecasting the fuel demand.




Future Energy Prices

UniSyD: Modules and Key Variables
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UniSyD Control Levels
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Transparency

* Arrows are dependent
relationships

e Squares are stocks that delay
the flow items

Planned_Infrastructure[Fuel_Types, Vehicle_Types, Region](t) =
Planned_Infrastructure[Fuel_Types, Vehicle_Types, Region](t - dt) +
(Noname_1[Fuel_Types, Vehicle_Types, Region] - Noname_2[Fuel_Types,
Vehicle_Types, Region]) * dt {CONVEYOR}

INIT Planned_lInfrastructure[Fuel_Types, Vehicle_Types, Region] =0

TRANSITTIME =1

CONTINUOUS

ACCEPT MULTIPLE BATCHES

DOCUMENT: Source of Electric chargers: Tinna Kjartansdéttir, (2012). Electric
Vehicles in Iceland: Private Consumer Market 2013-2017

INFLOWS:

Noname_1[Fuel_Types, Vehicle_Types, Region] = Planned_Stations_pa
{UNIFLOW}

OUTFLOWS:

Noname_2[Fuel_Types, Vehicle_Types, Region] = CONVEYOR OUTFLOW
Planned_Stations[Fuel_Types, Vehicle_Types, Region](t) =
Planned_Stations[Fuel_Types, Vehicle_Types, Region](t - dt) +
(Planned_Stations_pa[Fuel_Types, Vehicle_Types, Region] +
Planned_Replace[Fuel_Types, Vehicle_Types, Region] -
Station_Exit_2[Fuel_Types, Vehicle_Types, Region]) * dt {CONVEYOR}
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Vehicle Fleet — Types and Utility

Utility of Vehicle Choice:
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UniSyD New Zealand

Shafiei, E., Leaver, J., & Davidsdottir, B. (2017). Cost-effectiveness analysis of inducing green vehicles to achieve deep reductions in greenhouse gas emissions
in New Zealand. Journal of Cleaner Production, 150, pp.339-351. doi:10.1016/j.jclepro.2017.03.032 https://doi.org/10.1016/j.jclepro.2017.03.032
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Transport GHG Emissions

Number of H2 Stations for LDVs

UniSyD New Zealand

Leaver, J. D., Shafiei, E., & Davdisdottir, B. Simulating the Impact of Infrastructure Support on the Market Penetration of
Hydrogen Vehicles in New Zealand. Proc. 21st World Hydrogen Energy Conference 2016. Zaragoza, Spain. 2016 ISBN:
978151083835
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UniSyD Japan

Akihiro Watabe, Jonathan Leaver, Hiroyuki Ishida, Ehsan Shafiei. “Impact of low emissions vehicles on reducing greenhouse gas
emissions in Japan”. Energy Policy Vol. 130, 227-242, 2019. https://doi.org/10.1016/j.enpol.2019.03.057
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UniSyD Based - Journal papers
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Hydrogen Energy, Vol. 34(7), 2855-2865.



Going forward - PhD Full Funded Opportunity in Energy
Systems Modelling

This PhD project will use UniSyD to explore a number of important questions for the New Zealand energy system including

* The optimum role of hydrogen including storage options
e The optimum role of biomass
* The optimum evolution of hydrogen infrastructure

The successful PhD student will be based at the University of Otago and be jointly supervised by Associate Professor Michael
Jack and Associate Professor Jonathan Leaver

The PhD scholarship will include tuition fees and stipend of $30,000 p.a. for 3 years.

Candidate Requirements and Application

* The applicant needs to be comﬁleting an honour degree (with GPA B+ or higher) or a master degree by the end of 2021 in Applied
Mathematics, Engineering or Physics. Experience with process modelling using Matlab Simulink, Stella or Vensim will be
advantageous. Applications from Maori and other minorities are welcomed.

* Interested candidates are invited to send your CV and transcripts as soon as possible to Associate Professor Michael Jack
(Michael.jack@otago.ac.nz) in the Department of Physics, University of Otago. The application will be closed once the suitable

candidates are identified.
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