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There is compelling evidence that typical decision-makers, including individual investors and even professional

money managers, care about the difference between their portfolio returns and a reference point, or benchmark

return. In the context of financial markets, likely benchmarks against which investors compare their own returns

include easy-to-focus-on numbers such as one’s own past payoffs, historical average payoffs, and the payoffs of

competitors. Referring to the gap between one’s current portfolio return and the benchmark return as ‘tracking

error’, this paper develops a simple model to study the consequences and possible origins of investors who

use expected tracking error to guide their portfolio decisions, referred to as ‘tracking error types’. In particular,

this paper analyses the level of risk-taking and accumulated wealth of tracking error types using standard mean-

variance investors as a comparison group. The behaviour of these two types are studied first in isolation, and

then in an equilibrium model. Simple analytic results together with statistics summarizing simulated wealth

accumulations point to the conclusion that tracking error—whether it is interpreted as reflecting inertia,

habituation, or a propensity to make social comparisons in evaluating one’s own performance—leads to greater

risk-taking and greater shares of accumulated wealth. This result holds even though the two types are calibrated to

be identically risk-averse when expected tracking error equals zero. In the equilibrium model, increased aggregate

levels of risk-taking reduce the returns on risk. Therefore, the net social effect of tracking-error-induced risk-taking

is potentially ambiguous. This paper shows, however, that tracking error promotes a pattern of specialization that

helps the economy move towards the path of maximum accumulated wealth.

1. Introduction

Tracking error is the difference between a portfolio’s return and some benchmark level of performance.

Decision-makers who care about tracking error compare their own performance to a benchmark such

as a market-index, a historical level of aggregate performance, or their own recent portfolio return.

Thus, relative performance emerges as a key criterion by which investors make judgments about the

value of a portfolio. Of course, being concerned about one’s relative performance does not completely
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displace the risk and return considerations which play a central role in traditional analyses of portfolio

choice. Therefore, this paper allows the weight placed on ‘the pursuit of high relative performance’ to

vary in magnitude. The importance of tracking error relative to the desire for high expected return and

low variance may be low, high, or somewhere in the middle. In fact, one of the central objectives of this

paper is to analyse the effect, in terms of risk-taking and accumulated wealth, of tracking error (i.e. a

preference for relative performance) as its subjective importance ranges from low-to high-priority

status.

There is considerable evidence that many financial market professionals (Locke and Mann,

1999; Coval and Shumway, 2001) and perhaps most individual investors (Heisler, 1996; Odean, 1998)

are concerned about tracking error when making portfolio decisions. In mutual fund advertisements

and in daily reporting of market activity in the Wall Street Journal, comparisons between funds and

market indices are commonplace. In such reports, money managers sometimes comment that their

losses are made less painful due to the fact that they are ahead of their fund category’s index. This

suggests that, in the minds of some fund managers, losing $100 on a day in which everyone else loses

$200 is quite different from losing $100 on a day when everyone else breaks even.

In addition to considerable anecdotal evidence pointing to the importance of tracking error

considerations in modern financial markets, experimental evidence likewise has called attention to

the fact that typical human preferences are more sensitive to departures from reference points than

to absolute levels of consumption (Rabin, 1996; Rabin and Thaler, 2001 ;). The status quo effect,

referring to reversing one’s ranking of alternatives depending on what one currently owns, appears

to be a robust component of typical preference orderings (Thaler and Johnson, 1990). Economists

drawing on the evolutionary biology literature have also noted that even our physical senses

are more keen to detect departures from the status quo than to accurately identify levels, e.g. in

temperature, duration, pressure, volume, or odour, (see discussions and references in Gintis, 2000).

This gives a tentative biological basis to the reference-point theory of choice.

The academic finance literature has studied the problem of how to minimize a (symmetric) tracking

error objective, starting with Roll (1992), where controlling ‘tracking error’ was analysed as the explicit

objective of a money manager trying to match the performance of a benchmark such as the S&P 500.

Rudolf et al. (1999) investigated asymmetric extensions of the tracking error minimization problem,

considering lower partial moment objectives and min-max objectives with one-sided deviations. The

professional finance world has also weighed in on aspects of portfolio management when the objective

is to control tracking error, as in the studies of Lee (1998), Gupta et al (1999), and Baierl and Chen

(2000).

Rather than focusing on the problem of how to efficiently control tracking error, this paper

attempts to analyse the long-run aggregate consequences of tracking error decision-making itself. In

particular, this paper addresses the question of how tracking error decision-makers perform relative to

mean-variance decision-makers who do not care about relative performance. The long-run levels of

accumulated wealth—of tracking error types and mean-variance types—are compared, first in

isolation, and then in an equilibrium environment where the decisions of tracking error types affect the

choices of mean-variance types through the price mechanism. In addition to analysing the relative

performance of tracking error types in terms of their share of accumulated wealth, the effect of

tracking error types on the accumulation of economy-wide aggregate wealth is also considered.

Before presenting the model and deriving the main results, it is worthwhile to consider the
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connections between the notion of ‘tracking error’ contemplated in this paper and the growing

literature on ‘loss aversion’. To avoid confusion over the multiple meanings which are frequently

associated with the term, Lien (2001) distinguishes between ‘strong loss aversion’, which refers to

individuals who are more sensitive to losses than to gains (with respect to a reference-point level of

wealth), and ‘weak loss aversion’, which refers to risk-loving attitudes over losses together with risk

aversion over gains. Both components of loss aversion are present in Kahneman and Tversky’s (1979)

pioneering paper on ‘prospect theory’ of which loss aversion was a key ingredient.

The main connection between tracking error and loss aversion is the prominent role played by

the reference point that comes into play when individuals subjectively evaluate risk. Both theories

draw on a combination of experimental psychology and econometric analysis of financial market data

to hypothesize that individuals are sensitive to deviations from particular reference points—often the

status quo—and not merely to deviations from the mean. There are important differences, however,

which are, perhaps, easiest to describe in terms of the shape of investors’ utility-of-wealth function.

Strong and weak loss aversion have clear-cut implications about the shape of the utility function.

The asymmetric sensitivity to gains and losses identified with strong loss aversion corresponds to a

‘kinked’ utility function, where left- and right-sided derivatives are unequal at the reference point.

And the risk-loving/risk-averting combination referred to as weak loss aversion, of course, translates

into a utility function that is convex to the left of the reference point and concave to the right.

In contrast, tracking error preferences (as they are specified in this paper, at least) do not

share either of those features in general. The utility function specifications in this paper are smooth

at the reference point and are not necessarily concave or convex anywhere on their domains.

These differences in the shape of the utility function highlight the theoretical distinction between

tracking error and loss aversion. The tracking error approach focuses solely on the reference

point aspect of preferences which it shares in common with loss aversion, without committing to

additional hypotheses about discontinuities or convexity. Despite the theoretical differences, then,

this paper should be seen as complementary to loss aversion models, in seeking to study the

causes and consequences of reference point (tracking error) preferences in the financial market context.

2. Comparing the wealth accumulations of tracking error types and
mean-variance types in isolation

Each individual must choose the share, xt, of current wealth Wt to be allocated to a risky activity with

gross return Rtz1. The remaining share, 12xt, is then allocated to a safe activity with risk-free gross

return S. Wealth evolves according to

Wtz1~Wt xtRtz1z 1{xtð ÞS½ �
Define gross total return as

Ztz1:
Wtz1

Wt

~xtRtz1z 1{xtð ÞS

Assume the risky return process {Rt} is distributed according to

log Rtz1ð Þ~r log Rtð Þzetz1, R0:emzs2

2
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where the sequence {etz1} is i.i.d. normal N(m, s2), and r s [0, 1] is a parameter indicating time

persistence in the returns process. The returns process, itself, ({Rt}) can be related to an underlying

asset price process {Pt}:

Rtz1~
Ptz1

Pt

For r~0, the return process is uncorrelated Gaussian noise and the price process is (discrete

time) geometric Brownian motion. For r~1, {Rt} itself is (discrete time) geometric Brownian

motion. Intermediate values of r s (0, 1) allow for various degrees of persistence in the returns

process, i.e. successful generations of investors tend to be followed by successful generations, and so

forth.

These discrete time wealth and returns processes are conceived of as discrete approximations

corresponding to continuous time processes. Next, those corresponding continuous time processes are

analysed directly in order to motivate the subsequent specification of preferences in terms of expected

utility functions. The key point is that the preferences of both TE and MV types depend on the mean

and variance of total gross returns rather than on moments of the absolute level of wealth. In order to

derive this as an expected utility function, the wealth process is written in continuous time before being

translated back into discrete time. The discrete time setting is more intuitive and is a practical necessity

for implementing the simulation analysis presented later. However, the continuous time setting better

facilitates the computation of closed-form moments which, in turn, simplify the derivation of an

expected utility objective.

Translating to continuous time now, the returns process is specified as simple Brownian motion with

time trend m:

dR~m dtzs dz

where z is simple Brownian motion with E dz~0 and var dz~dt. Writing the net safe return as

swS21, wealth evolves according to:

dW~W tð Þ x tð ÞdRz 1{x tð Þð Þs dt½ �~W tð Þ x tð Þ m{sð Þzsð Þdtzx tð Þs dz½ �
Thus, W(t) is seen to be geometric Brownian motion. This implies that log[W(t)] is simple Brownian

motion:

d log W tð Þ½ �~ x tð Þ m{sð Þzs{
x tð Þ2s2

2

" #
dtzx tð Þs dz

Assuming x(e) remains constant on [t, tzt], the following finite increment is a normal random

variable:

log W tztð Þ½ �{ log W tð Þ½ �*N x tð Þ m{sð Þzs{
x tð Þ2s2

2

" #
t, x tð Þ2s2t

( )

Conditional on W(t), W(tzt) is log-normal:

log W tztð Þ½ � jW tð Þ*N x tð Þ m{sð Þzs{
x tð Þ2s2

2

" #
tz log W tð Þ½ �, x tð Þ2s2t

( )

Finally, assuming that risk preferences are represented by the constant relative risk aversion expected
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utility function

u Wð Þ~W 1{b

1{b

with risk aversion parameter bw0 and b|1, it follows that, conditioning on time t information,

u(W(tzt)) is also log-normal:

log u W tztð Þð Þ½ �jW tð Þ~ 1{bð Þ log W tztð Þ½ �{ log 1{bð Þf gjW tð Þ*

N 1{bð Þ x tð Þ m{sð Þzs{
x tð Þ2s2

2

" #
tz log W tð Þ½ �

( )
{ log 1{bð Þ, 1{bð Þ2

x tð Þ2s2t

" #

Taking expectations, the following mean-variance objective function finally emerges:

Etu W tztð Þð Þ~W tð Þ1{b

1{b
e 1{bð Þt x tð Þ m{sð Þzs{

b
2
x tð Þ2s2½ �

Maximizing Etu(W(tzt)) with respect to x(t) is seen to be equivalent to maximizing

x tð Þ m{sð Þzs{
b

2
x tð Þ2s2& Et Ztztð Þ{1{

b

2
vart Ztztð Þ

� �
1

t
ð1Þ

where Ztzt:
W tztð Þ

W tð Þ is the gross return on the time t decision after the elapsed duration tw0. To see

this, use the approximation

Ztzt~
W tztð Þ{W tð Þ

W tð Þ z1&
dW tð Þ
W tð Þ z1~ x tð Þ m{sð Þzs½ �dtzx tð Þs dzz1

Setting dt~t, the first two moments are

EtZtzt~ x tð Þ m{sð Þzs½ �t, and vartZtzt~x tð Þ2s2t

This demonstrates the rationale behind the approximation in (1). Relying on the approximation

in (1), this paper proceeds in discrete time, specifying mean-variance preferences in terms of the

mean and variance of total gross return Z rather than in the moments of the absolute level of

wealth W.

2.1 The mean-variance (MV) type’s utility function

MV types seek high expected return and low variance, reflected in the standard mean-variance

objective function

uMV
t Ztz1ð Þ~Et Ztz1ð Þ{b

2
vart Ztz1ð Þ ð2Þ

where the t subscript on uMV
t reflects the fact that the utility function operates on its argument

with respect to period t information. The MV type’s utility function was derived above in continuous

time within the expected utility framework under the assumption of constant relative risk aversion.

This set-up allows portfolios to be evaluated in terms of percentage return (rather than level of wealth),

avoiding the difficulty of dealing with risk attitudes that change with the level of wealth.
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From the derivation above, the time t distribution of log (Rtz1) is normally distributed, i.e.

log Rtz1ð Þjperiod t information*N r log Rtð Þzm, s2
� �

The MV type’s objective function may be developed as follows:

uMV
t Ztz1ð Þ~Et Ztz1ð Þ{b

2
vart Ztz1ð Þ

~Et xtRtz1z 1{xtð ÞS½ �{b

2
vart xtRtz1z 1{xtð ÞS½ �

~Sz Rr
t emzs2

2 {S
	 


xt{
b

2
R2r

t e2mzs2

es2

{1
	 


x2
t

Choosing xts[x, �xx] to maximize (2), the optimal choice, xMV
t , is the function

xMV
t ~

x� if x� [ x,�xx½ �
�xx if x�

w�xx

x if x�
vx

8><
>:

where

x�:
R

r
t emzs2

2 {S

bR
2r
t e2mzs2

es2
{1

� �
Different values of [x, �xx], ranging from [2‘, ‘] to [0, 1], correspond to different assumptions about the

institutional constraints on short-selling R, and on borrowing S (taking a leveraged long position in R).

The MV type’s optimal choice has the same sign as the difference between the expected risky return

and safe return. In line with intuition, the MV type wants to fully exploit the gap in expected returns

by taking an infinite position as return risk approaches zero, i.e. xMV
t

�� ��?? as s2p0. Less intuitive,

however, is the effect of an increased degree of persistence in the returns process, reflected in the

parameter r. It can be shown that

sign
dxMV

t

dr

� �
~sign 2S{Rr

t emzs2

2

h i
Thus, the effect of more persistence on xMV

t is positive unless the expected risky return emzs2

2 is

significantly higher than the safe return S. Increased persistence raises both expected return and

variance. When the expected risky return is relatively close to the safe return, the mean effect

dominates, leading to a higher quantity demanded of R. But when the expected risky return is

already more than twice as big as the safe return, the variance effect dominates, damping the demand

for risk.

2.2 Tracking error (TE) type’s utility function

Like MV types, TE types seek high expected return and low variance. But in addition to mean and

variance, TE types also care about beating the benchmark return, denoted Zbt. Three alternative

benchmarks are specified subsequently, each corresponding to a psychological phenomenon which

has been suggested elsewhere in the finance and economics literature. Social comparisons (Abel, 1990)

Applied Mathematical Finance (gamma) AMF23088.3d 30/4/03 18:28:50 Rev 7.51n/W (Jan 20 2003)

The Charlesworth Group, Huddersfield 01484 517077

6 Berg and Lien



may lead investors to focus on the returns of competitors, as in the saying about ‘keeping up with the

Joneses’. Alternatively, habituation to past levels of return may cause investors to evaluate today’s

portfolio returns in relation to returns from the recent past (Constantinides, 1990; Shi and Epstein,

1993). And a number of other psychological phenomena cited in Rabin and Thaler (2001), most

notably, loss aversion, may lead investors to focus on other reference points.

TE types’ preference for tracking error is represented by the following utility function:

uTE
t Ztz1ð Þ~Et Ztz1ð Þ{bTE

2
vart Ztz1ð Þzc Et Ztz1{Zbtð Þl

{
w

2
vart Ztz1{Zbtð Þ

� �
ð3Þ

where l s {1, 3, 5, …} is a positive, odd integer (reflecting asymmetric subjective evaluations of gains

versus losses relative to Zbt); cw0 measures the strength of tracking error considerations relative to

mean-seeking and risk-averting motives; and w measures the degree to which the TE type seeks to

avoid tracking error volatility.1

The TE utility function (3) contains two special cases which we now consider in greater detail.

Without imposing any restrictions on (3), the TE types’ degree of risk aversion bTE may be larger

or smaller than the MV types’ risk aversion parameter b. In order to cleanly examine the effect

of the tracking error term on risk-taking, however, it will be appropriate to first normalize the

risk aversion parameters somehow so that the two types begin on a ‘level playing field’ regarding

their propensities to take risk. We argue that, instead of the restriction bTE~b, the alternative

restriction

bTEzcw~b ð4Þ
makes more sense. This claim is justified as follows.

Inspecting the TE objective (3), one may note that, because Zbt is non-stochastic at time t and

therefore, because vart(Ztz12Zbt)~var(Ztz1), the coefficient on portfolio risk is actually

1

2
bTEzcw
� �

ð5Þ

Naively equating b and bTE leads to a pair of utility functions in which TE types are always more risk

averse, even when Et(Ztz12Zbt)
l~0 and the tracking error term exerts no effect.

TE types avert risk for two reasons. First, TE types are risk averse like MV types are and

intrinsically dislike vart(Ztz1). But return risk is undesirable for a second reason as well: it makes one’s

own performance relative to the benchmark less certain. MV types, on the other hand, experience only

the first of these motives. The restriction (4) sets the magnitude of TE types’ risk aversion (due to each

of the two motives) equal to the MV types’ risk aversion parameter. Restriction (4) implies that

MV and TE types are equally concerned about the volatility of their returns, albeit for different

reasons.

The goal in considering different parameterizations of risk aversion is to construct an intuitive

‘level playing field’ so that the effect of tracking error preferences on risk-taking can be analysed in
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Ztz1

Zbt
{1

	 
l

{wvart
Ztz1

Zbt
{1

	 
� �
. Both formulations capture the essence of

TE-type behaviour: gambles are preferred when they are expected to exceed the benchmark (Et
Ztz1

Zbt
> 1 or EtZtz1wZbt), and less

preferred otherwise.
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isolation from the confounding effects of a priori differential degrees of risk aversion. In fact, a

decomposition of the tracking error term Et(Ztz12Zbt)
l (provided shortly) demonstrates that its

effect on risk-taking is, for l§3, ambiguous. Whether or not the tracking error term leads to more or

less risk-taking over time is one of the central questions in this paper. Therefore, we argue that (4)

better calibrates the risk attitudes of the two types so that neither one begins with a greater propensity

to take risk.

In fact, most of the numerical results which follow were qualitatively re-produced under the

alternative assumption that bTE~b, although with less noticeable differences and more auxiliary

parameter restrictions required. Of course, the restriction bTE~b disadvantages TE types in terms

of accumulating wealth, since it burdens them with a greater overall degree of risk aversion relative

to MV types: bTE~b)bTEzcwwb. Therefore we argue that the restriction (4) offers a cleaner

comparison. The restriction (6) is assumed to hold throughout the remainder of the paper, yielding the

following simplified expression for TE types’ utility:

uTE
t Ztz1ð Þ~uMV

t Ztz1ð Þzc Et Ztz1{Zbtð Þl
h i

ð6Þ

A second special case occurs when cp‘. For large c, maximizing (3) is the same as maximizing the

‘stand-alone’ tracking-error utility function

Et Ztz1{Zbtð Þl
{wvart Ztz1{Zbtð Þ ð7Þ

One might argue that, if the goal is to compare the behaviour of MV and TE types, then focusing on

this exclusively tracking error based utility specification would be the best choice. The point here is that

the TE objective (6) contains the stand-alone TE objective (7) as a special case. When c is large, the

maximizer of (6) approaches the maximizer of (7). By thoroughly checking the subsequent results for

sensitivity to c, the implications of the stand-alone objective are brought out as part of a full range of

mean-variance/tracking error weightings.

2.3 Benchmarks Zbt

So far, tracking error has been defined as a portfolio return’s current performance relative to some

other ‘benchmark’ level of performance. The benchmark in question has not yet been described in

detail. This section specifies three distinct specifications of the benchmark, each of which may serve as

a reference point against which real-world investors compare their own returns.

The first benchmark considered here is the last generation’s return: Zbt~Zt. Experimental

economics finds overwhelming evidence that human beings make many decisions by comparing

alternatives to the status quo (Rabin, 1998 <). This gets at the idea of habituation, the notion that we

tend to become accustomed to a certain rate of progress and judge future progress relative to that

baseline rate.

The second benchmark to be considered is the average (historical) return Zbt~
P

t
t~1Zt=t. Finan-

cial commentators frequently compare current performance with historic rates of return. The historical

benchmark will, of course, be less volatile through time than the previous benchmark (Zbt~Zt).

Finally, a third benchmark that can be linked to stylised facts established in the behavioural

economics literature is the recent return of one’s peers: i.e. TE types may focus on the recent returns of

MV types as a reference point, reflecting a social comparison (as in Abel, 1990), and formalized in this
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model by specifying Zbt~ZMV
t . This social comparison benchmark gets at the idea that decision-

makers (even expert fund managers) judge outcomes by comparing their own performance to that of

their competitors. This benchmark captures the idea that investors judge losses to be less painful when

others also lose.

2.4 TE types take more risks

The term in the TE types’ utility function that distinguishes them from MV types is Et(Ztz12Zbt)
l, where

l is a free parameter (that must be a positive, odd integer). When l~1, tracking error considerations

do nothing more than place additional weight on mean-seeking relative to risk aversion, and it is

straightforward to show that TE types take more risk and accumulate more wealth. For l~3, it is no longer

obvious whether TE types or MV types will take more risk. TE types’ demand for risk depends non-trivially

on the benchmark and can be less than or greater than MV types’ demand for risk. For l§5, the question of

whether TE or MV types take more risk is no less ambiguous. As in the l~3 case, the technique of

simulation is required when l§5 in order to study the distribution of the TE types’ demand function xTE
t in

comparison to the distribution of xMV
t . Because the l§5 case is qualitatively similar to l~3, and because

increasing l leads to effects that resemble the effects of increasing l (which is explicitly analysed later on

in this paper), only the cases l~1 and l~3 are presented here.

2.4.1 The TE demand function when l~1

When l~1, the TE objective can be written as

uTE
t Ztz1ð Þ~uMV

t Ztz1ð ÞzcEt Ztz1{Zbtð Þ

~Et Ztz1ð Þ 1zcð Þ{cZbt{
b

2
vart Ztz1ð Þ

It is immediately clear that the linear tracking error specification places additional weight on return

versus risk. It is therefore no surprise that individuals with such preferences take more risk, which can

be seen directly from

xTE
t ~

R
r
t emzs2

2 {S
h i

1zcð Þ

bR
2r
t e2mzs2

es2
{1

� � ~xMV
t 1zcð Þ

(so long as xTE
t [ x,�xx½ �), implying that

xTE
t

�� �� > xMV
t

�� ��
Result 1. Under the specified returns process, investors who maximize a linear tracking error objective

take risk each period than do mean-variance investors.

2.4.2 The TE demand function when l~3

The goal is to find a choice xTE
t that maximizes

uTE
t Ztz1ð Þ~uMV

t Ztz1ð ÞzcEt Ztz1{Zbtð Þ3
h i
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In order to maximize this function, the expression Et[(Ztz12Zbt)
3] is developed further. Re-expressing

the difference Ztz12Zbt as (Ztz12EtZtz1)z(EtZtz12Zbt) yields the relationship

Et Ztz1{Zbtð Þ3
h i

~E

t Ztz1{EtZtz1ð Þ3
h i

z3Et Ztz1{EtZtz1ð Þ2
h i

EtZtz1{Zbtð Þ ð8Þ

z(EtZtz12Zbt)
3~third central moment z3vart(Ztz1)6(Ettracking error)z(Ettracking error).3

As before. interest centres on analysing how the tracking error term (re-expressed above) affects

the TE types’ demand for risk. To approach this question, the signs of each term in (8) are sought.

Turning first to the sign of Et[(Ztz12EtZtz1)3], one may note that Ztz1{EtZtz1~x3
t Rtz1{EtRtz1ð Þ

and, therefore, that the third moment of Zt is proportional to the third moment of Rt:

Et Ztz1{EtZtz1ð Þ3
h i

~x3
t Et Rtz1{EtRtz1ð Þ3

h i
It is also known that Rtz1 is log-normal and therefore skewed to the right, implying that the third

moment of Rtz1 is positive. Thus, for xtw0, Et[(Ztz12EtZtz1)3]w0.

Tsiang (1972) shows that any risk averse individual with decreasing absolute risk aversion

with respect to wealth (as is the case here) will, all things equal, prefer positively skewed distribution.

This might, at first glance, lead one to think that the questions being raised here follow trivially

from the skewness of the returns distribution. This is not the case, however, because skewness is

only one of several components of the expected cubic of tracking error, as the decomposition in

(8) makes clear. That decomposition also makes explicit the existence of the subjective tension

introduced by the consideration of tracking error: tracking error simultaneously creates a new

preference for skewness and a new motive for averting risk when (EtZtz12Zbt)v0. This last feature is

reflected in the term 3vart(Ztz1)(EtZtz12Zbt) in (8), where it is seen that TE types may be more or less

sensitive to the variance of Ztz1 depending on whether they expect to be below or above the

benchmark Zbt.

Referring back to the right-hand side of (8), all that can be concluded about the right-hand

side is that the first term is positive while the second two terms have the same sign as (EtZtz12Zbt)v0.

The entire tracking error expression Et[(Ztz12Zbt)
3] may be either positive or negative in xt.

When (EtZtz12Zbt)w0, it follows that Et[(Ztz12Zbt)
3]w0, although the converse is not true. In

other words, when the TE type expects to beat the benchmark, the TE type’s utility function ranks

any risky portfolio higher than the MV type does. When the TE type expects to fall short of

the benchmark, however, the TE type may very well be more cautious than the MV type (but not

always).

Next, the TE type’s utility function is maximized. Appendix A expresses the TE type’s utility

function as a third-degree polynomial in xt (the TE type’s time t percentage of wealth allocated to risk):

uTE
t Ztz1 xtð Þ½ �~a0za1xtza2x2

t za3x3
t

The coefficients, which are solved for explicitly in Appendix A, are functions of the exogenous

parameters (m, s, b, r, c, S) and the predetermined benchmark Zbt. Solving the first-order condition for

xt yields two critical points. It must be verified whether these critical points lie in the admissible

interval, and whether they do in fact maximize utility or not (since the utility function is not

guaranteed to be concave in xt). Evaluating the objective function at the boundary points as well as at

the admissible critical points, the TE type’s optimal response can be determined. Since the cubic

polynomial has no upper bound, there will be parameterizations where the MV type plays a strategy on
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the boundary of the feasible interval [x, �xx]. (In such cases, the MV type may or may not choose an

interior point.) The procedure for finding a maximizer for uTE
t described above is formalized as follows.

Define r1 and r2 to be the two roots of

a1z2a2xtz3a3x2
t ~0 ð9Þ

Then define

r�1~
r1 if r1 [ x,�xx½ �
x otherwise

and r�2~
r2, if r2 [ x,�xx½ �
x otherwise

��

Finally,

xTE
t ~argmaxx [ x,r�

1
,r�

2
,�xxf guTE

t Ztz1 xð Þ½ �

Based on this behavioural equation, one can try to examine the effect of tracking error concern, c, on

the optimal percentage of wealth invested in risk xTE
t (where the ‘prime’ mark indicates differentiation

with respect to c, M:EtRtz1~R
r
t emz1

2
s2

, and V:vart Rtz1ð Þ~R
2r
t e2mzs2

es2

{1
	 


):

dxTE
t

dc
~{

a0
1z2a0

2xTE
t z3a0

3 xTE
t

� �2

6a3z2a2

~{
3 M{Sð Þ S{Zbtð Þ2

z6 V{ M{Sð Þ2
h i

S{Zbtð Þxz3 R
3r
t e3mz9

2
s2

{3VM{M3z3V M{Sð Þz M{Sð Þ3
h i

x2

6c R
3r
t e3mz9

2s
2
{3VM{M3z3V M{Sð Þz M{Sð Þ3

h i
{bVz6c Vz M{Sð Þ2

h i
S{Zbtð Þ

:

The sign of the expression above is indeterminate, depending on the relative magnitudes of M and V

(which are exogenously given) and the sign of (S2Zbt). This means that in any given period, tracking error can

lead to more or less risk-taking, depending on the size of the most recent realization of Zbt relative to S.

Result 2. For investors with (third-order) non-linear tracking error preferences, risk-taking is non-monotonic

in the intensity of tracking-error considerations, c: i.e.

c:[ xTE
t : or ;

With the effect of TE considerations on risk-taking ambiguous in the non-linear case, the tech-

nique of simulation may be used to study the average effect and other aspects of the probability

distribution associated with the difference between TE and MV demand, Dts:x
TE sð Þ
t {x

MV sð Þ
t . The

primary question is whether there is a relationship between tracking error and risk-taking that holds on

average, even though no such relationship holds for a particular realization of Dts. For each of a number

of different parameterizations, 1000 realizations of a 100 period demand sequence xMV
t , xTE

t

� �� �100

1
were

computed. Figure 3 shows a typical empirical distribution of 100 000 simulated differences in levels of

risk-taking. For most parameterizations, TE types always take more risk, as in Figure 3. But for other

parameter values, there are individual realizations of Dts that are negative for a particular time and run,

although the time average 1
100

P
100
t~1Dts is consistently positive across realizations s. =

Table 1 presents the average difference

�DD:10{5
P1000

s~1

P100

t~1

x
TE sð Þ
t {x

MV sð Þ
t

	 

and its associated t-statistics over a range of parameter values. The t-statistics in Table 1 correspond to
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a test of the null hypothesis that the average difference in risk-taking is zero, H0: ET xTE
t {xMV

t

� �
~0.

The alternative hypothesis of interest here is the idea that TE types take more risk on average, i.e. H1:

ET xTE
t {xMV

t

� �
> 0. Judging from the overwhelmingly large, positive t-statistics in Table 1, there is

broad support for the notion that TE types take more risk (on average) than MV types do, even

though both types share the same degree of risk aversion b.

Result 3. Investors with (third-order) non-linear tracking error preferences take more risk on average

than MV types do: i.e. ExTE
wExMV holds for many parameter values.

Table 1 reveals a number of other noteworthy qualitative patterns. For instance, the difference in

levels of risk-taking across types is more significant when the risk premium emzs2

2 {S is higher, when

volatility s2 is lower, and when both types are less risk averse (small b). The persistence of returns r

has non-monotonic effects on average risk-taking. Also, the borrowing constraints (x, �xx) and the

length of the time sequence (T ) have little effect on the relative level of risk-taking, at least for the

parameter values considered. Perhaps most important, Table 1 confirms the link between tracking error

and risk-taking, evidenced by the increasing differences in risk-taking that go together with increasing

values of the tracking error parameter c.

Table 1 also allows one to compare relations between risk-taking and parameter values across the

three different benchmarks that were specified earlier. The differences appear to be robust across the

three specifications, although they are less pronounced for the second benchmark (historical average).

The next section analyses the same simulation data using the distinct, although related, criterion of

accumulated wealth.

2.5 Distribution of long-run wealth accumulations

In this section, the long-run wealth accumulations of TE and MV types are compared. In

particular, this section computes a simulated probability distribution for the TE type’s share of

aggregate accumulated wealth 100 generations hence. As before, the quantities being compared

arise from decisions taken in isolation, i.e. decisions in an environment where MV and TE types

do not interact. The two types face identical realizations from a single innovation process

etf g100
{ , however. In a subsequent section, identical comparisons are made for the equilibrium

model in which both types of investors do interact. Also, it is important to realize that there

is no forward-looking behaviour reflected in the simulations presented here, since we are

interpreting the time increment to be one generation and assuming that each generation cares

mostly about itself.

After simulating wealth accumulations over 100 periods separately for MV and TE demand

functions, the empirical distribution of the TE type’s share of accumulated wealth is tabulated, where

the variable TESHARE is defined as

TESHARE:
W TE

100

W TE
100zW MV

100

Figure 1 >shows the empirical probability density function of TESHARE based on 1000 simu-

lated 100 generation sequences. TE types (with third-order tracking error preferences) always

accumulate more than half the aggregate wealth accumulated after 100 generations. Table 2
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Table 1. Difference in risk-taking D~(xTE
t {xMV

t ) for different parameter values [non-equilibrium

case].

Parameter

value

�DD

benchmark 1
t

�DD

benchmark 2
t

�DD

benchmark 3
t

m 0.0200 0.0000 0.9312 0.0000 1.9783 0.0000 0.9313

0.0400 0.0010 4.9037 0.0005 14.1306 0.0010 4.9231

0.0600 0.0067 7.7793 0.0036 25.5283 0.0067 7.8719

0.0800 0.0216 9.0437 0.0109 31.5326 0.0216 9.2420

0.1000 0.0513 10.0438 0.0247 32.1101 0.0517 10.1774

s2 0.0016 0.0310 9.1088 0.0157 30.5845 0.0309 9.2792

0.0049 0.0036 7.6030 0.0019 23.9122 0.0036 7.6787

0.0100 0.0011 6.7201 0.0006 17.7393 0.0011 6.7634

0.0169 0.0005 6.3922 0.0003 14.2833 0.0005 6.4230

0.2500 0.0001 10.9813 0.0001 8.0382 0.0001 11.0156

b 20.0000 0.0434 17.2864 0.0456 34.5175 0.0440 17.6064

40.0000 0.0102 8.7465 0.0053 28.7721 0.0102 8.8708

70.0000 0.0018 9.0580 0.0009 29.2628 0.0018 9.0967

110.0000 0.0005 9.2145 0.0002 29.9465 0.0005 9.2303

160.0000 0.0002 9.3559 0.0001 18.1602 0.0002 9.3635

r 0.0200 0.0000 0.9312 0.0000 1.9783 0.0000 0.9313

0.1000 0.0152 12.9210 0.0108 17.8099 0.0153 13.3502

0.3000 0.0292 30.3763 0.0303 11.3256 0.0304 30.0129

0.5000 0.0223 7.0718 0.0131 6.1379 0.0231 7.0184

0.7000 0.0026 1.7045 0.0027 1.6017 0.0026 1.6996

0.9000 0.0001 0.3360 0.0001 0.3245 0.0001 0.3353

A 0.0100 0.0127 8.6640 0.0065 28.4548 0.0127 8.8088

0.1000 0.0127 8.6640 0.0065 28.4548 0.0127 8.8088

1.0000 0.0127 8.6640 0.0065 28.4548 0.0127 8.8088

2.0000 0.0127 8.6640 0.0065 28.4548 0.0127 8.8088

3.0000 0.0127 8.6640 0.0065 28.4548 0.0127 8.8088

T 10.0000 0.0121 2.8274 0.0075 4.6374 0.0121 2.8679

50.0000 0.0127 6.1566 0.0068 17.1224 0.0127 6.2559

75.0000 0.0128 7.4905 0.0066 24.5061 0.0128 7.6153

100.0000 0.0127 8.4861 0.0064 29.6067 0.0126 8.6296

200.0000 0.0127 12.3530 0.0067 56.6599 0.0127 12.5621

c 0.1000 0.0002 9.2734 0.0001 29.7541 0.0002 9.2761

1.0000 0.0024 9.1718 0.0013 29.5252 0.0024 9.1994

10.0000 0.0288 7.7924 0.0135 26.9587 0.0286 8.1321

50.0000 0.2403 10.9503 0.0925 11.4001 0.2712 11.8945

100.0000 0.3318 16.0389 0.3431 15.5648 0.3946 20.3437

There are 100 000 realizations of D for each parameter value. When not specified otherwise, the other

parameters are centred at the values m~0.07, s~0.10, b~37.31, c~5, r~0, A~0, T~100, and S~1.02.

Benchmark 1 is the most recent own return, Zbt~Zt. Benchmark 2 is the historical benchmark

Zbt~
Pt

t~1 Zt=t. And Benchmark 3 is the MV type’s most recent return, Zbt~ZMV
t .
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presents average TESHARE statistics for a range of parameter values, with t-statistics corresponding

to the null hypothesis of H0: TESHARE~0.5. The relevant alternative hypothesis in this context is H1:

TESHARE w0.5, which is favoured by the test statistics at high levels of significance.

Table 2 shows that the TE types’ expected share of long-run wealth (average TESHARE) is an

increasing function of the expected risky return (m), decreasing in risk (s), and decreasing in the degree

of risk-aversion (b). Table 2 also shows that average TESHARE is non-monotonic in the persistence of

the returns process (r) and increasing in the time horizon (T ). Also evident from Table 2 is the
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� �
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Table 2. TE-share (TESHARE) of terminal aggregate wealth for different parameter values [non-

equilibrium case].

Parameter

value

TESHARE

benchmark 1 t
TESHARE

benchmark 2 t
TESHARE

benchmark 3 t

m 0.0200 0.5000 0.5498 0.5000 0.9849 0.5000 0.5497

0.0400 0.5005 21.0197 0.5003 24.9248 0.5005 21.0230

0.0600 0.5068 54.1107 0.5036 52.1027 0.5068 54.8226

0.0800 0.5322 85.8802 0.5163 68.9802 0.5322 90.3293

0.1000 0.5982 103.1811 0.5479 89.1831 0.5989 115.4388

s2 0.0016 0.5377 85.7085 0.5193 73.8142 0.5377 90.4957

0.0049 0.5047 51.7619 0.5025 46.3474 0.5047 52.1945

0.0100 0.5015 34.0337 0.5008 33.4754 0.5015 34.1282

0.0169 0.5007 26.1809 0.5004 27.0334 0.5007 26.2420

0.2500 0.5005 23.4830 0.5003 19.5241 0.5005 23.5060

b 20.0000 0.5520 107.5741 0.5544 68.5804 0.5527 111.2043

40.0000 0.5128 75.7858 0.5066 58.5771 0.5128 77.7822

70.0000 0.5023 77.9201 0.5012 55.9656 0.5023 78.5527

110.0000 0.5006 79.0791 0.5003 56.2639 0.5006 79.3388

160.0000 0.5002 80.9339 0.5001 60.7681 0.5002 81.0602

r 0.1000 0.5206 108.5185 0.5159 67.4330 0.5208 113.1275

0.3000 0.5551 135.9365 0.5638 73.1963 0.5574 142.7373

0.5000 0.5479 62.0716 0.5288 61.9260 0.5496 61.0096

0.7000 0.5056 16.9129 0.5058 16.1291 0.5057 16.7995

0.9000 0.5003 2.8003 0.5002 2.7603 0.5003 2.7971

A 0.0100 0.5160 75.1440 0.5082 58.8476 0.5159 77.4604

0.1000 0.5160 75.1440 0.5082 58.8476 0.5159 77.4604

1.0000 0.5160 75.1440 0.5082 58.8476 0.5159 77.4604

2.0000 0.5160 75.1440 0.5082 58.8476 0.5159 77.4604

3.0000 0.5160 75.1440 0.5082 58.8476 0.5159 77.4604

T 10.0000 0.5015 8.2500 0.5009 9.1618 0.5015 8.3777

50.0000 0.5079 37.6028 0.5043 37.7968 0.5079 38.4271

75.0000 0.5120 59.2959 0.5062 51.4446 0.5119 61.0070

100.0000 0.5160 77.6635 0.5082 61.7150 0.5160 79.8204

200.0000 0.5313 142.3731 0.5167 124.3698 0.5313 145.2752

c 0.1000 0.5003 80.4383 0.5002 60.1162 0.5003 80.4832

1.0000 0.5030 79.5929 0.5016 59.8865 0.5030 80.0419

10.0000 0.5360 67.4758 0.5168 57.5015 0.5357 72.2599

50.0000 0.7643 97.9794 0.6127 45.0906 0.7905 128.9938

100.0000 0.8348 143.4286 0.8410 120.4850 0.8721 188.2763

The t-statistic here is TESHARE-0.5. There are 1000 realizations of TESHARE for each parameter

value. When not specified otherwise, the other parameters are centred at the values m~0.07, s~0.10,

b~37.31, c~5, r~0, A~0, T~100, and S~1.02. Benchmark 1 is the most recent own return, Zbt~Zt.

Benchmark 2 is the historical benchmark Zbt~
Pt

t~1 Zr=t. And Benchmark 3 is the MV type’s most

recent return, Zbt~ZMV
t .
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dramatic role the tracking error parameter c plays in the accumulation of wealth. The more intensely

decision-makers care about tracking error, the more they take risk and dominate MV types by the

measure of accumulated wealth.

Result 4. Investors with (third-order) non-linear tracking-error preferences accumulate more wealth

than identically risk-averse MV types do, across the full range of parameter values and benchmark

specifications.
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Fig. 2. Empirical pdf of TESHARE [non-equilibrium case].
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Figure 3 depicts the average share of own wealth that TE types allocate to risk at each point in time,

along with 80% confidence bands. At least 80% of the time, the TE types put more than half their

wealth into risk, whereas the MV types (not pictured) make choices centred around the 50% level, by

construction. The risk aversion parameter b is calibrated so that when returns are a random walk (asset

prices follow geometric Brownian motion, i.e. r~0), MV types follow the popular rule of thumb ‘half

in stocks, half in bonds’.
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t with 80% confidence bands)

[non-equilibrium case].
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Figure 3 ?shows how the TE type’s share of terminal aggregate wealth changes in response to changes

in parameter values. A number of the phenomena discussed earlier are easy to see in Figure 3: average

TESHARE is increasing in the risk premium, decreasing in volatility, and decreasing in risk-aversion.

3. Endogenizing expectations in an equilibrium where TE and MV types
interact

Having investigated the distribution of accumulated wealth under decision-making in isolation, this

section now undertakes to study a similar set of comparisons when the two types interact. Instead of
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analysing the accumulated wealth of both types in isolation as before, the actions and ultimate fortunes

of both types are considered to co-exist in an environment where risky returns reflect the decisions of

both types. The goal of this section therefore is to analyse TE decision-making when the actions of TE

and MV types affect the returns process itself.

When co-existing in a single environment, the decisions xMV
t and xTE

t must be tied together by an

economy-wide constraint. Such a constraint ought to reflect the inherent scarcity of risky oppor-

tunities, and also ought to generalize the earlier isolation model so that each type’s individual results
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Fig. 5. TE and MV types’ share of own wealth allocated to risk (average xTE
t and average xMV

t with

80% confidence bands), Benchmark 1 [equilibrium case].
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may be recovered if the other type opts out of the market entirely. The latter requirement simply means

that when xTE
t is set to zero, the equilibrium model’s optimal xMV

t ought to be the same as it was in

isolation, because the TE type is not pursuing any risk at all and the MV types are therefore making

investment decisions in isolation once again.

While the second requirement that equilibrium effects disappear when parameters are such

that xTE
t ~0 or xMV

t ~0 is an important technical condition, the earlier requirement that there be
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a supply constraint on risky opportunities is a substantive one deserving further explanation. The

key idea is this: the more risk-taking that occurs in the aggregate, the lower is the return on

risk-taking.

In any given period, actual firms raise capital by, in essence, submitting a menu of risky projects

to wealth holders who in turn supply capital. These lists of risky projects are finite and span a range

of levels of quality, summarized as return and risk characteristics. Assuming that the risk and return

characteristics of projects is known and that the best projects are taken first, that leaves only inferior

projects to be added in periods when there is high demand for risk. Thus, more risk-taking implies that

lower quality opportunities are being pursued, i.e. the average quality of risk is declining in the level of

aggregate risk-taking.

The recent technology bubble in the US stock market illustrates the point. Because of a

higher-than-usual demand for the opportunity to be exposed to the risk of technology firms,

lower quality projects were funded by investors. As further illustration in a non-financial context,

one might imagine a hunter-gatherer society where hunting is risky and gathering is safe. When

more hunting occurs, the expected quantity of prey goes down, i.e. the return on risk-taking falls.

Thinking about risky opportunities over a time frame where it is reasonable to assume they

are in fixed supply leads to an analysis which is completely analogous to David Ricardo’s

(1971) classic example of progressively less and less productive agricultural enterprises being

undertaken.

One important potential complication of this analysis is that increased risk-taking might lead to

innovations that increase the expected return of those who pursue risk. If so, increased risk-taking

would have an ambiguous effect on average return due to the endogeneity of risk-taking and average

returns. Undoubtedly, there are simultaneous causal channels from return to risk-taking and risk-

taking to return. In this paper, however, we posit that the ‘return causes risk-taking’ channel is much

speedier and more transparent than the reverse. Thus, a fixed supply of risky opportunities is assumed

to constrain each generation.

The idea that average return on risk is decreasing in the level of aggregate risk is formalized in the

following aggregate supply constraint:

Rtz1~eetz1 (1{xMV
t xTE

t ) ð10Þ
where xMV

t and xTE
t [ ½0,1�, and stz1yN(m, s2);t. When everyone pursues risk exclusively (xMV

t ~xTE
t ~1),

gross return is zero. That means both groups lose their entire accumulation of wealth. (Recall that

Ztz1~
Wtz1

Wt
~½xtRtz1z(1{xt)S�. If xMV

t ~xTE
t ~1, (10) implies Rtz1~0 which, in turn, implies that

Wtz1~0 for both types.)

One can also see from (10) that, if either type takes no risk at all (xMV
t ~0 or xTE

t ~0 ), then the

other type will face the risky returns process Rtz1~eetz1 . This is identical to the returns process

analysed in the earlier section. By encompassing the earlier (isolated) decision rules as a special case

within the general equilibrium framework analysed here, a proper comparison of tracking error effects

in partial versus full equilibrium is possible. Imposing the constraint (10) closes the model in the sense

that decisions and expectations xMV
t ,xTE

t ,EtRtz1

� �
are now endogenous functions of the exogenous

parameters hw[m, s, S, b, c].

The ‘price’ in the equilibrium model is simply the expected return

p:EtRtz1
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To simplify notation for the remainder of the paper, xMV
t and xTE

t are rewritten more simply as

x~xMV
t and y~xTE

t ð11Þ
With this convention, the resource constraint (10) becomes Rtz1~eetz1 1{xyð Þ. Taking expectations,

the constraint can be written in terms of price:

p~m(1{xy), m:emzs2

2

Variance, in addition to price, is also endogenously determined:

vartRtz1~p2v, with v:es2

{1
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At this point, for purposes of tractability, we revert to the linear tracking error utility function

uTE
t ~uMV

t zcEt
Ztz1

Zbt
{1

	 

. Of course, in reverting to the linear tracking error specification for the

equilibrium model, it follows trivially that the TE types take more risk. However, the increased risk-

seeking of TE types gives rise to a newly accounted for social cost, reflected in the constraint (10), the

net effect of which is not at all obvious. The key question to be addressed by the equilibrium model is

whether the presence of TE types elevates or reduces aggregate wealth. The propensity of TE types to

take on additional risk leads them to accumulate more wealth than MV types. That much is clear. But

it remains to determine whether TE types help the market accumulate more wealth over time or wind

up depriving society of wealth it would have enjoyed under homogeneous MV preferences. Thus, this

section is intended to compare equilibrium aggregate wealth with and without tracking error types.

This section also compares aggregate wealth in the heterogenous preference equilibrium model against

the maximum possible aggregate wealth achievable by a benevolent planner who picks demand rules in

accordance with individual preferences and in a manner that takes into account the social costs of

pursuing risk.2

Seeking to endogenize price p, one begins by writing both utility functions in terms of price:

uMV
t (x)~Sz(p{S)x{ b

2
p2vx2

uTE
t yð Þ~S 1z c

Zbt

	 

{cz p{Sð Þ 1z c

Zbt

	 

y{ b

2
p2vy2

Just as in the Walrasian model, agents maximize their objectives taking p as given, not considering how

their own actions affect price. For interior choices of x and y,

x~
p{S

bvp2
and y~

p{Sð Þ 1z c
Zbt

	 

bvp2

Imposing the supply constraint, equilibrium p must satisfy the equality

p~m 1{xyð Þ~m 1{
p{Sð Þ2

1z c
Zbt

	 

b2v2p4

2
4

3
5

Thus, an equilibrium expected return p is defined as a solution to the auxiliary equation

h pð Þ:b2v2p4 p

m
{1

	 

z 1z

c

Zbt

� �
p{Sð Þ2

~0

If pvS, there is no reason for risk averse decision-makers to invest anything in risk, i.e. x~y~0,

which cannot be an equilibrium. Therefore, one may assume p§S. Also, restricting x and y to [0, 1]

(no borrowing allowed), the inequality pƒm must hold at any equilibrium, since p~m(12xy) and

0ƒxyƒ1. The admissible range of p is therefore [S, m], an intuitive result stating that the equilibrium
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2
Regarding the tractability of using the third-order tracking error preference specification, it is actually quite tractable to compute

prices that clear markets. Just as with the linear specification, one implicitly defines equilibrium price by using an auxiliary

equation, which turns out to be a seventh-order polynomial equation in p. The primary technical challenge that arises relates to

the fact that there typically exist a multiplicity of solutions. The tractability issue concerns the need to invoke new assumptions, or

probabilistic rules, to decide among the candidate solutions. We were unable to find a theoretically motivated procedure of this

sort. Therefore, the linear specification re-appears in this section. Happily, the simpler form continues to allow the equilibrium

model to address some issues of substance, in spite of the fact that tracking error transparently forces TE types to always take on

additional risk.
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return on risk must fall somewhere between the safe activity’s return (S) and the return on risk enjoyed

by a single person pursuing risk in isolation (m).

The existence of an equilibrium price p*s[S, m] satisfying h(p*)~0 must be verified. Two

inequalities help prove existence. Evaluating the auxiliary function h(p) at the endpoints of the interval

[S, m],

h Sð Þ~b2v2S4 S

m
{1

� �
< 0, and h mð Þ~ 1z

c

Zbt

� �
m{Sð Þ2> 0 ð12Þ

where the inequalities both follow from Svm. By the continuity of h and an application of the

intermediate value theorem, existence is established.

The next question to address is how many solutions to h(p)~0 exist in the interval [S, m]. In order

to guarantee uniqueness, it must be shown that h(p) crosses the x-axis just once on [S, m]. This is

guaranteed if h is strictly increasing on [S, m], i.e. if

h’ pð Þ~5b2v2p3 5
p

m
{4

	 

z2 p{

c

Zbt

� �
> 0 ð13Þ

Condition (13) obviously holds at p~m. And the condition holds everywhere so long as the exogenous

parameters satisfy

log
5

4
S

� �
> mzs2

�
2 ð14Þ

which is easily satisfied for all parameterizations in a large neighbourhood of estimates corresponding

to these parameters (as measured by the historical stock market data from the USA). For example, at

m~0.08, s~0.20, and S~1.02, the inequality is comfortably satisfied: log(1.2561.02)~0.24w0.08z

0.202/2. Thus, the parameter restriction (14) is imposed throughout the remainder of this paper,

guaranteeing the uniqueness of equilibrium price p.

The admissible parameter space, denoted V, is defined by the following inequalities:

m§0, s2
§0, b§0, c§0, emzs2

2 §S§1, and log
5

4
S

� �
> mzs2=2

Result 5. When hw[m, s2, b, c, S] s V, the economy defined by the sequence of agents MVt, TEtf gT
t~1, the

sequence of preferences MVt, TEtf gT
t~1, and the sequence of pre-determined endowments W MV

t , W TE
t

� �T{1

t~0

has a unique equilibrium price sequence (expected return se-quence) ptf gT
t~1.

3.1 Comparative statics

By implicitly differentiating the auxiliary equation which defines the equilibrium price, a number of

qualitative results emerge. First of all,

dp

dc
~{

p{Sð Þ2

Zbth’ pð Þv0

indicating that tracking error considerations decrease the return on risk, as expected. Again in line with
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expectations,

sign
dx

dc

� �
~sign p(2S{p)

dp

dc

� �
~negative

i.e. MV types take less risk, the more TE types care about tracking error. Finally, the TE types may

actually take less risk, the more intensely they pursue tracking error:

sign
dy

dc

� �
~sign 1z

c

Zbt

� �
2S{pð Þ dp

dc
zp p{Sð Þ 1

Zbt

� �
which is of ambiguous sign. Valid parameterizations exist that make this expression positive, and

others exist that make it negative.

Result 6. The equilibrium effect of tracking-error on quantities and price in any given period is as follows:

c :[ p ;, x ;, and y : or ;

3.2 Comparing wealth accumulations in equilibrium

This section examines wealth accumulations in equilibrium. First, an analytical result is presented

showing that a benevolent planner attempting to maximize aggregate wealth will have the two agents

specialize completely: one in the safe asset, the other in the risky asset. This, of course, minimizes the

social costs of risk-taking and exploits the complementarity of the risky and safe activities. Note that

the benevolent planner is not maximizing a weighted function of each agent’s utility, but is maximizing

aggregate wealth under the assumption (which holds in the initial period) that each type holds 50% of

aggregate wealth.

The benevolent planner chooses x and y in the unit interval to maximize E [p(xzy)zS(22x2y)]

which, after substitutions, is

m{Sð Þ xzyð Þ{m x2yzxy2
� �

z2S ð15Þ
To maximize this objective, either (x, y)~(0, 1) or (x, y)~(1, 0) must be chosen. These strategies ignore

the risk aversion of one type and ignore the mean-loving preference of the other, and therefore conflict

with the individual utility-maximizing decisions. What is noteworthy about tracking error preferences

in this regard is that they promote specialization. Beyond the simple difference in strategy that arose

directly out of the heterogeneity of the two types, the equilibrium price mechanism leads to a much

more specialized pattern of risk-taking.3
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3
The constraint Rtz1~eetz1 1{xyð Þ captures the idea that the opportunity to profit from risk-taking diminishes when both TE and

MV types pursue those risky opportunities. What is not taken into account by this constraint is the extent to which the number of

TE types or number of MV types affects the returns process. This is an important limitation of the analysis in this paper. It

remains to model this economy where these coordination costs depend on the number of or relative wealth of each type. The

following alternative formulations of the constraint are possible candidates:

Rtz1~eetz1 c{sxx{syy
� �

, or Etetz1~m0 c{sxx{syy
� �

where sx and sy are the shares (at time t) of aggregate wealth held by MV and TE types respectively. In such a set-up, the

conjecture that long-run equilibrium would feature positive numbers of each type, with a population ratio that is endogenously

determined by taste-, innovation-process-, and tracking error parameters seems reasonable. The details have yet to be worked out,

however, due, in part, to the difficulty of knowing how to handle non-uniqueness of equilibrium price.
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To see this, a second set of simulations are presented for the equilibrium model. Unless noted

otherwise the parameter values are centred at

m~0:07 s~0:10 b~37:31 c~5 r~0 A~0, T~100, and S~1:02

The value b~37.21 is set so that, in isolation, MV types optimally choose to invest half their wealth

in risk.

As illustrated in Figure 3, risk-taking is dramatically different in the equilibrium model. TE

types put slightly less than half their wealth in risk, while MV types put only 8.5% of their

wealth in risk. Even a slight weight on TE considerations is amplified through equilibrium channels

so that TE types typically allocate five to six times as much of their wealth (in percentage terms)

than MV types do. These figures are stable through time and robust across the specification of

benchmarks. @
Figure 3 shows the empirical distribution of the TE type’s share of terminal aggregate wealth. TE

types clearly end up with more wealth on average. But there are considerably more price paths in the

equilibrium model for which TE types actually do worse than MV types. Figure 3 indicates that a

number of monotonic relationships hold in equilibrium. In particular, increasing the risk premium,

increasing volatility, increasing risk aversion, or increasing returns persistence all work to the

advantage of TE types. These relationships (for volatility, risk aversion and persistence) are opposite of

the non-equilibrium case.

3. Conclusions

This paper develops a simple model in which investors with heterogeneous preferences can be compared

in terms of risk-taking and accumulated wealth. In particular, two types of investors are studied:

traditional mean-variance investors, and a second class of investors who care about their portfolio returns

relative to a benchmark level of performance, referred to in this paper as ‘tracking error’.

Tracking error decision-makers try to make portfolio decisions that, in addition to yielding high

return with low risk, are expected to beat a (personal, historical, or a competitor’s) benchmark. Not

only do tracking error decision-markers care about beating the benchmark, they also try to avoid

lagging behind it. After calibrating risk aversion across the two types so that both have identical

preferences when tracking error is zero, the paper demonstrates how tracking error decision-makers

take more risk on average than mean-variance decision-makers do, and accumulate a greater share of

aggregate wealth than mean-variance types do. Although this result is trivial for the isolation model

when tracking error enters utility linearly, the non-linear case and the linear case in equilibrium are less

obvious.

In isolation, non-linear tracking error preferences create a preference for positively skewed returns

distributions, but can sometimes make decision-makers more risk averse. The net effect is ambiguous

for any given period, because the time t preferences depend on last period’s realized benchmark. For

some values, the tracking error type will take fewer risks than the mean-variance type. But on average,

the paper shows that tracking error leads to greater risk-taking and a greater share of wealth.

In equilibrium, although it is trivial to show the tracking error types take more risk, the net social

effect of this is ambiguous, because there are social costs borne by all investors when aggregate risk-

taking increases. The intensity of tracking error preference parameters c has a clearly negative effect on
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the mean-variance types’ demand for risk. But the tracking error types themselves may demand more

or less risk when they care more about beating the benchmark.

After accounting for the crowding out effects by which risk-taking tracking error types lower the

return on risk for everyone, the simulations in this paper find that average terminal aggregate wealth is

increasing in the degree to which TE types care about tracking error. In other words, tracking error

usually leads to net social benefits in the form of higher average levels of accumulated wealth, even

though TE types’ increased risk-taking imposes social costs.

This last result prompts us to conjecture that tracking error decision-makers are selected by an

evolutionary mechanism where fitness is an increasing function of accumulated wealth. An individual

whose parents were mean-variance investors but who, due to a mutation, cares about tracking

error, winds up helping society in the individualistic pursuit of higher average returns. Assuming

complementarity between risky and safe activities, simulations suggest that a pattern of specialization

emerges which helps push aggregate returns closer to the social optimum.
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Appendix: Computing the Coefficients in uTE
t ½Ztz1(xt)�~a0za1xtza2x2

tza3x3
t

The goal is to compute [a0, a1, a2, a3] in terms of exogenously given m, s2, b, r, c, S and pre-determined

(at time t) M:EtRtz1~R
r
t emz1

2
s2

, V:vart(Rtz1)~R
2r
t e2mzs2

(es2

{1), and Zbt. Suppressing subscripts

and superscripts to write the TE type’s decision variable as x, the TE type’s third-order tracking-

preference utility function can be expressed as:

u(x)~EtZtz1{
b

2
varZtz1zcEt(Ztz1{Zbt)

3

~(M{S)xzS{
b

2
Vx2zcEt(Ztz1{Zbt)

3

ðA1Þ

Using the earlier decomposition in equation (8), the cubic term in (A1) can be broken into pieces,

expressed as polynomials in x by way of the following intermediate computations:

Et(Ztz1{EtZtz1)3~Et(Rtz1{M)3x3

~(EtR
3
tz1{3MEtR

2
tz1z3M3{M3)x3

~(EtR
3
tz1{3VM{M3)x3

~R3r
t e3mz9

2
s2

{3VM{M3)x3

3Et(Ztz1{EtZtz1)2(Ztz1{Zbt)~3V ½x(M{S)zS{Zbt�x2

~3V (M{S)x3z3V (S{Zbt)x
2

(EtZtz1{Zbt)
3~½(x(M{S)z(S{Zbt)�3

~(M{S)3x3z3(M{S)2(S{Zbt)x
2

z3(M{S)(S{Zbt)
2xz(S{Zbt)

3

(The fourth equality above uses the result that log(Y m)yN(mm, m2s2) for any log-normally distributed

variable Y with parameters m and s2, together with the fact that log(Rtz1)yN(mzrlog(Rt), s2), to
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derive Et(R
3
tz1)~e3½mzr log (Rt)�z9

2
s2

.) The cubic term in (A1) can now be expressed as

Et(Ztz1{Zbt)
3~½(R3r

t e3mz9
2s2

{3VM{M3)z3V (M{S)z(M{S)3�x3

z½3V (S{Zbt)z3(M{S)2(S{Zbt)�x2z3(M{S)(S{Zbt)
2xz(S{Zbt)

3

Returning to (A1) and summing up polynomial terms in x, the desired form is achieved, i.e. (A1) is

re-written

u(x)~a0za1xza2x2za3x3

with coefficients

a3~c½R3r
t e3mz9

2
s2

{3VM{M3z3V (M{S)z(M{S)3�

a2~{
b

2
Vz3c½Vz(M{S)2�(S{Zbt)

a1~(M{S)½1z3c(S{Zbt)
2�

a0~Sz(S{Zbt)
3
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