

Condensation-frosting Investigation on Coating-free Topographic Wetting Gradients for Heat Transfer Applications

<u>Chris Hughes</u>^{1,2}, Sam Lowrey^{1,2}, Richard Blaikie^{1,2}, Zhifa Sun¹ & Andrew Sommers³

¹ Department of Physics, University of Otago, New Zealand

² The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand

³ Department of Mechanical & Manufacturing Engineering, Miami University, Ohio, USA

Background

Objectives

Natural Convection (NC) System

1 Objective Lens

2 Sample

3 Thermistor Array

4 Cooling Block

5 Peltier

Image Processing Algorithm

Condensation Growth Curves

Forced Convection (FC) System - Wind Tunnel Design

Further Work

- NC & FC system remaining image capture
- Airflow profile of wind tunnel
- Develop measurement method for frost wavefront velocity.
- Heat transfer coefficients