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Abstract

Under vertical alliances, buyers often educate their partner suppliers on the principles of

advanced production systems such as “lean production” and “just-in-time system”. Once

a supplier acquires knowledge from its partner buyer, the supplier can often apply the

acquired knowledge, at least to a certain extent, to serve other buyers outside of the vertical

alliance (“performance spillovers”). Performance spillovers can reduce a buyer’s incentives

to educate its partner supplier because, if a buyer’s investment in educating its partner

supplier increases the supplier’s productivity to serve other buyers, the buyer’s investment

ends up increasing the supplier’s outside option. This leads to the buyer’s under-investment

in its efforts to educate the supplier.

The objective of this paper is to study the role of partial equity ownership (PEO) ar-

rangement in mitigating the buyer’s under-investment in vertical learning alliances. We

show that the buyer’s PEO in its partner supplier mitigates the under-investment prob-

lem because it internalizes a part of the price that the buyer pays to the supplier. At the

same time, PEO decreases the supplier’s investment to improve its own productivity. This

trade-off determines the equilibrium level of PEO in our model. Regarding welfare conse-

quences of PEO, we find, in contrast to the standard notion that PEO is anticompetitive

and hence welfare reducing, that PEO can increase welfare. This finding leads us to a new

policy implication of PEO. That is, a welfare maximizing social planner who can announce a

maximum permissible level of PEO may entirely permit, partially permit, or prohibit PEO,

depending on the degree of performance spillovers relative to the importance of the supplier’s

investment. We also consider an extension of our model in which the spillover rate is en-

dogenously determined through the link between performance spillovers and asset specificity.
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1 Introduction

It has been widely recognized in the management literature that one of the most fundamen-

tal objectives of strategic alliances is the transfer of knowledge between partner firms.1 Under

vertical alliances, buyers often educate their partner suppliers on the principles of advanced pro-

duction systems such as “lean production” and “just-in-time system” (Dyer and Hatch, 2006;

Dyer and Nobeoka, 2000; Kotabe, Martin, and Domoto, 2003).2 For example, Mesquita, Anand,

and Brush (2008) point out that Toyota and John Deere, leaders in the automotive and equip-

ment industries respectively, have made substantial investments in their supplier development

programs, believing they can establish a supply-base advantage.

Once a supplier acquires knowledge from its partner buyer, the supplier can often apply the

acquired knowledge, at least to a certain extent, to serve other buyers outside of the vertical

alliance (Dyer and Hatch, 2006; Mesquita, Anand, and Brush, 2008). In what follows, a sup-

plier’s redeployment of knowledge acquired from its partner buyer to other buyers is referred to

as performance spillovers, following Mesquita, Anand, and Brush (2008). Performance spillovers

can reduce a buyer’s incentives to educate its partner supplier because, if a buyer’s investment

in educating its partner supplier increases the supplier’s productivity to serve other buyers, the

buyer’s investment ends up increasing the supplier’s outside option. This leads to the buyer’s

under-investment in its efforts to educate the supplier.

How can the buyer’s under-investment problem be resolved? Contracting can help resolve or

mitigate the problem if knowledge to be transferred within vertical alliances is verifiable. How-

ever, knowledge is often tacit and non-verifiable, and contracting can play, at best, the limited

role in the transfer of tacit knowledge. Several studies have found that equity ownership plays

a critical role in facilitating the transfer of tacit knowledge. Using patent citations as a proxy

for knowledge flows, Mowery, Oxley and Silverman (1996) and Gomes-Casseres, Hagedoorn and

Jaffe (2006) empirically explored the effects of equity ownership between alliance partners on

the extent of knowledge flow. Empirical results of both studies supported the hypothesis that

equity ownership enhances the extent of knowledge flow between alliance partners.

The objective of this paper is to study the role of partial equity ownership (PEO) arrange-

ment in mitigating the buyer’s under-investment in vertical learning alliances, and explore its

policy implications. We consider a simple vertical structure consisting of one upstream supplier

(denoted by U) and two downstream manufacturers (denoted by D1 and D2). Imagine, as

an example, that U is a producer of manufacturing machines for downstream firms, where U

cannot serve more than one downstream firm due to capacity constraint. Each Di (i = 1, 2)

1See Hamel, 1991; Mowery, Oxley and Silverman, 1996; Gomes-Cassers, Hagedoorn and Jaffe, 2006; Oxley

and Wada, 2009.
2The logic here is that buyers accumulate a body of cutting-edge knowledge, taking advantage of their network

center hub positions, and then teach less knowledgeable suppliers in order to garner supply chain competitiveness

(Mesquita, Anand, and Brush, 2008).
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requires one set of machines to produce their downstream goods. The goods produced by these

downstream firms do not compete with one another for consumer demand.

U and D1 are partners of a vertical learning alliance. D1 chooses the level of knowledge

that it transfers to U . Larger amount of knowledge transfer increases the productivity of U ’s

machine for D1’s production, but D1 must incur higher costs for knowledge transfer. And it also

increases the productivity of U ’s machine for D2’s production, where the rate of performance

spillovers is denoted by β ∈ [0, 1]. As β increases, D1’s knowledge transfer becomes more useful

for U to serve D2, and it becomes equally useful when β reaches 1. We find that the level of D1’s

knowledge transfer is less than the level that maximizes the joint profit of D1 and U . Because

of performance spillovers, knowledge transfer increases the price of the machine for D1, and D1

takes this into account when it chooses the amount of knowledge transfer. Hence D1 transfers

smaller amount of knowledge as β increases, leading to an under-investment.

We show that PEO between U and D1 can mitigate the under-investment problem of D1’s

knowledge transfer. Suppose that U and D1 jointly choose the level of D1’s partial ownership

of U ’s equity, denoted by ϕ, through Nash bargaining. Once ϕ is chosen, D1 chooses the level

of knowledge transfer to maximize its profit. U also chooses the level of its own investment in

increasing the productivity of the machine for downstream firms. PEO mitigates D1’s under-

investment because it internalizes the price of the machine. That is, when D1 owns ϕ fraction

of U ’s equity, ϕ fraction of the machine’s price belongs to D1, and hence D1’s incentive for

knowledge transfer increases as ϕ increases. At the same time, ϕ decreases U ’s incentive for

investment, because ϕ fraction of the benefit from U ’s investment is captured by D1. This

trade-off is balanced out at the equilibrium level of PEO, denoted by ϕ∗.

What are the welfare consequences of PEO in our model? We find, in contrast to the

standard notion that PEO is anticompetitive and hence welfare reducing, that PEO can increase

welfare. We consider a variant of our model in which the social planner, rather than U and D1,

choose the level of PEO to maximize total surplus. Let ϕw denote the welfare maximizing level

of PEO, and consider the social planner’s choice of ϕ using ϕ = ϕ∗ as a benchmark. When U

and D1 choose ϕ = ϕ∗ in equilibrium, they ignore the effect of D1’s productivity improvement

on consumer surplus. This implies that D1’s productivity under ϕ = ϕ∗ is lower than the

socially optimal level. How can the social planner further increase D1’s productivity? Suppose

that the social planner increases ϕ from ϕ = ϕ∗. This reduces U ’s incentive for investment, but

increases D1’s incentive for knowledge transfer. We find that the latter positive effect on D1’s

productivity overshadows the former negative effect, implying ϕw > ϕ∗, when U ’s investment

is less important and β is relatively large.

This finding leads us to a new policy implication of PEO. Consider a welfare maximizing

social planner who can announce a maximum permissible level of PEO, denoted by ϕ̃, before

U and D1 choose the level of PEO. We then find that the social planner announces ϕ̃ = ϕw

if ϕw < ϕ∗ but no need to announce any ϕ̃ if ϕw ≥ ϕ∗. That is, the planner’s optimal policy
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can be permit, partially permit, or prohibit (when ϕw = 0) PEO, depending on the degree of

performance spillovers and the importance of U ’s investment.

The rate of performance spillovers β is a key element of our model, where β is an exogenous

parameter in our base model. We consider an extension of our model in which the rate of perfor-

mance spillovers is endogenously determined through the link between performance spillovers

and asset specificity and discuss robustness of our main results. The extension exhibits ro-

bustness of the welfare consequences of our base model. That is, we identify a pattern in the

extension that, as the importance of U ’s investment decreases, the endogenously determined

degree of performance spillovers increases. And, ϕw > ϕ∗ holds when the importance of U ’s

investment is smaller than a threshold.

The remainder of the paper is organized as follows. Section 2 discusses our paper’s relation-

ship to the literature. Section 3 presents our model that incorporates performance spillovers

into a double-sided moral hazard setup. Section 4 characterizes the equilibrium and shows that

the equilibrium level of PEO can be strictly positive. Section 5 explores welfare consequences

and policy implications of our analyses. Section 6 analyzes an extension of our model in which

the degree of performance spillovers is endogenously determined, and discusses robustness of

our main results. Section 7 concludes the paper.

2 Relationship to the literature

Outsourcing is often accompanied by the risk of information leakage. That is, if a downstream

producer procures an intermediate product from an upstream supplier, the producer’s trade

secrets may be shared with the supplier, who may the leak the information to other down-

stream firms. These concerns are typical in R&D intensive industries (Milliou, 2004). Baccara

(2007) analyzes the R&D investment of firms that decide between outsourcing and in-house

production when the risk of information leakage is present in a general equilibrium model, and

explores the tradeoff between hiring efficient contractors (upstream suppliers) and protecting

R&D information from expropriation by choosing in-house production. Several papers theoret-

ically study the impact of vertical integration on competition, welfare, and R&D incentives in

the presence of the risk of information leakage (Hughes and Kao, 2001; Milliou, 2004; Thomas,

2011; Allain, Chambolle, and Rey, 2011; Milliou and Petrakis, 2012). A main idea explored in

these papers is that a vertically integrated upstream supplier can be more tempted to pass on

trade secrets learned from another downstream producer to its own downstream subsidiary. Lai,

Riezman, and Wang (2009) study the role that revenue-sharing contracts can play in preventing

information leakage (see below for more details).

Performance spillovers, the focus of our paper, are fundamentally different from information

leakage. In our framework, a downstream producer can improve an upstream supplier’s perfor-

mance by transferring its knowledge with costs. Performance spillovers occur when the supplier
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can apply the acquired knowledge to serve other producers. In contrast, information leakage

occurs when valuable information possessed by a downstream producer is unavoidably shared

with an upstream supplier through the process of outsourcing, where the supplier can sell the

acquired information to other downstream firms.

Despite the prevalence of performance spillovers (see, for example, Wang, Xiao, and Yang

(2011) and references therein), few theoretical analyses have previously addressed performance

spillovers, to the best of our knowledge. The only exception we know of is Wang, Xiao, and Yang

(2011), who incorporate performance spillovers in the stochastically proportional yield model,

commonly used in the operations research literature. In their model, two manufacturers share a

common component supplier, which has a production process that is subject to random output.

Both manufacturers can exert effort to improve the reliability of the supplier’s production

process, where supplier improvement due to one manufacturer’s effort may be applicable for the

supplier to serve the other manufacturer. Wang, Xiao, and Yang characterize the manufacturers’

equilibrium improvement efforts and provide managerial insights on the market characteristics

that influence their equilibrium improvement efforts.

We study the role that PEO arrangements can play in inducing a downstream manufacturer’s

knowledge transfer to an upstream supplier in the presence of performance spillovers, and explore

welfare consequences and policy implications of PEO arrangements in this context. In Wang,

Xiao, and Yang (2011), manufacturers’ efforts transfer their knowledge to the supplier to improve

its reliability. Contracting can then be helpful when the knowledge to be transferred is verifiable

and PEO can be helpful when it is tacit and non-verifiable, but neither of them is considered

in their analysis. Also, in our model the upstream firm can make an investment to increase

effectiveness of its product for downstream firms, whereas in Wang, Xiao, and Yang the upstream

supplier does not make such an investment.3

Lai, Riezman, and Wang (2009) study the role of revenue-sharing contracts, which is the-

oretically similar to the role of PEO arrangements in our setup, in the outsourcing of R&D

activities accompanied by the risk of information leakage. In their model, downstream manu-

facturers compete in a monopolistically competitive industry, where each manufacturer decides

whether to outsource its cost-reducing R&D or to do it in-house. Research subcontracting firms

have a comparative advantage in R&D activities. However, if R&D is outsourced, the manu-

facturer’s trade secret is obtained by the research firm, which can sell the information to other

manufacturers.

Our contribution to the analysis of performance spillovers can be viewed as parallel to Lai,

Riezman, and Wang’s contribution to information leakage. In our model, PEO arrangement mit-

igates the downstream manufacturer’s under-investment problem due to performance spillovers,

whereas in Lai, Riezman, and Wang’s model, a revenue-sharing contract may prevent a research

firm’s information leakage, inducing the downstream manufacturer to outsource R&D activi-

3They point out such an extension as a possible future research.

5



ties. In terms of policy implications, we consider a social planner who can impose maximum

permissible level of PEO, where as Lai, Riezman, and Wang consider an intellectual property

policy of tighter protection of trade secrets.

Our model setup is based on double-sided moral hazard models. Bhattacharyya and La-

fontaine (1995) put forth and analyze such a model in the context of franchise relationship. In

business-format franchising, the franchisor is typically responsible for providing training and

general support to her franchisees, and the franchisee is responsible for managing the outlet

on a day-to-day basis. In their model, efforts exerted by the franchisee and the franchisor to-

gether determine their total monetary return, where the monetary return is contractible but

effort levels are not. Bhattacharyya and Lafontaine show, among other things, that the optimal

sharing rule of the monetary return can be represented by a linear contract. We incorporate

performance spillovers in this framework, study the role of PEO arrangements, and explore

their welfare consequences and policy implications.

3 The model

We consider a vertical structure consisting of one upstream supplier (denoted by U) and two

downstream manufacturers (denoted by D1 and D2). U produces one unit of an intermediate

product with zero costs. Each Di (i = 1, 2) has zero fixed costs and a constant marginal cost

of production, and requires one unit of the intermediate product to produce their downstream

goods. The goods produced by these downstream firms do not compete with one another for

consumer demand.

U and D1 are partners of a vertical learning alliance. U chooses a level of investment,

denoted by x (≥ 0), that increases effectiveness of its product for downstream firms. Also, D1

chooses a level of investment, denoted by e (≥ 0), that increases effectiveness of U ’s product

for D1. Denote investment costs of U and D1, respectively, by G(x) and K(e), where G′(·) > 0,

G′′(·) > 0, K ′(·) > 0, and K ′′(·) > 0. The level of D1’s investment, e, can be interpreted as

the amount of D1’s knowledge transferred to U , where K(e) is the cost for knowledge transfer.

Levels of investment, x and e, are observable but not contractible.

D1’s constant marginal cost is c−θx−e if it uses U ’s input, whereas D2’s constant marginal

cost is c − θx − βe if it uses U ’s input, where θ > 0 and β ∈ [0, 1]. Notice that, under our

interpretation of e as the level of D1’s knowledge transferred to U , β represents the rate of

performance spillovers. Di (i = 1, 2) can purchase one unit of the input from a spot market

at the fixed price, which we normalize at zero. Di’s constant marginal cost under this option

is c. That is, for both D1 and D2, the quality of the input purchased from the spot market is

inferior to the input produced by U .

One interpretation of this model setup is that U produces manufacturing machines for

a downstream firm, where U cannot serve more than one downstream firm due to capacity
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constraint. In what follows, we describe and analyze our model under this interpretation, where

U produces one machine at zero (normalization) costs (“one” should be interpreted as a number

of machines required by one downstream firm). Also, we assume that the machine is sold by

auction through the following rule: D1 and D2 bid simultaneously. If the bids made by D1

and D2 are different, the firm with the higher bid will get the machine, and if it is a tie, each

downstream firm has equal probability of getting the machine.

Because the levels of investment are not contractible and D1’s investment partially benefits

D2 due to performance spillovers, D1 may lack the proper incentives to invest. As an improve-

ment to this incentive problem, we introduce partial equity ownership (PEO) arrangement,

whereby D1 holds U ’s stocks by a share ϕ ∈ [0, 1]. PEO helps D1 to internalize part of the

performance spillovers, which is likely to boost D1’s investment incentives. But, at the same

time, PEO tends to decrease U ’s investment incentives, because U no longer owns all of the

company’s equities.

Given the above settings, we consider the following four-stage game.

[Stage 1] U and D1 negotiate the level of PEO (ϕ) and the amount of monetary transfer (F )

through Nash bargaining.

[Stage 2] U andD1 simultaneously and independently choose x and e, respectively, by incurring

costs.

[Stage 3] U sells the machine by auction.

[Stage 4] D1 and D2 choose some strategic variables and their profits realize.

4 Equilibrium characterization: PEO as an equilibrium out-

come

The backward induction approach is used to solve for the subgame perfect Nash equilibrium of

the four-stage game.

The forth stage

For convenience of explanation, we assume that there are three plants, plant 0, 1, and 2. Initially,

plant 0 is exclusively owned by U , plant 1 is exclusively owned by D1, and plant 2 is exclusively

owned by D2. U and D1 can engage in a PEO arrangement, under which D1 pays F to purchase

ϕ of plant 0’s shares from U .4

Plant i’s profit exclusive of the investment cost (if any) and the purchasing cost of the

machine (if any) is denoted by π(ci), where ci is the constant marginal cost and i = 1, 2.

4We assume that PEO arrangement is just a silent financial interest and it gives D1 no control power over U .

That means that, regardless of whether there is PEO arrangement or not, the investment decisions in the second

stage of the game will always be made unilaterally.
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Furthermore, the profit function is assumed to be continuously differentiable with the following

properties, π′(·) < 0 and π′′(·) > 0. As the production cost of the machine is normalized to be

0, if the machine is sold at price t, the profit of plant 0 would be t.

Given the above settings, if D1 buys the machine at price t, the profits of the three firms

would be
ΠU = (1− ϕ)t−G(x) + F

ΠD1 = π(c− θx− e)− (1− ϕ)t−K(e)− F ,

ΠD2 = π(c)

and if D2 buys the machine at price t, the profits of the three firms would be

Π̃U = (1− ϕ)t−G(x) + F

Π̃D1 = π(c) + ϕt−K(e)− F .

Π̃D2 = π(c− θx− βe)− t

The third stage

In the third stage of the game, the machine is sold by auction. Lemma 1 identifies the winner

of the bid and the price of the machine.

Lemma 1. If β < 1, D1 will win the bid and the price of the machine is π(c− θx− βe)− π(c).

Proof. Supposing that the bids of D1 and D2 are b1 and b2, respectively; then, if b1 > b2, D1

gets the machine and its profit will be W = π(c− θx− e)− (1−ϕ)b1−K(e)−F , if b1 = b2 = b,

D1 gets the machine with probability 50% and its profit will be T = (1/2)[π(c − θx − e) +

π(c)]− (1/2)(1− 2ϕ)b−K(e)− F , and if b1 < b2, D2 gets the machine and D1’s profit will be

L = π(c) + ϕb2 −K(e)− F . Given this, D1’s best strategy should be

b1(b2) =


b2 + ϵ if b2 < π(c− θx− e)− π(c)

b2 if b2 = π(c− θx− e)− π(c)

b2 − ϵ if b2 > π(c− θx− e)− π(c)

,

where ϵ is an infinitely small positive number. Similarly, it can be proved that D2’s best strategy

should be

b2(b1) =


b1 + ϵ if b1 < π(c− θx− βe)− π(c)

b1 if b1 = π(c− θx− βe)− π(c)

b1 − ϵ if b1 > π(c− θx− βe)− π(c)

.

As π(c− θx− e) > π(c− θx−βe) for β < 1, D1 will win the bid and the price of the machine is

π(c− θx− βe)− π(c) + ϵ. Without any loss, in what follows, ϵ is omitted from the expression

of the machine price.
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The second stage

From Lemma 1 we know that, if performance spillovers are not perfect, D1 will win the bid at

the expense of t = π(c− θx− βe)− π(c). Given this, the profit functions of U and D1 can be

expressed as

ΠU = (1− ϕ)[π(c− θx− βe)− π(c)]−G(x) + F, (1)

ΠD1 = π(c− θx− e)− (1− ϕ)[π(c− θx− βe)− π(c)]−K(e)− F. (2)

In the second stage of the game, U and D1 choose levels of investment to maximize their own

profits. The equilibrium investments, which are denoted by x(ϕ) and e(ϕ), will be determined

by the following first-order conditions

−θ(1− ϕ)π′(c− θx− βe)−G′(x) = 0, (3)

−π′(c− θx− e) + β(1− ϕ)π′(c− θx− βe)−K ′(e) = 0. (4)

To satisfy the second-order conditions of each firm’s optimization problem and the stability

requirements on reaction functions, we assume that

∂2ΠU

∂x2
< 0,

∂2ΠD1

∂e2
< 0,

∂2ΠU

∂x2
∂2ΠD1

∂e2
>

∂2ΠU

∂e∂x

∂2ΠD1

∂x∂e
(5)

for any x, e, θ ≥ 0 and β, ϕ ∈ [0, 1]. These assumptions will be justified if G(·) and K(·) are

sufficiently convex.

Before turning to the analysis of the first stage of the game, it is useful to know how an

exogenous variation in the partial ownership level will influence the equilibrium investments.

Totally differentiating Eqs. (3) and (4) with respect to ϕ, we find the following relationships.

Lemma 2. If β, θ > 0, ϕ < 1, and G(·) and K(·) are sufficiently convex, we have that

∂x(ϕ)

∂ϕ
< 0 and

∂e(ϕ)

∂ϕ
> 0.

Proof. Totally differentiating Eqs. (3) and (4) with respect to ϕ, we can get ∂x(ϕ)/∂ϕ =

−π′(c − θx − βe)(θS22 + βS12)/(S11S22 − S12S21) and ∂e(ϕ)/∂ϕ = π′(c − θx − βe)(βS11 +

θS21)/(S11S22 −S12S21), where S11 = θ2(1−ϕ)π′′(c− θx− βe)−G′′(x), S12 = βθ(1−ϕ)π′′(c−
θx − βe), S21 = θ[π′′(c − θx − e) − β(1 − ϕ)π′′(c − θx − βe)], and S22 = π′′(c − θx − e) −
β2(1 − ϕ)π′′(c − θx − βe) −K ′′(e). From the assumptions specified by Eq. (5), we know that

S11S22 − S12S21 > 0. If β, θ > 0 and G(·) and K(·) are sufficiently convex, we can further get

βS11 + θS21 = θ2π′′(c− θx− e)− βG′′(x) < 0 and θS22 + βS12 = θ[π′′(c− θx− e)−K ′′(e)] < 0.

Accordingly, ∂x(ϕ)/∂ϕ < 0 and ∂e(ϕ)/∂ϕ > 0.

Lemma 2 tells us that, as the level of PEO increases, U ’s investment decreases while D1’s

investment increases. The logic here is simple. As the level of PEO increases, U can capture

a smaller fraction of the return from its own investment, and hence U ’s investment incentive
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decreases. Regarding D1’s investment, its return is in part captured by U because D1’s invest-

ment increases the value of the machine for D2 through performance spillover, which in turn

increases the price that D1 must pay to purchase the machine through auction. But, as the

level of PEO increases, D1 can recover a larger fraction of the price increase as its own profit,

and hence D1’s investment incentive increases.

How does the rate of performance spillovers affects D1’s investment incentives? To answer

this question, we totally differentiate Eqs. (3) and (4) with respect to β and obtain the following

lemma.

Lemma 3. If β, θ > 0, ϕ < 1, and G(·) and K(·) are sufficiently convex, we have that

∂e(ϕ)

∂β
< 0.

Proof. Totally differentiating Eqs. (3) and (4) with respect to β, we can get ∂e(ϕ)/∂β =

(1 − ϕ)[eπ′′(c − θx − βe)(βS11 + θS21) − π′(c − θx − βe)S11]/(S11S22 − S12S21), where S11 =

θ2(1 − ϕ)π′′(c − θx − βe) − G′′(x), S12 = βθ(1 − ϕ)π′′(c − θx − βe), S21 = θ[π′′(c − θx − e) −
β(1 − ϕ)π′′(c − θx − βe)], and S22 = π′′(c − θx − e) − β2(1 − ϕ)π′′(c − θx − βe) − K ′′(e). It

is already known that π′(·) < 0 and π′′(·) > 0. From Eq. (5), it is known that S11 < 0 and

S11S22 − S12S21 > 0. If β, θ > 0 and the innovative cost functions are sufficiently convex, we

can further get βS11 + θS21 = θ2π′′(c− θx− e)− βG′′(x) < 0. Accordingly, if ϕ < 1, it can be

concluded that ∂e(ϕ)/∂β < 0.

The intuition behind this conclusion is as follows. From Lemma 1, we known that D1 wins

the machine but the price paid is determined by D2’s willingness to pay. A rise in the perfor-

mance spillover rate makes the machine more useful to D2, which increases D2’s willingness to

pay and then pushes up the price of the machine. A higher price of the machine means a smaller

benefit D1 can anticipate from its own investment. Accordingly, D1’s investment incentives will

decline.

The first stage

In the first stage of the game, U and D1 negotiate the level of PEO and the amount of monetary

transfer through Nash bargaining. As outside options, U and D1’s profits without PEO can be

expressed as

Π̄U = [π(c− θx̄− βē)− π(c)]−G(x̄), (6)

Π̄D1 = π(c− θx̄− ē)− [π(c− θx̄− βē)− π(c)]−K(ē), (7)

where x̄ = x(0) and ē = e(0). Combined with the profits with PEO, which are derived in the

analysis of the second stage of the game, the equilibrium PEO level and the amount of monetary
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transfer will be determined by the following optimization problem

max
ϕ,F

(ΠU − Π̄U )(ΠD1 − Π̄D1)

s.t. ΠU ≥ Π̄U ,ΠD1 ≥ Π̄D1 (8)

where x = x(ϕ) and e = e(ϕ). As a standard conclusion under Nash bargaining, for a certain

ϕ, F will be chosen such that U and D1 split the surplus from PEO equally. Given this, we can

conclude that the optimal PEO level, which is denoted by ϕ∗, will be determined by

max
ϕ

Π(ϕ) = π(c− θx− e)−G(x)−K(e), (9)

where x = x(ϕ) and e = e(ϕ).

Proposition 1 tells us that the equilibrium level of PEO is strictly positive when the perfor-

mance spillover rate is sufficiently large.

Proposition 1. There exists a β̄ < 1 such that ϕ∗ > 0 if β > β̄.

Proof. Differentiating the joint profit of U and D1 with respect to ϕ, we can get the following

first-order derivative, ∂Π(ϕ)/∂ϕ = [−θπ′(c − θx − e) − G′(x)][∂x(β, θ, ϕ)/∂ϕ] + [−π′(c − θx −
e) −K ′(e)][∂e(β, θ, ϕ)/∂ϕ]. From Eqs. (3) and (4), we know that −θπ′(c − θx − e) − G′(x) =

θ[(1−ϕ)π′(c−θx−βe)−π′(c−θx−e)] and −π′(c−θx−e)−K ′(e) = −β(1−ϕ)π′(c−θx−βe).

Accordingly, the first-order derivative can be rewritten as ∂Π(ϕ)/∂ϕ = θ[(1−ϕ)π′(c−θx−βe)−
π′(c− θx− e)][∂x(β, θ, ϕ)/∂ϕ]−β(1−ϕ)π′(c− θx−βe)[∂e(β, θ, ϕ)/∂ϕ]. Given Lemma 2, it can

be concluded that [∂Π(ϕ)/∂ϕ]β=1,ϕ=0 = −π′(c − θx − e)[∂e(β, θ, ϕ)/∂ϕ] > 0. As ∂Π(ϕ)/∂ϕ is

continuous with respect to β, there would exists a β̄ < 1 such that [∂Π(ϕ)/∂ϕ]|ϕ=0 > 0 if β > β̄.

In other words, the equilibrium PEO level will be positive if the spillover rate is sufficiently

large.

To understand the logic behind Proposition 1, let us consider D1’s incentive to invest in e

when ϕ = 0. D1’s marginal stage 4 profit with respect to investment in e is −π′(c − θx − e)

(recall that π′(·) is negative). Hence, given x, the joint-profit maximizing level of e is given by

−π′(c− θx− e)−K ′(e) = 0. (10)

Should U ’s machine be used byD2, D1’s investment in e increasesD2’s profit due to performance

spillovers. This means that D1’s investment in e increases the price D1 must pay to U by

−βπ′(c−θx−βe), which works in the direction of reducing D1’s investment in e. That is, given

x, D1 chooses e that solves

−π′(c− θx− e) + βπ′(c− θx− βe)−K ′(e) = 0. (11)

The value of e satisfying (11) is smaller than the value of e satisfying (10) because π′′(·) > 0,

indicating D1’s under-investment in e in the equilibrium. Notice that the under-investment gets

severer as β increases.

11



PEO mitigates D1’s under-investment problem at the expense of U ’s under-investment. D1’s

PEO in U increases D1’s investment incentive because it internalizes a part of the price that

D1 pays to U , but it reduces U ’s investment incentive because U can capture only (1 − ϕ)

fraction of the return from its own investment. This trade-off is clearly captured by first-order

conditions (3) and (4). As the level of PEO, ϕ, increases, D1’s investment level gets closer to

the joint-profit maximizing level because −π′(c− θx− e)+β(1−ϕ)π′(c− θx−βe) is increasing

in ϕ, whereas U ’s investment gets further away from the joint-profit maximizing level because

−θ(1−ϕ)π′(c− θx−βe) is decreasing in ϕ. When β is sufficiently large, D1’s under-investment

is sufficiently sever so that the positive effect of PEO dominates its negative effect at ϕ = 0.

The result is that the equilibrium level of PEO is strictly positive under sufficiently large β.

Before closing the section, we compare investment levels in the stage 2 equilibrium, x(ϕ)

and e(ϕ), to joint-profit maximizing levels, denoted xJ and eJ . Notice that (xJ , eJ) solves the

following maximization problem.

max
x,e

π(c− θx− e)−G(x)−K(e); (12)

Lemma 4 tells us that levels of U ’s and D1’s investments are both lower than joint-profit

maximizing levels.

Lemma 4.

x(ϕ) < xJ , e(ϕ) < eJ .

Proof. It is known that the joint-profit maximizing investments, xJ and eJ , are determined

by m1(x, e) = −θπ′(c − θx − e) − G′(x) = 0 and m2(x, e) = −π′(c − θx − e) − K ′(e) = 0

and the equilibrium investments, x(ϕ) and e(ϕ), are determined by n1(x, e) = −θ(1− ϕ)π′(c−
θx − βe) − G′(x) = 0 and n2(x, e) = −π′(c − θx − e) + β(1 − ϕ)π′(c − θx − βe) − K ′(e) = 0.

To compare the equilibrium investments with the joint-profit maximizing investments, suppose

that x′ and e′ are determined by n1(x, e) = −θ(1−ϕ)π′(c−θx−βe)−G′(x) = 0 and m2(x, e) =

−π′(c− θx− e)−K ′(e) = 0. It can be shown that n1(x
J , eJ) < 0 for β < 1 or ϕ > 0. Supposing

that there is an instantaneous adjustment process from (xJ , eJ) to (x′, e′); then, given the

stability requirements on the reactive functions, we can conclude that xJ > x′ and eJ > e′. As

n2(x
′, e′) < 0 for β > 0 and ϕ < 1, the conclusion that x′ > x(ϕ) and e′ > e(ϕ) can be derived

similarly. Accordingly, x(ϕ) < xJ and e(ϕ) < eJ .

5 Welfare consequences and policy implications

5.1 Welfare

Supposing that there is a representative consumer with utility function U(q) +m, where m is

a numeraire good; then, the inverse demand function can be expressed as p(q) = U ′(q). It is

natural to assume that the marginal utility is a declining function of q, i.e., U ′′(q) < 0, which

12



means p′(q) = U ′′(q) < 0. Under this inverse demand function, if a firm is the only producer

of a final good and its marginal cost is c, the output decision will be made according to the

following optimization problem

max
q

p(q)q − cq. (13)

The corresponding first-order condition is

p(q) + p′(q)q − c = 0, (14)

from which the optimal output level can be determined, denoted by q(c). To satisfy the second-

order condition, we assume that

2p′(q) + p′′(q)q < 0. (15)

Under this assumption, it can be shown that q′(c) = 1/[2p′(q) + p′′(q)q] < 0. Based on Eqs.

(13) and (14), the profit function in the case of optimal output can be expressed as

π(c) = −p′(q(c))[q(c)]2. (16)

It can be proved that π′(c) = −q(c) < 0 and π′′(c) = −q′(c) > 0.

Under the profit function specified by Eq. (16), the first-order conditions of the second stage

of the game, i.e., Eqs. (3) and (4), can be rewritten as

θ(1− ϕ)q(c− θx− βe)−G′(x) = 0,

q(c− θx− e)− β(1− ϕ)q(c− θx− βe)−K ′(e) = 0. (17)

Solving these two first-order conditions simultaneously, the equilibrium investments, x(ϕ) and

e(ϕ), can be derived. In the first stage of the game, the level of PEO is chosen to maximize the

joint profit of U and D1, i.e.,

max
ϕ

Π(ϕ) = π(c− θx− e)−G(x)−K(e), (18)

where x = x(ϕ) and e = e(ϕ). It is already known that the solution to this optimization problem

is ϕ∗. As a comparison, suppose that, in the first stage of the game, ϕ is chosen to maximize

social welfare; then, the optimal level of PEO would be determined by

max
ϕ

W (ϕ) = U(q)− (c− θx− e)q −G(x)−K(e), (19)

where q = q(c − θx − e), x = x(ϕ), and e = e(ϕ).5 The solution to this optimization problem

is denoted by ϕw. Comparing the socially optimal PEO level with the joint profit maximizing

PEO level, the following relationship can be concluded.

5As there is no competition between D1 and D2 and there is only one machine which is sold to D1, we assume

that social welfare is the sum of the joint profit of U and D1 and the surplus of the consumers of D1.
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Proposition 2. ϕw > (=, <)ϕ∗ if βG′′(x)−θ2K ′′(e) > (=, <)0, where x = x(ϕ∗) and e = e(ϕ∗).

Proof. As π′(c1) = −q(c1), from Eq. (18), we can get Π′(ϕ) = [θq(c−θx−e)−G′(x)][∂x(ϕ)/∂ϕ]+

[q(c−θx−e)−K ′(e)][∂e(ϕ)/∂ϕ]. As U ′(q) = p, from Eq. (19), we can get W ′(ϕ) =
(
[p(q)−(c−

θx−e)][∂q/∂x]+θq−G′(x)
)
[∂x(ϕ)/∂ϕ]+

(
[p(q)−(c−θx−e)][∂q/∂e]+q−K ′(e)

)
[∂e(ϕ)/∂ϕ], where

q = q(c−θx−e). Accordingly, W ′(ϕ)−Π′(ϕ) = −[p(q)−(c−θx−e)]q′
(
θ[∂x(ϕ)/∂ϕ]+[∂e(ϕ)/∂ϕ]

)
.

As p(q)− (c− θx− e) = −p′(q)q > 0 and q′ < 0, it can be concluded that

sgn{W ′(ϕ)−Π′(ϕ)} = sgn{θ∂x(ϕ)
∂ϕ

+
∂e(ϕ)

∂ϕ
}.

Totally differentiating Eq. (17) with respect to ϕ, we can get θ[∂x(ϕ)/∂ϕ] + [∂e(ϕ)/∂ϕ] =

[βG′′(x)−θ2K ′′(e)]q(c−θx−e)/(S11S22−S12S21), where S11 = −θ2(1−ϕ)q′(c−θx−βe)−G′′(x),

S12 = −βθ(1 − ϕ)q′(c − θx − βe), S21 = −θq′(c − θx − e) + θβ(1 − ϕ)q′(c − θx − βe), and

S22 = −q′(c− θx− e)+β2(1−ϕ)q′(c− θx−βe)−K ′′(e). According to the assumption specified

by Eq. (5), S11S22 − S12S21 > 0. That means

sgn{θ∂x(ϕ)
∂ϕ

+
∂e(ϕ)

∂ϕ
} = sgn{βG′′(x)− θ2K ′′(e)}.

To sum up, sgn{W ′(ϕ)−Π′(ϕ)} = sgn{βG′′(x)− θ2K ′′(e)}.

Proposition 2 tells us that the socially optimal level of PEO is higher than the equilibrium

level of PEO when θ is small relative to β. This result is in contrast to the standard notion

that PEO is anticompetitive and hence welfare reducing. The logic here can be explained as

follows. Consider our base model with β > β̄. In the equilibrium, U and D1 choose ϕ = ϕ∗

(> 0) at stage 1 to maximize their joint profit. At stage 2, U and D1 respectively choose x and

e, and hence D1’s constant marginal cost becomes c− θx− e ≡ c∗1. Lowering D1’s marginal cost

increases not only U and D1’s joint profit but also consumer surplus, but U and D1 ignore the

effect on consumer surplus when they choose ϕ at stage 1. This implies that the equilibrium

marginal cost c∗1 is higher than the socially optimal level.

We now consider a variant of the model in which a social planner chooses ϕ at stage 1

to maximize total surplus in the subsequent equilibrium. Let us consider the social planner’s

optimal choice ϕ = ϕw, using ϕ = ϕ∗ as a benchmark. As mentioned above, D1’s constant

marginal cost corresponding to ϕ = ϕ∗, c∗1, is higher than the socially optimal level.

How can the social planner reduce c1 from c∗1? Suppose that the social planner increases ϕ

from ϕ = ϕ∗. An increase in ϕ reduces U ’s return from investing in x, resulting in a decrease

in x. This works in the direction of increasing c1, but this cost-increasing effect is relatively

minor when θ is small. At the same time, an increase in ϕ increases e, working in the direction

of reducing c1. This is because D1 pays the price p = π(c − θx − βe) − π(c) to U at stage 3

and, as ϕ increases, D1 internalizes a larger fraction of the price as its own profit. When ϕ

increases by ∆, D1’s return from investing in e increases by ∆π(c − θx − βe). Observe that
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D1’s marginal return of investing in e is −∆βπ′(c − θx − βe), which is increasing in β. Then,

when β is relatively large, an increase in ϕ induces a larger increase in e, resulting in larger

cost-reducing effect.

When θ is small relative to β, the social planner can decrease c1 by increasing ϕ from ϕ = ϕ∗,

because cost-increasing effect associated with x is dominated by cost-reduction effect associated

with e. The socially optimal level of PEO is higher than its equilibrium level (that is, ϕw > ϕ∗)

in this case. And, through an analogous logic, we have that ϕw < ϕ∗ when θ is large relative to

β. This results in Proposition 2.

5.2 Policy implications

The difference between the socially optimal level of PEO and the equilibrium level of PEO

provides a space for government intervention. For instance, a welfare maximizing social planner

can announce an upper limit on the level of PEO, ϕ̃, such that a potential PEO will be approved

only if ϕ ≤ ϕ̃. Given Proposition 2, the policy should be formulated as follows. When θ is small

relative to β, the socially optimal level of PEO is higher than the equilibrium level and there is

no need to impose any restrictions on PEO. In this case, the social planner can simply announce

that ϕ̃ = 1. Whereas, when β is small relative to θ, the equilibrium level of PEO is too high

from the standpoint of social planner. In this case, the maximum permissible level of PEO

should be ϕ̃ = ϕw.6 To sum up, a welfare maximizing social planner may permit, partially

permit, or prohibit (when ϕw = 0) PEO, depending on the relative size of θ and β.

6 Endogenizing the rate of performance spillovers

The rate of performance spillovers, denoted by β, is a key element of our model, and the nature

of our main results (Propositions 1 and 2) depends on β. In this section, we analyze an extension

of our model in which the rate of performance spillovers is endogenously determined through

the link between performance spillovers and asset specificity, and discuss robustness of our main

results. Suppliers can often choose the degree of specificity of its asset. Mesquita, Anand, and

Brush (2008), for example, points out that a supplier can choose the degree of dyad-specificity

of its assets and capabilities, and, as the degree of dyad-specificity increases, the dyad partner

buyer’s teaching to the supplier becomes more effective for the supplier to serve the partner

buyer, but less effective for the supplier to serve other buyers. This means in our framework

that, as the upstream supplier U ’s asset is more tailored to the downstream manufacturer D1’s

asset, D1’s knowledge transferred to U becomes more useful for D1 but less useful for D2.

In this extension, we assume that U chooses the degree of asset specificity α ∈ [1, 2] and once

6When ϕw < ϕ∗, we suggest that ϕ̃ = ϕw. An underlying premise of this suggestion is that, in the range

[0, ϕw], the first derivative of the joint profit (Π(ϕ)) with respect to ϕ is always positive. It is difficult to verify

this premise under the general demand function, but under linear demand it is true.
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chosen the value of α becomes common knowledge. With this new element, the cost function

of D1 is modified to be c− θx−αe and that of D2 becomes c− θx− (2−α)e. According to this

setting, an increase in the level of asset specificity is reflected by a rise in α and, as the degree

of asset specificity increases, D1’s teaching to U becomes more useful for D1 but less useful for

D2. To determine the equilibrium degree of asset specificity, we consider a five-stage game, in

which U chooses the degree of asset specificity α ∈ [1, 2] at stage 0. Other four stages are the

same as stages 1 - 4 in the base model.

Before solving the game, to make things trackable, we make a simplification and assume that

the downstream firms face a linear inverse demand function and the investment cost functions

are quadratic. Specifically, p = 1− q, G(x) = δx2/2, and K(e) = δe2/2, where p is the market-

clearing price, q is the quantity of a downstream firm, and δ > 0. In the previous analysis,

we require that the investment cost functions are sufficiently convex. In the current context, it

is equivalent to say that δ is sufficiently large. We maintain this assumption in the following

analysis.

Given the above demand and cost structures, in stage 4, if D1 buys the machine at price t,

the profits of the three firms would be ΠU = (1−ϕ)t− δx2/2+F , ΠD1 = (1− c+ θx+αe)2/4−
(1− ϕ)t− δe2/2− F , and ΠD2 = (1− c)2/4 and if D2 buys the machine at price t, the profits

of the three firms would be Π̃U = (1−ϕ)t− δx2/2+F , Π̃D1 = (1− c)2/4+ϕt− δe2/2−F , and

Π̃D2 = [1 − c + θx + (2 − α)e]2/4 − t. In stage 3, D1 wins the machines and the price paid is

t = [1 − c + θx + (2 − α)e]2/4 − (1 − c)2/4. Then, by solving ∂ΠU/∂x = 0 and ∂ΠD1/∂e = 0,

the equilibrium investments in stage 2 can be derived

x(α, ϕ) =
(1− c)(δ − (α− 1)α)θ(1− ϕ)

2δ2 + (α− 1)αθ2(1− ϕ) + δ(4(1− α)− θ2 − ((2− α)2 − θ2)ϕ)
,

e(α, ϕ) =
(1− c)δ(α(2− ϕ)− 2(1− ϕ))

2δ2 + (α− 1)αθ2(1− ϕ) + δ(4(1− α)− θ2 − ((2− α)2 − θ2)ϕ)
. (20)

In stage 1, if PEO between U and D1 occurs, the joint profit of involved firms can be expressed

as

Π(α, ϕ) =
(1− c+ θx+ αe)2

4
− δx2

2
− δe2

2
, (21)

where x = x(α, ϕ) and e = e(α, ϕ). By solving ∂Π(α, ϕ)/∂ϕ = 0, the joint profit maximizing

level of PEO can be derived

ϕ(α) =
2(2− α)2((α− 1)α− δ)δ − ((α− 1)α3 − 4δ + 3(2− α)αδ)θ2

2(2− α)2((α− 1)α− δ)δ + (α3 − α4 − 6αδ + 4α2δ − 2(δ − 2)δ)θ2
. (22)

In stage 1, however, if PEO does not occur, the profit of U would be

ηU (α) =
(1− c+ θx+ (2− α)e)2 − (1− c)2 − 2δx2

4
(23)

and the profit of D1 would be

ηD1(α) =
4e(α− 1)(1− c+ θx+ e) + (1− c)2 − δe2

4
, (24)
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where x = x(α, 0) and e = e(α, 0). It can be proved that Π(α, ϕ(α)) > ηU (α) + ηD1(α), which

means that PEO is profitable and it occurs in equilibrium. Under Nash bargaining, the surplus

from PEO is divided equally between U and D1; then, U ’s equilibrium profit under PEO can

be expressed as

ηU (α) +
Π(α, ϕ(α))− ηU (α)− ηD1(α)

2
. (25)

In stage 0, U chooses the level of asset specificity to maximize its own profit. The optimal level

of asset specificity, which is denoted by αE , is determined according to the following first-order

condition
∂Π(α, ϕ(α))

∂α
+

∂ηU (α)

∂α
− ∂ηD1(α)

∂α
= 0. (26)

In order to characterize αE , we need to specify the value of δ for algebraic tractability. In

what follows, we let δ = 30.7 Then, the optimal level of asset specificity can be described in

Figure 1.
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Figure 1 tells us that the optimal level of asset specificity is increasing in θ. The logic here

can be explained as follows. When U chooses α at stage 0, it faces the following trade-off. On

the one hand, higher α increases the value of U ’s output for D1. This works in the direction of

increasing the joint profit of D1 and U , and hence higher α is beneficial for U .8 On the other

hand, higher α reduces the value of U ’s output forD2, and hence reduces U ’s bargaining position

when it bargains with D1 over the monetary transfer at stage 1. This works in the direction of

reducing U ’s profitability.9 This trade-off is optimally balanced off at α = αE ∈ (1, 2).

Next, consider how θ affects αE . An increase in θ increases the value of U ’s input for

D1, because D1’s marginal cost when it uses U ’s input is c1 = c − θx − αe. Due to the

7Using a different δ does not qualitatively change our following conclusions, which can be easily verified by

using the above calculation process and its results.
8 ∂Π(α,ϕ(α))

∂α
> 0.

9If α is not too small (for example α > 1.25), we have ∂ηU (α)
∂α

− ∂ηD1
(α)

∂α
< 0.
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complementarity between x and e, as θ increases, an increase in α more effectively increases U

and D1’s joint profit.
10 Hence, higher θ increases U ’s benefit from increasing α.11 The result is

that αE is increasing in θ. This implies that, when θ is small, the degree of U ’s asset specificity

is also small.

In the previous section, we found that the socially optimal level of PEO is higher than its

equilibrium level (ϕw > ϕ∗) when θ and the degree of asset specificity are both relatively small.

Applying the analogous logic to this section’s extension, one can conjecture that, when δ = 30,

ϕw > ϕ∗ holds when θ is relatively small. Keeping this conjecture in mind, in the remainder of

this section we study the socially optimal level of PEO with endogenous formation of the level

of asset specificity. To this end, we introduce a six-stage game

[Stage 0] The government proposes a PEO for U and D1 with partial ownership level ϕ.

[Stage 1] U chooses the degree of asset specificity α ∈ [1, 2].

[Stage 2] U and D1 accepts the partial ownership level proposed by the government and

determine the corresponding monetary transfer through Nash bargaining.

[Stage 3] U and D1 simultaneously and independently choose x and e.

[Stage 4] U sells the machine by auction.

[Stage 5] D1 and D2 choose some strategic variables and their profits realize.

This six-stage game is just a slight change of the previous five-stage game and there is no

need to repeat the analysis of the last three stages. We solve this new game backwards starting

from stage 2. Referring to the above analysis, for a certain level of PEO and a certain level of

asset specificity, U ’s profit in stage 2 can be expressed as ηU (α)+ [Π(α, ϕ)− ηU (α)− ηD1(α)]/2.

In stage 1, U maximizes this profit by choosing α in the range [1, 2]. The optimal level of asset

specificity is denoted by α(ϕ). Then, in stage 0, the government’s optimization problem can be

expressed as follows

max
ϕ

W (θ, ϕ) =
3(1− c+ θx+ α(θ, ϕ)e)2

8
− δx2

2
− δe2

2
, (27)

where x = x(α(ϕ), ϕ) and e = e(α(ϕ), ϕ). When δ = 30, the socially optimal level of PEO,

which is denoted by ϕW , can be described in Figure 2.12

10Regarding complementarity, we mean that, when one kind of investment becomes more useful, the marginal

benefit of the other kind of investment will increase.
11 ∂

∂θ
[ ∂Π(α,ϕ(α))

∂α
] > 0.

12When θ is around 0.524, due to computational difficulty, it is hard to plot the exact curve of ϕW . To get

around this problem, the curve near θ = 0.524 is constructed by connecting some scattered points. And, these

scattered points are obtained by numerical calculation.
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As a comparison, the equilibrium level of PEO ϕE = ϕ(αE), is described in Figure 3.

Accordingly, the following relationship can be derived.

Proposition 3. There exists a θ̄ ≈ 0.525 such that ϕW > (=, <)ϕE if θ < (=, >)θ̄.

It can be seen that, with endogenous level of asset specificity, the socially optimal level of

PEO would be higher (lower) than the equilibrium level if θ is small (large). From Figure 1, it is

known that the equilibrium level of asset specificity is low (high) if θ is small (large). And, a high

(low) level of asset ownership means low (high) performance spillover rate. Accordingly, we can

conclude that Proposition 2, which is derived under the assumption of exogenous performance

spillovers, is robust.

7 Summary and conclusion

Transfer and spillovers of knowledge across firm boundaries are important determinants of

firms’ productivity in the knowledge economy. Downstream manufacturers often educate their

upstream suppliers on the principles of advanced production systems, where suppliers can ap-

ply the acquired knowledge to serve other manufacturers. Performance spillovers, which are

fundamentally different from information leakage, have attracted much less attention in the

literature compared to information leakage despite their prevalence and significance. We have

attempted to fill this gap in the literature by studying the role of PEO arrangement in mitigating

the buyer’s under-investment due to performance spillovers in vertical learning alliances. The

downstream manufacturer’s PEO in its partner supplier induces the manufacturer to transfer

more knowledge to the supplier, but reduces the supplier’s investment to improve its own pro-

ductivity. We find that the equilibrium level of PEO is strictly positive when the performance

spillover rate is sufficiently high and consequently D1’s under-investment problem is sufficiently

severe. The equilibrium level of PEO can be lower than the socially optimal level, contrary to

the standard intuition that PEO is anticompetitive and welfare reducing, and this finding has

lead us to a new policy implication of PEO.

In order to simplify our analysis and focus on main insights, we have assumed away the
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downstream competition. Under the current model setting, performance spillovers raise the

bargaining position of the supplier by increasing the machine’s value in other applications, re-

ducing the surplus a final product producer can anticipate from the vertical transaction. If we

introduce downstream competition into the model, we conjecture that the relative bargaining

position of the downstream producer will be further reduced. Accordingly, the under-investment

problem will become more severe, which provides a even stronger justification for PEO arrange-

ment as a cure to the problem. Such an extension of the model is left to a future research.
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