

How early in life should obesity prevention begin?

Rachael Taylor
Research Associate Professor

Obesity is a problem throughout childhood and adolescence

Birth weights have increased by a small amount

Group (birth years)	White (g)	Black (g)
Mothers (1956 – 1976)	3304	3089
Baby girls (1989-1991)	3378	3133
Difference	74*	44*
Fathers (1956-1976)	3461	3217
Baby boys (1989-1991)	3516	3248
Difference	55*	31*

Risk of childhood obesity 2 times higher in high vs normal birth weight babies

	BW > 40	00 g	BW: 2500-	4000 g		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Che 2010	16	142	104	1495	5.7%	1.70 [0.97, 2.96]	
Gu 2003	16	163	68	1305	5.5%	1.98 [1.12, 3.50]	
He (b) 2005	14	143	56	1226	4.9%	2.27 [1.23, 4.19]	
Hirschler 2008	28	95	133	860	7.0%	2.28 [1.42, 3.69]	
Li 2007	36	141	15	120	4.4%	2.40 [1.24, 4.64]	
Liao 2007	53	79	149	325	6.3%	2.41 [1.44, 4.04]	_
Liu 2005	12	50	7	100	2.1%	4.20 [1.53, 11.47]	
Lu 2008	8	52	47	725	3.1%	2.62 [1.17, 5.89]	_
Ma 2009	21	79	36	643	5.0%	6.10 [3.34, 11.14]	
Monteiro 2003	13	81	66	927	4.5%	2.49 [1.31, 4.75]	
Ruan 2009	82	260	474	2066	12.3%	1.55 [1.17, 2.05]	
Rui 2008	8	13	42	137	1.6%	3.62 [1.12, 11.72]	
Shen 2004	17	26	54	149	2.7%	3.32 [1.39, 7.97]	
Wang 2009	179	1537	632	9255	16.3%	1.80 [1.51, 2.14]	
Zhang 2009	456	1977	1626	13708	18.5%	2.23 [1.98, 2.50]	-
Total (95% CI)		4838		33041	100.0%	2.23 [1.91, 2.61]	. •
Total events	959	4030	3509	33041	100.070	2.23[1.91, 2.01]	
Heterogeneity: Tau ² =		2 – 26 O		- n nov is	- 4604		
				- 0.03), 1	- 4070		0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z= 10.12	(/~ < U.U	10001)				BW: 2500-4000 g BW > 4000 g

Figure 4 Forest plot of the BW/obesity association between BW >4000 g and BW = 2500-4000 g. BW, birth weight; CI, confidence interval.

But weight gain in infancy also influences child obesity independent of birth weight

 Individual level meta-analysis using 10 large cohort studies (n > 47,000)

Where is most child obesity research focused?

School-based obesity prevention can be successful (n=554)

	End of intervention	Follow-up
BMI z-score	-0.25 (-0.32 -0.19)	-0.17 (-0.25, -0.08)
Prevalence of overweight	0.73 (0.64, 0.83)	0.85 (0.71, 1.01)

Data presented as difference or RR between intervention and control children adjusted for age, sex, baseline, clustering, length of time in study and whether still at intervention school

Studies in primary school children

			•				•			
1.1.2 6-12 years										
Baranowski 2003 (2)	3.2	3.53	17	-2.2	6.93	14	0.5%	0.99 [0.23, 1.74]	2003	
Story 2003a (2)	-0.2	5	26	2	2.41	27	0.9%	-0.56 [-1.11, -0.01]	2003	
Beech 2003 (4)	-1.2	6.58	21	2.1	4.85	9	0.5%	-0.52 [-1.32, 0.27]	2003	
Caballero 2003	3	2.05	727	3.1	2.05	682	2.9%	-0.05 [-0.15, 0.06]	2003	-
Robinson 2003 (2)	0.5	2.43	28	0.71	2.47	33	1.0%	-0.08 [-0.59, 0.42]	2003	
Beech 2003 (5)	-1.2	6.58	21	2.1	4.85	9	0.5%	-0.52 [-1.32, 0.27]	2003	
Kain 2004 (1)	0	1.62	1145	0.3	1.44	491	2.9%	-0.19 [-0.30, -0.09]	2004	-
James 2004	0.7	0.2	297	0.8	0.3	277	2.6%	-0.39 [-0.56, -0.23]	2004	
Kain 2004 (2)	0.3	1.72	996	0.2	1.7	454	2.9%	0.06 [-0.05, 0.17]		-
Harrison 2006	-0.2	1.3	175	0.1	2	118	2.1%	-0.18 [-0.42, 0.05]		
Amaro 2006	0.13	0.68	153	0.26	0.64	88	2.0%	-0.19 [-0.46, 0.07]		
Spiegel 2006	0.16	0.89	534		1.02	479	2.8%	-0.38 [-0.50, -0.25]		
Lazaar 2007 (6)	-0.1	0.54	69	0.2		94	1.7%	-0.58 [-0.90, -0.27]		
Lazaar 2007 (7)	-0.1	0.54	69	0.3		94	1.7%	-0.75 [-1.07, -0.43]	2007	
Lazaar 2007 (8)	-0.1	1.13	30	0.3	0.92	21	0.8%	-0.38 [-0.94, 0.19]	2007	
Lazaar 2007 (9)	-0.2	1.4	30	0.4	0.97	21	0.8%	-0.48 [-1.04, 0.09]	2007	
Gutin 2008	0.1	2.1	182	0.3	1.99	265	2.4%	-0.10 [-0.29, 0.09]	2008	-
Hamelink-Basteen 2008	0.83	1.03	349	0.95	0.73	77	2.1%	-0.12 [-0.37, 0.13]	2008	
Simon 2008	2.38	2.2	479	2.42		475	2.8%	-0.02 [-0.15, 0.11]		_
Reed 2008	0.4	2.42	156	0.3		81	1.9%	0.04 [-0.23, 0.31]		_
Foster 2008	1.99	1.9	479	2.1	1.9	364	2.7%	-0.06 [-0.19, 0.08]		_
Paineau 2008 (10)	0.05	0.94	280	0.12	0.91	197	2.5%	-0.08 [-0.26, 0.11]		_
Vizcaino 2008 (2)	0.2	1.61	231		1.61	299	2.5%	-0.06 [-0.23, 0.11]		
Sanigorski 2008	-0.09	0.42	833	-0.02		974	3.0%	-0.17 [-0.27, -0.08]		-
Taylor 2008	0.8	1.32	201		1.77	188	2.3%	-0.39 [-0.59, -0.18]		
Paineau 2008 (11)	0.1	1.1	274	0.12		197	2.5%	-0.02 [-0.20, 0.16]		_
Vizcaino 2008 (1)	0.4	1.64	234		1.52	280	2.5%	0.00 [-0.17, 0.17]		_
Gentile 2009	0.6	2.9	582	0.5	2.8	619	2.9%	0.04 [-0.08, 0.15]		-
Sichieri 2009	0.32	1.43	434	0.22	1.08	493	2.8%	0.08 [-0.05, 0.21]		
Donnelly 2009	2	1.9	792	2	1.9	698	2.9%	0.00 [-0.10, 0.10]		-
Marcus 2009	-0.01	0.73	591		0.73	430	2.8%	-0.42 [-0.55, -0.30]		
Subtotal (95% CI)			10435		22	8548	65.1%	-0.15 [-0.23, -0.08]		•
Heterogeneity: Tau ² = 0.03; (Chi ² = 139	.70. df	= 30 (P ·	< 0.000	01): P =					
Test for overall effect: $Z = 4.2$			/		// .					
		,								

Does intervening at a younger age offer more promise?

	Expe	erimen	tal	(Control			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.1.1 0-5 years										
Mo-Suwan 1998 (1)	-0.33	1.23	82	-0.44	1.06	88	1.8%	0.10 [-0.21, 0.40]	1998	+
Mo-Suwan 1998 (2)	-0.67	0.85	65	-0.39	0.99	57	1.5%	-0.30 [-0.66, 0.05]	1998	
Harvey-Berino 2003 (3)	-0.27	0.52	17	0.31	0.7	20	0.6%	-0.91 [-1.59, -0.23]	2003	
Dennison 2004	-0.24	1.64	43	0.12	1.75	34	1.1%	-0.21 [-0.66, 0.24]	2004	
Fitzgibbon 2005	0.05	0.67	179	0.14	0.68	183	2.3%	-0.13 [-0.34, 0.07]	2005	+
Reilly 2006	0.07	0.45	231	0.02	0.46	250	2.5%	0.11 [-0.07, 0.29]	2006	+-
Fitzgibbon 2006	0.11	1.54	196	0.13	1.5	187	2.3%	-0.01 [-0.21, 0.19]	2006	+
Keller 2009	-0.15	0.23	49	0.11	0.23	134	1.5%	1.13 [-1.47, -0.78]	2009	
Subtotal (95% CI)			862			953	13.7%	-0.26 [-0.53, 0.00]		
Heterogeneity: Tau2 = 0.12;	$Chi^2 = 47.9$	90, df=	7 (P < 0	0.00001	$ \cdot ^2 = 80$	5%				
Test for overall effect: $Z = 1$.	94 (P = 0.0	5)								

Overall effect -0.26 (-0.53, 0.00)

Table 1: Summary of intervention strategies undertaken in pre-schools.

Physical activity interventions

- Structured twice-weekly fundamental movement skill development through prescribed games suitable for a wide age range.
- Playground environment review and alterations to encourage more active movement and better access to sports equipment during free play times.
- Small grants for sports equipment.
- Workshop for parents on limiting sedentary time, promoting physical activity and FMS.
- A monthlyfour page newsletter contains tips of healthy eating and active playing ideas was provided to each parent.

Healthy eating interventions

- Review and adjustment of food and nutrition policies to explicitly identify appropriate and inappropriate foods in lunchboxes.
- Communication of new policy to parents along with lunchbox displays.
- Colourful posters on "better foods" and "foods better left out" on display all year.
- Distribution of the Family Feud/ Food DVD which models practical ways to improve childrens eating habits, for their parent library.
- Parents workshops on positive parenting in relation to healthy eating and feeding 'fussy' eaters.
- Simple consistent messages for children about 'sometimes' and 'everyday' foods; puppets, staff in fruit and vegetable costumes, stories, role-play, growing, cooking, and taste testing fruit and vegetables were all used to reinforce this message.
- Staff acting as role models and giving positive reinforcement to children about eating healthy food and drinking water.
- Drinking water made more accessible.

Tooty fruity vege intervention in Australian preschools

Health Promot J Aust 2012;23:10

Table 3: Adjusted differences in FMS, dietary indicators and anthropometric measures between control and intervention children at follow-up.

Variable	Difference	Standard Error	P
Movement Skills Quotient	14.79	2.07	< 0.0001
Fruit and vegetable serves in lunch box	0.61	0.14	0.0013
% children with 0 EDNP items in lunch box	29.1%	*	<0.0001
% children with 2+ EDNP items in lunch box	-24.5%	*	<0.0001
BMI Z scores	-0.15	0.07	0.022
Waist circumference	-0.80	0.35	0.020

^{*} Standard errors for size of difference (relative change) could not be derived from the multinomial model. See Table 2 for standard errors of baseline and follow-up values.

Should we be starting even earlier?

Obesity is a problem throughout childhood and adolescence

EPOCH - <u>Early Prevention of Obesity in</u> <u>CH</u>ildren

- Prospective meta-analysis of early obesity prevention initiatives
- Does early intervention impact on BMI z-score at 18-24 months of age?
- ~1800 infants

	НВТ	Nourish	Infant	POI
N	667	698	559	803
Baseline	Antenatal	4-6m	3m	Antenatal
Primary outcome	Height & weight at 24m	Height & weight at 24m	Height & weight at 18m	Height & weight at 24m
Control group	Usual care + written home safety/tobacco intervention	Usual care + quarterly newsletter on general health messages	Usual care + quarterly newsletter on general health messages	Usual care
Intervention timing	8 home visits	6 fortnightly group sessions at 4-7m and 13-16m	Six 2-hour sessions within existing mothers groups	Sleep – 2 sessions FAB – 7 home visits

Early intervention can make a difference - Healthy Beginnings Trial

Outcomes at 2 years	Int – Con (95% CI)	Р
BMI – complete cases (n = 483)	-0.38 (-0.68, -0.08)	0.01
BMI – imputation (n = 667)	-0.29 (-0.55, -0.02)	0.04
Secondary outcomes – yes v no	% difference (95% CI)	
Vege ≥ 1 serve/d	7 (1, 13)	0.03
Fruit ≥ 2 serve/d	-2 (-7, 3)	0.43
Food for reward	-9 (-17, -1)	0.03
Sweet drinks	-3 (-10, 5)	0.48
Water > 3 cups/d	6 (-1, 13)	0.12
Outdoor play ≥ 2 h/d	1 (-8, 9)	0.90
TV > 60 mins/d	-8 (15, -1)	0.02
TV on during meal	-12 (-21, 3)	0.02

Nourish - outcomes at 14 months

	Control	Intervention	Р
	275	254	
6m BMI z-score	-0.26 (0.98)	-0.36 (0.98)	0.18
14m BMI z-score	0.42 (0.85)	0.23 (0.93)	< 0.01
Awareness of infant hunger/ satiety cues	4.1 (0.5)	4.2 (0.5)	0.007
Disguise food	67%	46%	< 0.001
Turn mealtime into a game	67%	29%	< 0.001
Offer food rewards	15	4%	0.001
Use responsive feeding strategies	33%	47%	0.017
Use of food to calm fussiness	2.2 (0.7)	2.2 (0.7)	0.38
Offer non-food rewards	10%	8%	0.52

Should we be starting EVEN earlier?

Gestational weight gain - Collaborative Perinatal Project

Pre-pregnancy	IOM recommended	Actual gestational weight gain (%)				
вмі	GWG	Insufficient	Recommended	Excessive		
< 19.8	12.5 - 18	74	22	4		
19.8-26.0	11.5 - 16	67	24	9		
26.0-29.0	7 – 11.5	39	33	28		
> 29.0	≥ 6.8	45	29	26		

AJCN 2008;87:1818

Excessive weight gain increases the risk of childhood obesity at 7 years

Gestational weight gain	Unadjusted	Adjusted	Additional adjustment for birth weight
Each additional kg gained	1.02 (1.00, 1.03)	1.03 (1.02, 1.05)	1.03 (1.01, 1.05)
Excessive vs recommended	1.62 (1.25, 2.12)	1.48 (1.06, 2.06)	1.40 (1.00, 1.95)

Data presented as odds ratios (95% CI)

AJCN 2008;87:1818

Intervening in pregnancy to limit GWG

	Expe	rimental		Co	ontrol			Mean Difference	Mean Difference
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Fixed, 95% CI [kg]	IV, Fixed, 95% CI [kg]
Asbee (21)	13.02	5.67	57	16.15	7.03	43	4.5%	-3.13 [-5.70, -0.56]	
Claesson, Sydsjö (15)	8.7	5.51	143	11.3	5.8	161	18.4%	-2.60 [-3.87, -1.33]	
Gray-Donald (18)	12	6.4	112	13.2	8.3	107	7.7%	-1.20 [-3.17, 0.77]	+
Guelinckx (active) (31a)	9.8	7.6	42	10.6	6.9	21	2.1%	-0.80 [-4.54, 2.94]	
Guelinckx (passive) (31b)	10.9	5.6	37	10.6	6.9	21	2.5%	0.30 [-3.16, 3.76]	
Hui (16)	14.2	5.3	24	14.2	6.3	21	2.5%	0.00 [-3.43, 3.43]	
Kinnunen (19)	14.6	5.4	49	14.3	4.1	56	8.6%	0.30 [-1.55, 2.15]	-
Olson (39)	14.1	4.51	179	14.8	4.68	381	45.2%	-0.70 [-1.51, 0.11]	- ■
Polley (normal) (17a)	15.4	7.1	30	16.4	4.8	31	3.2%	-1.00 [-4.05, 2.05]	
Polley (overweight) (17b)	13.6	7.2	27	10.1	6.2	22	2.1%	3.50 [-0.25, 7.25]	 -
Shirazian (22)	8.06	7.4	21	15.42	7.52	20	1.4%	-7.36 [-11.93, -2.79]	
Wolff (20)	6.6	7.2	23	13.3	7.5	27	1.8%	-6.70 [-10. 78, -2.62]	
Total (95% CI)			744			911	100.0%	-1.19 [-1.74, -0.65]	*
Heterogeneity: $\chi^2 = 32.03$,	df = 11 (P = 0)	0.0008); /2	= 66%				(
Test for overall effect: $Z = 4$,	, .						Fa	-10 -5 0 5 1 avours experimental Favours control

Figure 1 Meta-analysis of effects of behaviour change interventions on gestational weight gain.

Overall effect -1.19 (-1.74, -0.65)

Obesity prevention studies in adolescents

1.1.3 13-18 years										
NeumarkSztainer 2003	-0.96	3.22	84	0.75	2.59	106	1.8%	-0.59 [-0.88, -0.30]	2003	
Ebbeling 2006 (1)	0.07	1.02	53	0.21	1.06	50	1.4%	-0.13 [-0.52, 0.25]	2003	
Haerens 2006 (2)	1.48	1.55	611	1.22	1.29	120	2.4%	0.17 [-0.02, 0.37]	2007	
Haerens 2006 (12)	1.42	1.62	118	1.66	1.61	176	2.1%	-0.15 [-0.38, 0.09]	2007	-+
Haerens 2006 (13)	1.31	1.63	590	1.22	1.29	119	2.4%	0.06 [-0.14, 0.25]	2007	+-
Haerens 2006	1.11	1.74	381	1.66	1.61	176	2.5%	-0.32 [-0.50, -0.14]	2007	
Webber 2008	2	2.05	1751	2	2.05	1751	3.1%	0.00 [-0.07, 0.07]	2008	+
Singh 2009 (1)	0.4	1.22	276	0.4	1.3	234	2.5%	0.00 [-0.17, 0.17]	2009	+
Peralta 2009 (1)	0.3	1.86	16	0.6	1.83	16	0.6%	-0.16 [-0.85, 0.54]	2009	
Singh 2009 (2)	0.5	1.37	312	0.5	1.55	208	2.5%	9.88 (-0.18, 0.18)	2009	
Subtotal (95% CI)			4192			2956	21.2%	-0.09 [-0.20, 0.03]		•
Heterogeneity: Tau ² = 0.02; Chi ² = 31.50, df = 9 (P = 0.0002); I ² = 71%										
Test for overall effect: $Z = 1.46$ (P = 0.14)										

Overall effect -0.09 (-0.20, -0.03)

Increase in variance explained from change in weight SDS on BMI at 16y

Weight change targets over 1 year to shift children to normal weight

	Age (y)	Baseline height			
		(cm)	90 th	95 th	97 th
Boys	8-9	134	2.44	-0.04	-2.14
	9-10	140	2.99	-0.16	-2.88
	10-11	144	2.75	-1.01	-4.28
	11-12	150	3.21	-1.22	-5.05
	12-13	155	3.90	-1.15	-5.49
Girls	8-9	133	3.22	0.47	-1.82
	9-10	140	3.36	-0.05	-2.90
	10-11	145	3.57	-0.52	-3.93
	11-12	151	3.30	-1.53	-5.55
	12-13	156	2.65	-2.91	-7.55

Conclusions

- 1/3 of 2-4 year old children being overweight or obese implies prevention should start early
- Intervention during infancy/toddlerhood showing promise
- Large trials underway in pregnancy
- Focus on first few years shouldn't negate focus on other groups - lifecourse approach
- Prevention should be for all is simply healthy living