Pacific Economic Review, 17: 5 (2012) doi: 10.1111/1468-0106.12005 pp. 687-692

QUALITY UNCERTAINTY AS RESOLUTION OF THE BERTRAND PARADOX

ATTILA TASNÁDI* Corvinus University of Budapest TRENTON G. SMITH University of Otago ANDREW S. HANKS Cornell University

Abstract. It is well-known that product differentiation eliminates the Bertrand paradox (i.e. marginal cost pricing under duopoly). While differentiation is often justified with reference to the consumer's 'preference for variety', the conditions under which such a preference is likely to arise are rarely considered. We investigate this question in a setting in which uncertainty about product quality can endogenously generate either convex or non-convex preferences. We show that even when two goods are ex ante homogeneous, quality uncertainty can eliminate the Bertrand paradox.

1. INTRODUCTION

The well-known 'Bertrand paradox' (Bertrand, 1883) arises in a static setting when two firms sell a homogeneous good and have identical unit costs. The Bertrand paradox can be resolved within the homogeneous-good framework by introducing capacity constraints (see Maskin (1986) and references therein), the endogenous choice of production technologies (Yano, 2005) or the endogenous timing of price decisions (Yano and Komatsubara, 2006, 2012). The constant unit cost assumption is also crucial, because both decreasing (Dastidar, 1995) and increasing (Vives, 1999) returns eliminate the paradox. Moreover, in the case of decreasing returns, we face the problem of multiple equilibria, which is overcome by Hirata and Matsumura (2010) in an extended model with vanishing product differentiation; in the case of increasing returns (e.g. constant marginal cost and positive fixed cost) there can even be non-existence of equilibrium in mixed strategies, as demonstrated by Hoernig (2007), Baye and Kovenock (2008) and Dastidar (2011). Hoernig (2007) also investigates the influence of different sharing rules (in the case of price ties) on the emergence of the Bertrand paradox. Necessary and sufficient conditions for the existence of an equilibrium in pure strategies in the presence of fixed costs are given by Saporiti and Coloma (2010). Coming back to the classical case of constant unit costs, Baye and Morgan (1999) further establish that bounded monopoly profits are necessary for the emergence of the Bertrand paradox, while Kaplan and Wettstein (2000) demonstrate in a slightly different setting that unbounded revenues are necessary and sufficient for the emergence of a non-paradoxical mixed-strategy equilibrium.

*Address for Correspondence: MTA-BCE 'Lendület' Strategic Interactions Research Group and Department of Mathematics, Corvinus University of Budapest, Fövám tér 8, 1093 Budapest, Hungary. E-mail: attila.tasnadi@uni-corvinus.hu. The authors are grateful for helpful comments from Makoto Yano and an anonymous referee. Financial support from the Hungarian Scientific Research Fund (OTKA K-101224) is gratefully acknowledged by A. Tasnádi.

The homogeneous-good assumption is, of course, also thought to be central to maintaining marginal cost pricing. Economists have long known that product differentiation can have a softening effect on price competition (Hotelling, 1929). However, when does the consumer view two products as 'differentiated'? Differential demands are often justified in economic analysis by asserting the consumer's 'preference for variety' (e.g. Dixit and Stiglitz, 1977) but the source and nature of such a preference is rarely investigated. An exception is found in the work of Smith and Tasnádi (2009), who show that uncertainty about product quality can endogenously generate either convex or non-convex preferences, even for goods that are ex ante homogeneous.

In this paper, we extend the findings of Smith and Tasnádi (2009) by placing their theory of endogenous preferences in the context of a homogeneous-good duopoly with constant unit costs. We assume that the demand side of the market is given by a representative consumer and that product quality is unknown when the consumer makes his or her purchase decision. This is quite distinct from allowing for uncertainty with respect to either demand or entry (e.g. as considered in Reisinger and Ressner (2009) and Janssen and Rasmusen (2002), respectively). In our setting, firms face both known demands and steadfast competition. Consumer beliefs with respect to product quality are assumed to be identical across products, so that the goods produced by the duopolists are exante homogeneous. Given these beliefs, the representative consumer aims to maximize the probability of achieving some threshold level of quality. This approach endogenously generates well-defined utility (and demand) correspondences over goods, and has been justified as consistent with both an intuitive interpretation of expected utility theory Castagnoli and LiCalzi (1996) and with a naturalistic view of preferences, in which evolution chooses a survivalmaximizing agent (Smith and Tasnádi, 2009).

2. THE FRAMEWORK

Formally, a decision-maker ('consumer') is faced with a menu of two goods, x and y, and must choose how much of each to consume, given income m and prices p_x and p_y , respectively. There is a single unobservable characteristic (quality) for which there is a critical threshold: the consumer seeks only to maximize the probability that he or she consumes k units of this quality. The amounts of the unobservable quality per unit of x and y are independent random variables, denoted C_x and C_y . Hence, the consumer's utility function is given by

$$U(x, y) = P(C_x x + C_y y \ge k), \tag{1}$$

and his or her decision problem can be stated:

$$\max_{\substack{x,y\\ x,y}} U(x, y)$$

s.t. $p_x x + p_y y \le m$ (2)
 $x, y \ge 0.$

We assume that C_x and C_y are distributed according to the uniform distribution on the interval [0,1]. As shown in Smith and Tasnádi (2009), this gives U(x,y) the following form:

$$U(x, y) = \begin{cases} 0 & \text{if } 0 \le x + y \le k, \\ 1 - \frac{k}{x} + \frac{y}{2x} + \frac{(k - x)^2}{2xy} & \text{if } x + y > k, x \le k \text{ and } y \le k, \\ 1 + \frac{x}{2y} - \frac{k}{y} & \text{if } x + y > k, x \le k \text{ and } y > k, \\ 1 + \frac{y}{2x} - \frac{k}{x} & \text{if } x + y > k, x > k \text{ and } y \le k, \\ 1 - \frac{k^2}{2xy} & \text{if } x + y > k, x > k \text{ and } y > k. \end{cases}$$

Now, it can be shown that as long as positive utility levels are attainable $(\frac{m}{p_x} > k \text{ or } \frac{m}{p_y} > k)$, the optimal solution to equation 2 is given by $(x^*, y^*) \in$

$$\begin{cases} \left\{ \left(\frac{m}{2p_x}, \frac{m}{2p_y}\right) \right\} & \text{if } \frac{m}{2p_x} > k \text{ and } p_x \ge p_y; \\ \left\{ \left(0, \frac{m}{p_y}\right) \right\} & \text{if } \frac{m}{2p_x} < k \text{ and } p_x > p_y; \\ \left\{ \lambda \left(\frac{m}{2p_x}, \frac{m}{2p_y}\right) + (1-\lambda) \left(0, \frac{m}{p_y}\right), \lambda \in [0,1] \right\} & \text{if } \frac{m}{2p_x} = k \text{ and } p_x > p_y; \\ \left\{ \left(\frac{m}{2p_x}, \frac{m}{2p_y}\right) \right\} & \text{if } \frac{m}{2p_y} > k \text{ and } p_x < p_y; \\ \left\{ \left(\frac{m}{p_x}, 0\right) \right\} & \text{if } \frac{m}{2p_y} < k \text{ and } p_x < p_y; \\ \left\{ \lambda \left(\frac{m}{2p_x}, \frac{m}{2p_y}\right) + (1-\lambda) \left(\frac{m}{p_x}, 0\right), \lambda \in [0,1] \right\} & \text{if } \frac{m}{2p_y} = k \text{ and } p_x < p_y; \\ \left\{ \left(0, \frac{m}{p_y}, \left(\frac{m}{p_x}, 0\right) \right\} & \text{if } \frac{m}{2p_x} < k \text{ and } p_x < p_y; \\ \left\{ \left(\frac{m}{p_y} - \lambda, \lambda\right), \lambda \in \left[0, \frac{m}{p_x}\right] \right\} & \text{if } \frac{m}{2p_x} = k \text{ and } p_x = p_y. \end{cases}$$

These demands are set-valued in four cases. For simplicity, we resolve this indeterminacy by assuming that the consumer spends his or her money equally between the two products whenever possible. However, this is not possible if $\frac{m}{2p_x} < k$ and $p_x = p_y$. In this case, we assume that the consumer randomizes between the two corner solutions by choosing each with probability 1/2. Resolv-

ing indeterminacy in this way guarantees the existence of an equilibrium in pure strategies in Proposition 1. Otherwise, there would exist many ε -equilibria in pure strategies close to the solution given in Proposition 1. We shall denote the demand function for good x by $D_x(p_x, p_y)$ and for good y by $D_y(p_x, p_y)$.

We assume two duopolists in the market, firms x and y, setting respective prices p_x and p_y . The firms have linear cost functions with respective positive unit costs c_x and c_y . Thus, firm *i*'s profit function is given by

$$\Pi_i(p_x, p_y) = D_i(p_x, p_y)(p_i - c_i),$$

where i = x, y. If there is no equilibrium in pure strategies, we will consider an ε -equilibrium as a solution of our price-setting game whenever such exists. In what follows we assume that $\frac{m}{c_x} > k$ or $\frac{m}{c_y} > k$, which ensures that at least one firm is viable on the market.

3. RESOLVING THE BERTRAND PARADOX

In analyzing the game described in Section 2, we consider four sub-cases.

PROPOSITION 1. If $\frac{m}{2c_x} \ge k$ and $\frac{m}{2c_y} \ge k$, then there exists a unique Nash equilibrium in which both firms set price $p^* = \frac{m}{2k} \ge \max\{c_x, c_y\}$.

PROOF. If $p_x \ge \frac{m}{k}$ and $p_y \ge \frac{m}{k}$, then the consumer cannot achieve the threshold k with positive probability and, therefore, will not consume anything at all. Hence, at least one firm, say firm x, sets a price less than $\frac{m}{k}$, which, in turn, implies that firm y will not set price $p_y \ge \frac{m}{k}$, because otherwise firm x would capture the entire market.

There cannot be an equilibrium with $(p_x, p_y) \in \left(\frac{m}{2k}, \frac{m}{k}\right]^2$, because each firm benefits by unilaterally undercutting its respective opponent. Moreover, if one firm sets its price not above $p^* = \frac{m}{2k}$ while the other firm sets a price $p > p^*$, then the low-price firm will capture the entire market. Hence, in equilibrium, we must have $p_x \le p^*$ and $p_y \le p^*$. In this price region, however, the demand functions of the firms become functions of only their own prices. Moreover, because the two demand functions are hyperbolic, the firms cannot increase their revenues by lowering their prices below p^* . Doing so, however, would increase their demands and, thus, their costs. If $\frac{m}{2c_x} > k$ and $\frac{m}{2c_y} > k$, each firm will make positive profit at price p^* , and, therefore, each firm will remain in the market. Thus, when $\frac{m}{2c_x} > k$ and $\frac{m}{2c_y} > k$, (p^*, p^*) is the unique Nash equilibrium of the price-setting game.

The case in which $\frac{m}{2c_x} = k$ or $\frac{m}{2c_y} = k$ deserves additional scrutiny, in order to show that (p^*, p^*) is still the unique equilibrium. This situation implies that at least one firm (say x) makes zero profit. Therefore, x could choose to stay out of the market by switching to a sufficiently high price. But then, y (now serving the entire market) would have an incentive to raise its price in order to reduce its demand (and, hence, its costs). In turn, this implies that firm x would like to re-enter the market once again by slightly undercutting the new price, p_y . Therefore, (p_x^*, p_y^*) is the unique Nash equilibrium.

We note that this outcome is in some sense a resolution to the Bertrand Paradox, in that we have duopolists competing in price but the equilibrium price is greater than marginal cost. This also holds for the case of identical unit costs, as assumed in the standard Bertrand setting. Intuitively, as the above proof should make clear, this result obtains because each firm chooses the lowest price that ensures the other firm will not drive it from the market.

It should also be noted that if the unit cost of at least one firm is sufficiently high relative to the consumer's quality threshold, then the usual Bertrand results obtain. We show this in the following three propositions.

PROPOSITION 2. If $\frac{m}{2c_x} \ge k > \frac{m}{2c_y}$, then firm x will drive firm y out of the market by setting a price slightly below c_y , while firm y sets price c_y .

PROOF. The proof is similar to that of Proposition 1. In addition, note that firm y would make a negative profit at price $p^* = \frac{m}{2k}$. In particular, it will drop out of the price war when the price falls below c_y .

The following proposition follows immediately from Proposition 2 by interchanging the roles played by firms x and y.

PROPOSITION 3. If $\frac{m}{2c_y} \ge k > \frac{m}{2c_x}$, then firm y will drive firm x out of the market by setting a price slightly below c_x , while firm x sets price c_x .

The fourth case of $\frac{m}{2c_x} < k$ and $\frac{m}{2c_y} < k$ boils down to the usual Bertrand game.

PROPOSITION 4. Assuming that $\frac{m}{2c_x} < k$ and $\frac{m}{2c_y} < k$, (i) if $c_x = c_y$, then both firms set price $p^* = c_x = c_y$ and (ii) if $c_x \neq c_y$, then the low-cost firm drives the high-cost firm out of the market by setting a price slightly below the high-cost firm's unit cost, while the high-cost firm sets its price equal to its unit cost.

PROOF. Once again, the proof is similar to that of Proposition 1. Now, in contrast to Propositions 2 and 3, both firms are constrained by their unit costs in the price war. Hence, the high-cost firm drops out of the market if $c_x \neq c_y$.

A. TASNÁDI ET AL.

4. CONCLUSION

We have formulated a model of duopolistic price competition in which demand is endogenously derived from a few simple assumptions about consumer preference for quality. Given certain parameter restrictions, we have shown that ex ante uncertainty about product quality can lead consumers to choose positive quantities of both goods, even when prices are unequal and expected quality is the same across products. These conditions thus make it possible for both firms to remain in the market and to sell at prices that exceed marginal cost. This raises the obvious implication that information about product quality, even if such information is not product-specific, might be an important strategic variable in oligopolistic settings.

REFERENCES

- Baye, M. R. and D. Kovenock (2008) 'Bertrand Competition', in S. N. Durlauf and L. E. Blume (eds), *The New Palgrave Dictionary of Economics*, Basingstoke, Hampshire: Palgrave Macmillan. 2nd edn.
- Baye, M. R. and J. Morgan (1999) 'A Folk Theorem for One-Shot Bertrand Games', *Economics Letters* 65, 59–65.
- Bertrand, J. (1883) 'Book Review of Theorie Mathematique De La Richesse Sociale and of Recherches Sur Les Principles Mathematiques De La Theorie Des Richesses', *Journal De Savants* 67, 499–508.
- Castagnoli, E. and M. LiCalzi (1996) 'Expected Utility without Utility', *Theory and Decision* 41, 281–301.
- Dastidar, K. G. (1995) 'On the Existence of Pure Strategy Bertrand Equilibrium', *Economic Theory* 5, 19–32.
- Dastidar, K. G. (2011) 'Existence of Bertrand Equilibrium Revisited', International Journal of Economic Theory 7, 331–50.
- Dixit, A. and J. Stiglitz (1977) 'Monopolistic Competition and Optimum Product Diversity', American Economic Review 67, 297–308.
- Hirata, D. and T. Matsumura (2010) 'On the Uniqueness of Bertrand Equilibrium', *Operations Research Letters* 38, 533–5.

Hoernig, S. H. (2007) 'Bertrand Games and Sharing Rules', Economic Theory 31, 573-85.

Hotelling, H. (1929) 'Stability in Competition', Economic Journal 39, 41-57.

Janssen, M. and E. Rasmusen (2002) 'Bertrand Competition under Uncertainty', Journal of Industrial Economics 50, 11–21.

- Kaplan, T. R. and D. Wettstein (2000) 'The Possibility of Mixed-Strategy Equilibria with Constant-Returns-to-Scale Technology under Bertrand Competition', *Spanish Economic Review* 2, 65–71.
- Maskin, E. (1986) 'The Existence of Equilibrium with Price-Setting Firms', American Economic Review 76, 382–6.
- Reisinger, M. and L. Ressner (2009) 'The Choice of Prices Versus Quantities under Uncertainty', Journal of Economics & Management Strategy 18, 1155–77.
- Saporiti, A. and G. Coloma (2010) 'Bertrand Competition in Markets with Fixed Costs', B.E. Journal of Theoretical Economics 10, Article 27.
- Smith, T. G. and A. Tasnádi (2009) 'Why (and When) Are Preferences Convex? Threshold Effects and Uncertain Quality', B.E. Journal of Theoretical Economics 9, Article 3.

Vives, X. (1999) Oligopoly Pricing: Old Ideas and New Tools. Cambridge MA: MIT Press.

- Yano, M. (2005) 'Coexistence of Large Firms and Less Efficient Small Firms under Price Competition with Free Entry', *International Journal of Economic Theory* 1, 167–88.
- Yano, M. and T. Komatsubara (2006) 'Endogenous Price Leadership and Technological Differences', *International Journal of Economic Theory* 2, 365–83.
- Yano, M. and T. Komatsubara (2012) 'Price Competition Or Tacit Collusion', KIER Discussion Paper No. 807.