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Abstract

Yield curve models within the popular Nelson and Siegel (1987, hereafter
NS) class are shown to arise from a formal Taylor approximation to the generic
Gaussian a¢ ne term structure model outlined in Dai and Singleton (2002). That
theoretical foundation provides an assurance that NS models correspond to a
well-accepted framework for yield curve modeling. It further suggests that any
yield curve from the GATSM class can be represented parsimoniously by a two-
factor arbitrage-free NS model. Such a model is derived and applied to provide
evidence for changes in United States yield curve dynamics over the period from
1971 to 2010.
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This article establishes a theoretical foundation for the popular Nelson and Siegel
(1987, hereafter NS) class of yield curve models via the generic Gaussian a¢ ne term
structure model (hereafter GATSM) outlined in Dai and Singleton (2002). In particu-
lar, the article explicitly shows how the Level, Slope, and Curvature components that
are common to all models of the NS class arise as �optimal approximations�, in a sense
de�ned further below, to the dynamic component of the generic GATSM.
The primary motivation for establishing this result is to tackle �the elephant in the

room� issue that has been conveniently overlooked with the extensive application of
NS models since their inception.1 That is, the Level, Slope, and Curvature compo-
nents common to all models of the NS class were only justi�ed heuristically when �rst
proposed. That heuristic basis is highlighted with a selection of quotations from the
introduction and conclusion of the original NS article:

�The purpose of this paper is to introduce a simple, parsimonious model
that is �exible enough to represent the range of shapes generally associated
with yield curves: monotonic, humped, and S shaped.��A class of functions
that readily generates the typical yield curve shapes is that associated with
solutions to di¤erential or di¤erence equations. The expectations theory of
the term structure provides heuristic motivation for investigating this class
since, if spot rates are generated by a di¤erential equation, then forward
rates, being forecasts, will be the solution to the equations.��A more par-
simonious model that can generate the same range of shapes is given by the
solution equation for the case of equal roots.��Our objective in this paper
has been to propose a class of models, motivated by but not dependent on
the expectations theory of the term structure, that o¤ers a parsimonious
representation of the shapes traditionally associated with yield curves.�

Even the recent introduction of arbitrage-free NS models (e.g. Sharef and Filipovíc
2004, Krippner 2006a, Christensen, Diebold and Rudebusch 2009, 2010), while at least
imposing theoretical self-consistency by explicitly accounting for assumed Gaussian
yield curve dynamics, still take the NS components as given.2 Justi�cation, if sup-
plied, appeals to the practical bene�ts of NS models, such as their ease of estimation,
close �t to the yield curve data, intuitive estimated components, and successful past
applications.3 A complementary and arguably more compelling justi�cation for NS
models would be a foundation within a well-accepted set of principles and assumptions
for modeling the yield curve and its dynamics.
To this end, section 1 speci�es the generic GATSM from Dai and Singleton (2002)

and then derives the associated forward rate curve. Section 2 shows how the original NS
forward rate curve arises from the dynamic component of the generic GATSM forward
rate curve using an �optimal approximation�; speci�cally a low-order Taylor expansion
around central measures of the eigenvalues associated with the generic GATSM. The NS
Level component is shown to correspond to the persistent (i.e. slowly mean-reverting,
or near-zero eigenvalue) components of the generic GATSM, and the NS Slope and
Curvature components are shown to correspond to the non-persistent (i.e. non-zero
eigenvalue) components of the generic GATSM. In light of this example, section 3
discusses how most models within the NS class, with one notable exception being the
Svensson (1995)/NS model, can be classi�ed as various optimal approximations to
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the generic GATSM. That classi�cation system therefore provides a useful guide to
selecting an appropriate NS model for a given application.
A corollary from the theoretical foundation and classi�cation system for the NS class

of models is the evident absence of a generic two-factor arbitrage-free NS model. Such
a model is likely to prove useful as a standard tool for yield curve modeling and analysis
in economics and �nance due to its representation of the generic GATSM with just two
factors. Therefore, regardless of the number of factors in any GATSM, their nature (e.g.
economic, �nancial, etc.) and the potential complexity of their interactions, the Level
component of the NS model will represent the persistent components of the GATSM,
and the Slope component will represent the non-persistent components. Section 4
derives the arbitrage-free two-factor NS model for the cases of time-invariant and time-
varying term premia. As an empirical illustration of the models, section 5 applies them
to investigate changes in United States yield dynamics. Section 6 concludes.

1 The generic Gaussian a¢ ne term structure model

The generic GATSM speci�ed in this section parallels the standard multifactor Gaussian
dynamic term structure model as outlined in appendix A of Dai and Singleton (2002).
It is the fully Gaussian subset of the a¢ ne framework outlined in Du¢ e and Kan (1996)
with the essentially a¢ ne speci�cation of market prices of risk from Du¤ee (2002). In
the notation of Dai and Singleton (2000) the speci�cation is A0 (N).
Three points of context for this article are worth noting up front. First, while the

state variables are completely generic, and so could represent points on the yield curve
as in Du¢ e and Kan (1996), it is more convenient for the subsequent discussion in
section 4 to consider them as (potentially unobserved) economic and �nancial factors
within the underlying economy. This follows the Du¢ e and Kan (1996) p. 321 in-
terpretation that the state variables in an a¢ ne model can always, under standard
assumptions, be related back to economic factors (e.g. preferences, technology, con-
sumption, in�ation, etc.) within a general equilibrium model. For example, Berardi
and Esposito (1999) provides a generic basis for multifactor GATSMs based on an
economy of the Cox, Ingersoll and Ross (1985a) type. Regarding �nancial factors (e.g.
default risk, liquidity risk, repurchase e¤ects, etc.), Du¢ e and Singleton (1999) shows
how they can be incorporated into the generic GATSM framework,4 and Singleton
(2006) chapter 14 contains an extensive summary of that literature.
Second, to make the exposition more transparent from the perspective of the original

NS model, this article derives and works with the forward rate curve associated with
the generic GATSM. The a¢ ne term structure literature more commonly uses bond
prices and/or interest rate curves, but all are within an elementary transformation of
each other and are equivalent perspectives for representing the yield curve.
Third, being fully Gaussian, the results for relating the generic GATSM to NS

models do not extend to term structure models with full Cox, Ingersoll and Ross
(1985b)/square-root dynamics. Appendix A illustrates this by example, and brie�y
discusses the practical implications. In short, NS models inherit the same theoretical
shortcomings of GATSMs (i.e. positive probabilities of negative interest rates and
constant volatilities), and that perspective should be considered when deciding if it is
appropriate to apply an NS model for the task at hand. That said, the assumption
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of Gaussian dynamics is standard in economics and macro�nance (whether explicitly,
or implicitly via the application of Gaussian-based econometrics),5 and this article
presupposes from this point onward that the user has already assumed a Gaussian
data-generating process for the yield curve.
De�ne the instantaneous short rate at time t as r (t) = �0 + �01X (t), where �0 is

a constant, X (t) is an N � 1 vector of state variables, and �1 is a constant N � 1
vector. Under the physical P measure, the state variables follow the process dX (t) =
KP [�P �X (t)] dt+�dWP (t), whereKP is a constantN�N mean-reversion matrix, �P
is a constant steady-stateN�1 vector forX (t), � is a constantN�N volatility matrix,
and WP (t) is an N � 1 vector of independent Brownian motions. De�ne the market
prices of risk as �(t) = ��1 [�0 + �1X (t)], where �0 is a constantN�1 vector and �1 is
a constant N �N matrix. Under the risk-neutral Q measure, the state variables follow
the process dX (t) = KQ [�Q �X (t)] dt+�dWQ (t), where dWQ (t) = dWP (t)+� (t) dt,
KQ = KP + �1, and �Q = (KP + �1)

�1 (KP �P � ��0). Zero-coupon bond prices under
measure Q for the generic GATSM are P (t; T ) = exp

�
A� (�) +B (�)0X (t)

�
, where T

is the time of maturity, B (�) =
�
exp

�
�K 0

Q�
�
� I

� �
K 0
Q

��1
�1, � is the time to maturity

� = T � t (T � t, � � 0) , and I is the N � N identity matrix. The full expression
for A� (�) is provided in Dai and Singleton (2002), but the present article requires only
the summary results that A� (�) is required for the system to be arbitrage free, and it
can be expressed in the functional form ��0� + A (�).
From Heath, Jarrow and Morton (1992, hereafter HJM), instantaneous forward

rates are de�ned as f (t; T ) = �@ logP (t; T ) =@T . Therefore, under measure Q, the
generic GATSM forward rate curve is:

f (t; T ) = �0 +
�
exp

�
�K 0

Q�
�
�1
�0
X (t)� @

@�
A (�) (1)

Now express K 0
Q in eigensystem form; i.e. K 0

Q = Z	Z�1, where Z is the N � N
non-singular matrix of eigenvectors each normalized to 1, and 	 is the N � N di-
agonal matrix containing the N eigenvalues (�1; : : : ; �n; : : : ; �N). The latter are as-
sumed to be unique and positive, which follows the standard assumption in Du¢ e and
Kan (1996) and Dai and Singleton (2002). Hence, exp

�
�K 0

Q�
�
= exp (�Z	Z�1�) =

Z exp (�	�)Z�1 = Z�Z�1, where � = diag[exp (�1�) ; : : : ; exp (�n�) ; : : : ; exp (�N�)],
an N � N diagonal matrix. The forward rates in equation 1 are then f (t; T ) =
�0 + fZ�Z�1�1g

0
X (t)� @

@�
A (�). This can be expressed equivalently as:

f (t; T ) = �0 +

n0X
n=1

qn (t) exp (��n�) +
NX

n=n0+1

qn (t) exp (��n�)�
@

@�
A (�) (2)

where the coe¢ cients qn (t) associated with each unique exp (��n�) represent the collec-
tion of coe¢ cients of the exp (��n�) terms that arise from the full matrix multiplication
of fZ�Z�1�1g

0
X (t).

For use in the example of the following section (but without loss of generality) it is
assumed that the qn (t) exp (��n�) components have been re-ordered from the smallest
to the largest eigenvalue, and then divided into two groups. The �rst group contains
the components with eigenvalues �1 to �n0 that are close to zero (i.e. the persistent
components, given they will have a slow exponential decay by time to maturity �) and
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the second group contains the eigenvalues �n0+1 to �N that are not close to zero (i.e.
non-persistent components).
Also for use in the following section, the �rst three components of equation 2 are

collectively denoted the dynamic component of the generic GATSM. This terminology
re�ects that the time series properties of the generic GATSM forward rate curve are
completely contained in the qn (t) exp (��n�) components. That is, the coe¢ cients
qn (t) are linear combinations of the original state variables X (t), and the functions
exp (��n�) determine the expected (as at time t) evolution of forward rates from time
t to time t+ � . As time evolves, the stochastic term �dWP (t) for the generic GATSM
imparts innovations to the state variables X (t), which are re�ected as innovations
to the coe¢ cients qn (t). Conversely, the non-dynamic component @

@�
A (�) is a time-

invariant function of time to maturity.

2 The generic GATSM to the original NS model

A formal Taylor approximation may be used to reproduce the original NS model from
the exact expression of the dynamic component of the generic GATSM forward rate
curve in equation 2. The treatment of the time-invariant component @

@�
A (�) is dis-

cussed further below.
For the �rst group of eigenvalues where �n ' 0, the �rst term of the Taylor ex-

pansion is exp (��n�) ' 1. For the second group of eigenvalues where �n � 0,
express them relative to � = mean(�n0+1; : : : ; �N),

6 so that �n = � (1� �n) and
exp (��n�) = exp (���) exp (�n��). From the latter expression, taking two terms
of the Taylor expansion around �n gives exp (���) (1 + �n��), so qn (t) exp (��n�) '
qn (t) exp (���)+qn (t) �n�� exp (���). Substituting these results into equation 2 gives:

f (t; T ) ' �0 +

n0X
n=1

qn (t) +

"
NX

n=n0+1

qn (t)

#
exp (���) +

"
NX

n=n0+1

qn (t) �n

#
�� exp (���)

(3)
This expression is precisely the functional form of the original NS model of the forward
rate curve, i.e.:

f (t; T ) ' fNS (t; �) = L (t) + S (t) exp (���) + C (t)�� exp (���) (4)

where fNS (t; �) adopts the typical time and time to maturity notation for NS mod-
els, 1, exp (���), and �� exp (���) are the forward rate factor loadings for the orig-
inal NS model, and L (t) = �0 +

Pn0
n=1 qn (t), S (t) =

PN
n=n0+1

qn (t), and C (t) =PN
n=n0+1

qn (t) �n are the coe¢ cients for the original NS model. The standard trans-
formation RNS (t; �) = 1

�

R �
0
fNS (t; �)d� then produces the original NS model for the

interest rate curve.7

The exposition above shows explicitly how the Level component of the original
NS model approximates the constant plus the persistent dynamic components of the
generic GATSM, and how the NS Slope and Curvature component approximate the
non-persistent dynamic components. Moreover, the approximations are �optimal� in
the sense that each additional NS component corresponds precisely to each successive
term of the Taylor expansion around the central eigenvalues for the dynamic component
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of the generic GATSM term structure. Conversely, other functions (e.g. see James and
Webber (2000) chapter 15) cannot provide an �optimal approximation� in the sense
already noted. For example, a third-order polynomial function would not be a precise
third-order approximation (or even a precise zeroth-order approximation) of the non-
persistent GATSM components.
The original NS model as derived above can be made arbitrage free (if required;

see the discussion at the end of the following section) by adding appropriate terms
to account for the e¤ects that the market prices of risk and volatilities of the NS
factor loadings have on the forward rate curve. For example, Christensen, Diebold and
Rudebusch (2010) directly derives the arbitrage-free (hereafter AF) terms for RNS (t; T )
via a particular three-factor GATSM designed to reproduce the original NS factor
loadings, while Krippner (2006) calculates the AF terms via the HJM framework. Note
that calculating the appropriate AF terms from a base NS model, by whatever means,
guarantees the resulting model will be AF with respect to the NS components that
are themselves an optimal approximation of the dynamic component of the GATSM.
Conversely, a direct Taylor approximation of the generic GATSM including its AF
terms would not necessarily guarantee a resulting AF model.

3 A GATSM perspective for classifying, selecting,
and applying NS models

By following the example in the previous section, it is possible to classify most NS
models as a particular Taylor approximation of the generic GATSM. The key aspects
are: (1) the number of groups of non-zero eigenvalues assumed for the non-persistent
dynamic components of the generic GATSM, which determines how many mean eigen-
value parameters are required; (2) the order of approximation chosen around each mean
eigenvalue, which determines the number of components from the Taylor expansion as-
sociated with each mean eigenvalue; and (3) whether the AF term is included, which
determines if the NS model is AF with respect to its factor loadings and the assumed
speci�cation for the market prices of risk.
From the perspective of these three aspects, table 1 summarizes the NS models

already proposed in the literature. Permutations of the three aspects above can obvi-
ously generate an in�nite variety of alternative NS models, but table 1 adds just three
variants to cover evident absences in the range of proposed NS models to date, and
then two further variants with six components for illustration.
[ Table 1 around here]
As an example of interpreting table 1, the Diebold, Li and Yue (2008)/NS model

with the forward rate form f (t) = L (t) + S (t) exp (���) is the most parsimonious
representation of the generic GATSM.8 It represents both the persistent and non�
persistent components of the generic GATSM with a single term from the Taylor ex-
pansion and omits any AF adjustments. Interestingly, the two-factor HJMmodel (HJM
pp. 91-92) turns out to be an AF version of the Diebold et al. (2008)/NS model, by
coincidence of the assumed volatility functions for the forward rate curve being a con-
stant and an exponential decay by time to maturity. However, the HJM model assumes
uncorrelated innovations; Variant 1 derived in section 4 e¤ectively extends the HJM
model to allow for correlation (and time-varying market prices of risk).
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At the other extreme, the Christensen, Diebold and Rudebusch (2009)/NS model
is the most comprehensive model within the NS class to date. It has the forward rate
form f (t; �) = L (t) + S1 (t) exp (��1�) + C1 (t)�1� exp (��1�) + S2 (t) exp (��2�) +
C2 (t)�2� exp (��2�) + AF (�), where AF (�) abbreviates the AF term from Chris-
tensen et al. (2009) in its forward rate form. In this model, the non-persistent
components are represented with two groupings of non-zero eigenvalues (i.e. �1 =
mean(�n0+1,: : :,�n1) < �2 = mean(�n1+1; : : : ; �N) each with two terms, and the appro-
priate AF terms is included to ensure the model is AF with respect to the �ve factor
loadings. Variant 4 is a potential extension of the Christensen et al. (2009)/NS model
that represents the persistent GATSM components with two terms of the Taylor ex-
pansion, thereby replacing L (t) with L1 (t)+L2 (t) � , where L2 (t) = �

Pn0
n=1 qn (t)�n.

9

Variant 5 is a six-component NS model that adds the third terms of the Taylor ex-
pansion for both the persistent and non-persistent components, i.e. L3 (t)

1
2
� 2 with

L3 (t) =
Pn0

n=1 qn (t)�
2
n, and C

� (t) 1
2
(��)2 exp (���) with C� (t) =

PN
n=n0+1

qn (t) �
2
n.

Note that all of the variant NS models (and the two-component models) are �bal-
anced�approximations of the generic GATSM, in the sense that the number of Taylor
terms is the same for the persistent and non-persistent components. That property
has some theoretical appeal, because it guarantees an approxmation of any GATSM
to a given order. However, the practical relevance of imposing the property is an open
question, as is the feasibility and usefulness of estimating the additional components
in the variant models.
The classi�cation system suggests a systematic approach to selecting and applying

an appropriate NS model for the application at hand rather than arbitrarily adding
�exibility to seek a better �t to the yield curve data. Of particular note in this regard
are the NS models of Bliss (1997), Svensson (1995), and Sharef and Filipovíc (2004):
the addition of just the second Curvature term C2 (t) cannot represent a �rst-order
Taylor approximation to the component of the generic GATSM associated with the
second group of non-zero eigenvalues. Hence, those models should be avoided if an
explicit correspondence to the GATSM class is desired. Another aspect is more subtle:
to maintain an explicit correspondence with the generic GATSM, NS models should
be applied with a constant parameter � (or parameters �1, �2, etc.) because that
corresponds to the constant parameters assumed in the generic GATSM.10

Once the appropriate NS model has been chosen, consideration needs to be given
to whether the model is made AF by adding the AF term with respect to the NS
components (as in Christensen et al. (2009, 2010), or directly via the HJM framework
as in the example of section 4). Ideally, the AF term should be included in empirical
applications to maintain theoretical consistency between the cross-sectional and time-
series properties of the given NS model,11 and the correspondence back to the GATSM.
Explicit estimates of the market prices of risk and the volatilities associated with the
AF property may also provide useful information to the user, and are certainly essential
when pricing instruments that are heavily in�uenced by interest rate volatility, such as
options on �xed interest securities.
That said, non-AF NS models are perfectly valid when applied in a time-series con-

text, such as forecasting the yield curve, establishing relationships with macroeconomic
time-series data, or generating zero-coupon interest rate data to be used subsequently
in a time series context. That result follows from Joslin, Singleton and Zhu (2010),
which shows that any vector autoregressive factor model of the yield curve (thereby
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including non-AF NS models) is valid in a time-series context, and AF restrictions do
not add any advantage to the time series and forecast properties.12

4 The two-factor arbitrage-free NS model

This section derives an AF NS model with just two factors, i.e. the Level and Slope
components. This particular model is motivated by the theoretical foundation and
classi�cation discussed earlier, because it is evidently absent from the range of NS
models already proposed, and because it is also the most parsimonious self-consistent
representation of the generic GATSM. Therefore, for any GATSM model, regardless of
the number of factors, their nature (e.g. economic, �nancial, etc.) and the potential
complexity of factor interactions within the mean-reversion and innovation matrices,
the Level component of the NS model will represent the persistent components of the
GATSM, and the Slope component will represent the non-persistent components. The
AF term allowing for correlated innovations to the Level and Slope components and
a speci�cation for the market prices of risk will enforce self-consistency between the
cross-sectional and time-series properties of the model.
Section 4.1 derives the model with constant market prices of risk (hence time-

invariant term premia), and is denoted the AF/NS(2) model. Section 4.2 extends
the AF/NS(2) model to include time-varying market prices of risk (hence time-varying
term premia) with the essentially-a¢ ne speci�cation, and is denoted the EA/AF/NS(2)
model.

4.1 The AF/NS(2) model

4.1.1 Model derivation

The NS model with two factors is �1 (t) + �2 (t) � exp (���). The HJM framework
with the modi�cation from Tchuindjo (2008) allows the factors to have innovations

 [dW1 (t) ; exp (���) � dW2 (t)] with a non-zero correlation, i.e.


 =

�
�21 ��1�2

��1�2 �22

�
(5)

where �1 and �2 are the factor volatilities (annualized standard deviations of the factor
innovations), � is the correlation of factor innovations, and dW1 (t) and dW2 (t) are
independent Wiener increments.
The expression for the AF/NS(2) forward rate curve in the Tchuindjo (2008)/HJM

framework is therefore:

f (t; �) = [1; exp (���)]
�
�1 (t)
�2 (t)

�
+

Z �

0

[�1; �2 exp (��s)]
�

0;1

0;2

�
ds

�
Z �

0

�
[�1; �2 exp (��s)]

�
1 �
� 1

��Z �

s

�
�1

�2 exp (��u)

�
du
�
ds
�
(6)
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where the �rst line is Et [r (t+ �)], the expected value, conditional upon information
available at time t, of the instantaneous short rate at time t + � ; the second line is
the term premium function involving the factor volatilities and the constant market
prices of risk 
0;1 and 
0;2; the third line is the volatility e¤ect involving the factor
volatilities and their correlation �; and u and s are dummy integration variables. Note
that 
0;1 and 
0;2 are de�ned in this article as positive quantities, so they (intuitively)
add positive spreads to Et [r (t+ �)] and therefore the observed yield curve.
The solution to the forward rate expression in equation 6 is:13

f (t; �) = �1 (t) + �2 (t) � exp (���)
+�1
0;1 � � + �2
0;2 � F (�; �)

��21 �
1

2
� 2 � �22 �

1

2
[F (�; �)]2

���1�2 � �F (�; �) (7)

where F (�; �) = 1
�
[1� exp (���)]. The expression for f (t; �) may be more conve-

niently expressed as f (t; �) = a (�) + b (�) � (t), where a (�) = �1
0;1 � � + �2
0;2 �
F (�; �) � �21 � 12�

2 � �22 � 12 [F (�; �)]
2 � ��1�2 � �F (�; �), b (�) = [1; exp (���)], and

� (t) = [�1 (t) ; �2 (t)]
0.

Interest rates, rather than forward rates, are the observables that de�ne the yield
curve in practice. Hence, the standard relationship R (t; �) = 1

�

R �
0
f (t; �)d� is used

to derive the interest rate function as R (t; �) = �a (�) + �b (�) � (t), where �a (�) =
�1
0;1 � 12�+�2
2 �

1
�

�
1� 1

�
F (�; �)

�
��21 � 16�

2��22 � 1
2�2

�
1� 1

�
F (�; �)� 1

2�
� [F (�; �)]2

�
�

��1�2 � 1�2
�
1� 1

�
F (�; �) + 1

2
�� � �F (�; �)

�
and �b (�) =

�
1; 1

�
F (�; �)

�
.

The interest rate as a function of time to maturity � will be composed of the
average of the expected path of the short rate up to � (a time-varying quantity), and
a time-invariant term premium function:

TP (�) = �1
0;1 �
1

2
� + �2
0;2 �

1

�

�
1� 1

�
F (�; �)

�
(8)

4.1.2 State space representation

An observation of zero-coupon continuously compounding yield curve data at time t
may be represented as:

R (t) = �A+ �B� (t) + � (t) (9)

where R (t) is the K� 1 vector of yield curve data (with K = 10 or 12 in the empirical
application below), �A is the K � 1 vector [�a (� 1) ; : : : ; �a (� k) ; : : : ; �a (�K)]0, and �B is the
K � 2 matrix

�
�b (� 1) ; : : : ;�b (� k) ; : : : ;�b (�K)

�
, and � 1; : : : ; � k; : : : ; �K are the times to

maturity of the yield curve data.
The evolution of � (t) over a �nite time step �t may be derived directly as:

� (t+�t) = � (�;�t) � (t) + " (t+�t) (10)

where � (�;�t) = diag[1; exp (���t)], a 2� 2 diagonal matrix.
Equations 9 and 10 are a measurement and state equation that may be used in the

Kalman �lter to estimate the model. Regarding the additional elements required for
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the Kalman �lter, the covariance matrix for the state equation may be evaluated as:

Q =

Z �t

0

� (�; s) 
 [� (�; s)]0 ds (11)

=

�
�21 ��t ��1�2 � F (�;�t)

��1�2 � F (�;�t) �22 � F (2�;�t)

�
(12)

and the covariance matrix for the measurement equation is assumed to take the form
H = diag[�2� (� 1) ; : : : ; �

2
� (�K)]. That assumption is standard in the literature, as is the

assumption that all other contemporaneous and intertemporal covariances are zero.
The starting values for the state variable vector and its covariance matrix �1j0 =

[0; 0]0 and:

P1j0 =

�
�2�=

�
1�  2

�
��1�2 � 1�

��1�2 � 1� �22 � 12�

�
(13)

where  is the coe¢ cient from the autoregression ��1 (t+�t) =  ���1 (t)+� (t) and ��1 (t)
is the Level coe¢ cient series obtained from a preliminary estimation of the non-AF two-
factor NS model by OLS. These quantities are the unconditional expectations for � (t)
and its covariance, i.e. E [� (t)] and

R1
0
� (�; s) 
� (�; s)ds, except for the values purely

associated with �1 (t). The latter are technically unde�ned because �1 (t) is a unit-root
process and so the values from the near-unit-root autoregression are substituted.14

4.1.3 Econometric issues

It is worthwhile at this stage making several observations about the AF/NS(2) model
regarding estimation and identi�cation, given those issues have typically presented
challenges for the estimation of latent-factor GATSMs in the past.15 These observations
apply equally to the EA/AF/NS model in the following subsection.
First, the AF/NS(2) model is globally identi�ed. Following the discussion in Collin-

Dufresne, Goldstein and Jones (2008) section I, this property is assured because the
AF/NS(2) model e¤ectively imposes the restriction that the mean-reversion parameter
for the second factor (i.e. � > 0) will always be greater than for the �rst factor (i.e.
0). That means the AF/NS(2) model estimation will have a unique maximum and
estimated parameter set.
Second, both of the market prices of risk in the AF/NS(2) can be identi�ed from

an unrestricted estimation with a sample of zero-coupon data. This property arises be-
cause the Level component for the AF/NS(2) model subsumes the constant parameter
for the mean level of the short rate in the generic GATSM. Conversely, Singleton (2006)
pp. 342-343 notes that the mean short rate parameter and the constant market prices
of risk cannot all be identi�ed for a latent-factor GATSM estimated with zero-coupon
data.
Third, the implicit econometric identi�cation of the AF/NS(2) model uses �P = 0,

rather than �Q = 0 as suggested in Singleton (2006) pp. 318-319 for the canonical
two-LF/GATSM. The practical implication is to leave the constant market prices of
risk in the measurement equation (i.e. �1
0;1 � 12� in the interest rate function) and have
no constant in the state equation. That identi�cation is convenient for the empirical
application in this article because it matches the implicit identi�cation used in RW.16

Conversely, the identi�cation �Q = 0 used for the AF/NS model in Christensen et al.
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(2010) eliminates the constant market prices of risk from the measurement equation
and includes a constant in the state equation (which incorporates the constant market
price of risk parameters). Nevertheless, both identi�cations provide observationally-
equivalent representations of the data, and are within an invariant a¢ ne transformation
of each other (see Singleton (2006) pp. 319-321).
Finally, from a practical perspective, standard reparametrizations are employed to

ensure trouble-free numerical evaluation of the Kalman �lter; i.e. a Cholesky speci�ca-
tion to ensure the covariance matrices Q and P always remains positive de�nite, and
� = != (1 + j!j) to respect the �1 range for innovation correlations.

4.2 The EA/AF/NS model

The AF/NS(2) model may readily be extended with an essentially a¢ ne speci�cation
for the market prices of risk; i.e. � (t) = 
0 + 
1� (t), where 
0 =

�

0;1; 
0;2

�0
and 
1

is a 2 � 2 matrix of constants. Following Dai and Singleton (2002) appendix 1, the
measurement equation remains the same as for the AF/NS(2) model, and the state
equation is modi�ed by the matrix exponential exp (�
1) to give:

� (t+�t) = � (�;�t) exp (�
1�t) � (t) + " (t+�t)

= exp (���t) � (t) + " (t+�t) (14)

where � = diag[0; �] + 
1.
The covariance matrix for the state equation may be evaluated as:

Q =

Z �t

0

exp (��s) 
 exp (��0s)ds

= V

�
u11 � F (2d1;�t) u12 � F (d1 + d2;�t)

u21 � F (d1 + d2;�t) u22 � F (2d2;�t)

�
V 0 (15)

where V DV �1 is the eigensystem decomposition of �,D = diag[d1; d2], and the elements
uij are those from U = V �1
 (V �1)

0. The covariance matrix for the measurement
equations is again assumed to be H = diag[�2� (� 1) ; : : : ; �

2
� (�K)].

The starting values for the state variables and their covariance are the unconditional
expectations, respectively �1j0 = [0; 0]

0 and

P1j0 =

Z 1

0

exp (��s) 
 exp (��0s)ds

= V

�
u11

1
2d1

u12
1

d1+d2

u21
1

d1+d2
u22

1
2d2

�
V 0 (16)

The system above is restricted to have positive eigenvalues for �. From a practical
perspective, this can be viewed as an additional estimation restriction to ensure the
covariance matrices Q and P always remains positive de�nite. From a theoretical
perspective, the restriction also ensures consistency with the assumption from Dai and
Singleton (2002) that the eigenvalues of the generic GATSM are strictly positive (which
in turn means the eigenvalues of exp (���t) will be less than 1 and so � (t) will be
stationary).17 The restriction is enforced in the estimation as follows.
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From Higam (1996) p. 223 a non-symmetric matrix may be written as the sum
of a symmetric matrix AS and an antisymmetric matrix AK , and A will be positive
de�nite if AS is positive de�nite. The latter can be generated with three additional
parameters as AS = LL0+ diag[0; �], where L is a 2 � 2 lower-diagonal matrix. The
antisymmetric matrix can be generated with one additional parameter d and then
setting A12 = �A21 = d and A11 = A22 = 0. Directly calculating � = AS +AK and its
eigenvalues gives:

eig
�

a b+ d
b� d c

�
=
1

2
c+

1

2
a� 1

2

q
(a� c)2 � 4d2 + 4b2 (17)

and a reparametrization:

d =
e

1 + jej �
1

2

q
(a� c)2 + 4b2 (18)

ensures that d will result in a positive value for the square root operand, therefore
guaranteeing real positive eigenvalues for �.
The interest rate as a function of time to maturity � will again be composed of the

average expected short rate, and a term premium function. However, the essentially
a¢ ne speci�cation for the market prices of risk means that the term premium function
will now vary with state variables. The function for the EA/AF/NS(2) model may be
evaluated as:

TP (t; �) = TP (�) +
��
1;
1

�
F (�; �)

�
� [1; 1] [�� ]�1 [I � exp (���)]

�
� (t) (19)

where TP(�) is the expression in equation 8.

5 An application to U.S. yield curve dynamics

This section applies the two-factor NS models developed in the prior section to U.S.
yield curve from 1971 to 2010. The main purpose is to illustrate the empirical ap-
plication of the models and their output. However, the results may also be used to
cross-check the changes in U.S. yield curve dynamics already documented in Rude-
busch and Wu (2007, hereafter RW) over the period 1971 and 2002 using a similar
model (i.e. a bivariate latent-factor GATSM with essentially a¢ ne market prices of
risk). A mechanical extension applying the two-factor NS models to the data from
2003 onward (albeit with suitable caveats to be noted) may also be used to assess
subsequent changes in U.S. yield curve dynamics beyond the end of the RW sample.
Section 5.1 provides an overview of the yield curve data for the 1971 to 2010 period

and the three subsamples. Section 5.2 applies the two-factor AF/NS(2) model to the
full sample and the three subsamples, and section 5.3 applies the EA/AF/NS(2) model.

5.1 Yield curve data

Figure 1 provides an overview of the U.S. yield curve and its dynamics by plotting the
3-month and 15-year government-risk interest rate data (as detailed further below),
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and also the spread between those two rates. The latter is de�ned opposite to the
common convention of a long-maturity rate less a short-maturity rate so it coincides
qualitatively with the inverted shape of the Slope function in the NS models. Hence,
the troughs in the spread represent periods of easy monetary policy and values above
zero represent an inverted yield curve.
[ Figure 1 around here ]
The full sample period is divided into three samples. Sample A is from November

1971 (the beginning of the 15-year data) to December 1987 (to match the end of sample
A from RW, which in turn is chosen to be prior to the tenure of FOMC Chairman
Greenspan). Sample B is from January 1988 to December 2002 (to match sample
B from RW). Sample C, from January 2003 to June 2010 (the latest data available
at the time of the analysis), simply contains the additional data available relative to
RW. That said, sample C is arguably a unique period in its own right, because it
conveniently begins amid the onset of U.S. de�ation concerns in late-2002/early-2003
(e.g. see Billi, 2009 p. 83) and ends with the ultra-easy U.S. monetary policy following
the 2007/2008 global �nancial crisis. However, the results for sample C are reported
only out of interest and for comparison to the estimates over samples A and B, and
should not be taken as an advocation to apply NS models over this period. It would
be theoretically questionable to represent the nominal yield curve in a low to near-zero
interest rate environment with a yield curve model that cannot respect the zero bound
for nominal interest rates.
The maturity span of the available yield curve data changes over the full sample,

re�ecting the longest-maturity bond on issue at any point in time. Sample A uses
3- and 6-month Treasury bill rates (from the Federal Reserve Economic Database on
the St Louis Federal Reserve website, converted to a continuously compounding basis)
and the 1-, 2-, 3-, 4-, 5-, 7-, 10-, and 15-year continuously compounding zero-coupon
government interest rates from the data set described in Gürkaynak, Sack and Wright
(2008). Sample B is estimated with data of the same maturity span (hereafter denoted
3-m/15-y) to allow a direct comparison to sample A, and also with the addition of the
Gürkaynak et al. (2008) 20- and 30-year data (which became available in July 1981 and
November 1985 respectively). Sample C is estimated with data of the latter maturity
span (hereafter denoted 3-m/30-y) to allow a direct comparison to sample B. All of the
data are month-end rates taken from the original sets of daily data.

5.2 Estimation results for the AF/NS(2) model

The Kalman �lter recursion is used to evaluate the log likelihood for the model, and
the latter is maximized numerically using the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm as supplied in the �fminunc�function of the Matlab optimization toolbox. The
asymptotic standard errors are calculated using the Hessian matrix evaluated at the
parameter values that maximize the likelihood function.
Consistent with the discussion on global identi�cation from the previous section,

convergence for the AF/NS(2) model estimation was timely and reliable with no ap-
parent sensitivity in the end result to di¤erent starting values. Figure 2 illustrates
the resulting state variables, i.e. the AF/NS(2) Level and Slope coe¢ cients, for the
estimation using the 3-month to 15-year yield curve data over the entire sample. The
AF/NS(2) Level and Slope coe¢ cients respectively re�ect the level and slope of the
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yield curve as represented by the 15-year rate and 3-month less 15-year spread in �gure
1, and the model-implied short rate, i.e. r (t) = �1 (t) + �2 (t), re�ects the 3-month
rate. Note that r (t) falls materially below zero in sample C, which further suggests
that NS models (and so, by implication, GATSMs) are likely to be too simplistic for
modeling the yield curve within a low to near-zero nominal interest rate environment
(particularly if it were important to strictly respect the zero bound for a given appli-
cation). The results for the individual sample periods and using the 3-m/30-y data are
very similar to �gure 2, and so are not reported separately.
[ Figure 2 around here ]
Table 2 contains the estimated parameter values for the AF/NS(2) model using the

3-m/15-y data over the joint sample A+B and the individual samples A and B.18 Table
3 contains the estimated parameter values for the AF/NS(2) model using the 3-m/30-y
data over the joint sample B+C and the individual samples B and C.
[ Tables 2 and 3 around here ]
The �rst aspect of note is that the hypotheses of no change in the yield curve

DGP between samples A and B, and samples B and C are soundly rejected, with a
likelihood ratio statistics of 910.5 and 3532.4 respectively. Figure 3 illustrates that one
of the main points of di¤erence between the two samples is that the (time invariant)
term premium function is smaller in sample B than in sample A. That in turn mainly
re�ects a lower market price of risk for the Slope component, and also lower volatilities
for the Level and Slope components. The term premium function falls again in sample
C, mainly due to a further fall in the market price of risk for the Slope component.
[ Figure 3 around here ]
Other points of note for the AF/NS(2) model estimates are the material decline in

the mean-reversion parameter � for the Slope coe¢ cient from sample A to B, and the
sign reversal of the innovation correlation parameter � from sample B to C. In prac-
tical terms, the latter suggests that positive innovations to the Slope coe¢ cient (e.g.
unanticipated policy tightenings) were on average associated with negative innovations
to the Level coe¢ cient (i.e. a fall in long-maturity yields) over sample C.

5.3 Estimation results for the EA/AF/NS(2) model

Convergence for the model estimation via the Kalman �lter was again timely and
reliable, with no apparent sensitivity in the end result to the di¤erent starting values
tested for the model parameters. All estimates of the Level and Slope coe¢ cients for
the EA/AF/NS(2) model were again very similar to �gure 2 and so are not separately
reported.
Tables 4 and 5 contain the estimated parameter values for the EA/AF/NS(2) model

over the combined and individual samples. The hypotheses of no change in yield curve
dynamics between the samples A and B, and the samples B and C are again soundly
rejected by the likelihood ratio tests.
Figures 4 and 5 illustrate the term premium estimates for the time to maturity

of �ve years for each of the di¤erent sample estimated. These are obtained using the
relevant estimated parameters and state variables in equation 19 with � = 5.
[ Tables 4 and 5 around here ]
Figures 4 and 5 con�rm that changes in the average level of the term premium es-

timates are again a major point of di¤erence between the individual samples, although
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the more complex speci�cation for the term premium function in the EA/AF/NS(2)
model makes it harder to attribute di¤erences to individual parameters. A more trans-
parent alternative is simply to attribute the 5-year term premia estimates to their
time-invariant and time-varying components. Evaluating the point estimates of the
time-invariant component TP(�) of the term premium function for the EA/AF/NS(2)
model con�rms the AF/NS(2) pattern of results; i.e. there is still a declining time-
invariant term premium component from sample A to sample C (except sample B
based on 3-m/15-y data, which is arguably less reliable).19 Nevertheless, the average
term premium during sample A is lower than sample B, meaning that the time-varying
component of the 5-year term premium was lower in sample A than sample B. Re-
garding variation in term premia, sample B (based on 3-m/30-y data) shows the least
variation in terms of the peak-to-trough range and the standard deviation of �rst dif-
ferences. Sample C shows the most variation.
[ Figures 4 and 5 around here ]
Other points of note for the EA/AF/NS(2) model estimates are the con�rmation

of the material decline in the mean-reversion parameter � and the sign reversal of
the innovation correlation parameter � as already discussed for the AF/NS(2) model.
Indeed, the model estimate suggests that the innovations become all but perfectly nega-
tive, albeit with an implausibly large con�dence interval. That suggests some degree of
overparametrization when applying the EA/AF/NS(2) model over the relatively short
sample period and/or within a low to near-zero nominal interest rate environment.

5.4 Model comparisons

The signi�cance of the time-varying component of the term premium estimates can
be assessed with a likelihood ratio test given that the EA/AF/NS(2) model nests
the AF/NS(2) model; i.e. the latter is the EA/AF/NS(2) model with 
1 = 0 in
� (t) = 
0+
1� (t). The likelihood ratio tests in tables 3 and 4 show that the estimates
of 
1 are typically highly signi�cant, with an exception being sample B using the 3-
m/30-y data. These results imply that term premia are better modeled as time-varying
rather than constant over the sample, except sample B.
When comparing the EA/AF/NS(2) model application to the RW two-LF/GATSM

application, it is �rst worth noting that the model speci�cation and the estimation ap-
proach di¤ers in several respects.20 First, RW sets to zero the constant element of the
market price of risk for the persistent component parameter, which allows the iden-
ti�cation of the mean parameter for the short rate. Conversely, the EA/AF/NS(2)
model allows all market price of risk parameters to be identi�ed, and the results are
material and statistically signi�cant. Second, RW speci�es a diagonal innovation co-
variance matrix for the state variables. Conversely, the EA/AF/NS(2) model allows
for correlated innovations, and the correlation is found to be material, but not usually
statistically signi�cant. Third, RW restricts insigni�cant parameters for the remain-
ing market price of risk speci�cation (from an initial estimation) to zero, while the
EA/AF/NS(2) model retains all of the market price of risk parameters. The estimate
of the 
1 matrix for EA/AF/NS(2) model over the sample A+B indicates how that
initial zeroing of insigni�cant risk parameters could adversely a¤ect the �nal model.
That is, all of the individual estimates of the 
1 matrix elements are insigni�cant, but

1 is signi�cant as a whole.
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Regarding the empirical results for the EA/AF/NS(2) model, they con�rm the
main �nding in RW that a statistically signi�cant change in term structure behavior
occurred between samples A and B. The pattern of term premium estimates over the
two samples is also similar to that of RW, with a fall in the variation of the 5-year term
premium estimates from sample A to sample B. RW removes the sample averages from
the term premium estimates, and so the absolute levels cannot be compared.

6 Conclusion

This article establishes that most NS models may be obtained as optimal approxima-
tions to the dynamic component of the generic GATSM outlined in Dai and Singleton
(2002). That theoretical foundation provides an assurance that NS models correspond
to a well-accepted framework for yield curve modeling, and it also motivates the devel-
opment and application of a two-factor arbitrage-free NS model as a standard model
of the yield curve. That is, regardless of the true number of factors, their nature (e.g.
economic, �nancial, etc.) and the potential complexity of their interactions, the Level
component of the NS model will represent the persistent components of any GATSM
model, and the Slope component will represent the non-persistent components.
As a practical illustration of applying an NS model, this article develops a two-

factor arbitrage-free NS model and uses it to test for changes in U.S. yield dynamics.
The results from applying the NS model con�rm the main �ndings of Rudebusch and
Wu (2007): there was a very material change in the data-generating process for the
U.S. yield curve between the sample from 1971 to 1988 and the sample from 1988 to
2002. An additional estimation of the NS model using data from 2003 to 2010 indicates
a further material change in U.S. yield curve behavior.
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A CIR dynamics

This appendix shows by example that dynamic term structure models with Cox et al.
(1985b)/square-root innovations cannot be optimally approximated using NS factor
loadings, in the sense of following a procedure analogous to the exposition in section 3.
Assume N independent factors each with the form dXn (t) = �n [�n �Xn (t)] dt +

�n
p
Xn (t)dW (t) under the risk-neutral Q measure.

Then P (t; T ) = exp
hPN

n=1An (t; T ) +Bn (t; T )Xn (t)
i
where each Bn (t; T ) has

the standard Cox et al. (1985b) form:21

Bn (t; T ) =
2 [1� exp (
n�)]

(
n + �n) [exp (
n�)� 1] + 2
n
(20)

with 
n =
p
�2n + 2�

2
n.

The associated forward rate curve is:

f (t; T ) = a0 +
NX
n=1

4
2n exp (
n�)

[(
n + �n) [exp (
n�)� 1] + 2
n]
2Xn (t)�

@

@�
An (�) (21)

The relative complexity of this functional form of maturity means that a central
exponential decay term exp (���) cannot be factored out of each factor loading as for
the Gaussian case in section 3.
This incompatibility of the NS class of yield curve models with CIR/square-root

dynamics is unfortunate, because CIR models have the well-known advantage over
GATSMs of respecting the zero bound for interest rates. One resulting implication is
that, in cases where the probability of zero interest rates from Gaussian dynamics is
material, a non-Gaussian dynamic term structure model might be more appropriate
than an NS model. That caveat applies in particular if the application requires the zero
bound to be strictly respected (e.g. for �nancial market applications such as option
pricing).
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B Details of calculations for section 5 [NOT IN-
TENDED FOR PUBLICATION]

B.1 AF/NS(2) forward rate curve

B.1.1 AF/NS(2) forward rate expression

Equation 5 from the main text expresses the AF/NS(2) forward rate in terms of three
components: (1) the expected path of the short rate component, the term premium
component, and the volatility e¤ect component. These are evaluated respectively in
the subsections below.

B.1.2 The expected path of the short rate component

Et [r (t+ �)] = �1 (t) + �2 (t) � exp (���)

= [1; exp (���)]
�
�1 (t)
�2 (t)

�
= b (�) � (t)

where b (�) = [1; exp (���)] and � (t) = [�1 (t) ; �2 (t)]
0.

B.1.3 Term premium componentZ �

0

[�1; �2 exp (��s)]
�

0;1

0;2

�
ds = �1
0;1

Z �

0

ds+ �2
0;2

Z �

0

exp (��s)ds

The Level and Slope term premium components are evaluated respectively in the
subsections below.

Term premium component for Level

�1
0;1

Z �

0

ds = �1
0;1 (sj
�
0)

= �1
0;1 � �

Term premium component for SlopeZ �

0

�2
0;2 exp (�� [� � s])ds = �2
0;2
1

�
exp (�� [� � s])

�����
0

= �2
0;2 �
1

�
[1� exp (���)]

= �2
0;2 � F (�; �)

where F (�; �) = 1
�
[1� exp (���)].
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B.1.4 Volatility e¤ect component

Z �

0

[�1; �2 exp (�� [� � s])]

��
1 �
� 1

� Z �

s

�
�1

�2 exp (�� [u� s])

�
du
�
ds

=

Z �

0

[�1; �2 exp (�� [� � s])]

�
�1
R �
s
du+ ��2

R �
s
exp (�� [u� s])du

��1
R �
s
du+ �2

R �
s
exp (�� [u� s])du

�
ds

= �21

Z �

0

�Z �

s

du
�
ds

+��1�2

Z �

0

�Z �

s

exp (�� [u� s])du
�
ds

+��1�2

Z �

0

exp (�� [� � s])

�Z �

s

du
�
ds

+�22

Z �

0

exp (�� [� � s])

�Z �

s

exp (�� [u� s])du
�
ds

where the last four lines are, respectively, the Level/Level, Level/Slope, Slope/Level,
and Slope/Slope components. These are evaluated in turn in the subsections below.

Volatility e¤ect component for Level/LevelZ �

0

�Z �

s

du
�
ds =

Z �

0

(uj�s)ds

=

Z �

0

(� � s)ds

=

�
�s� 1

2
s2
�����
0

�
=

1

2
� 2

Volatility e¤ect component for Level/SlopeZ �

0

�Z �

s

exp (�� [u� s])du
�
ds =

Z �

0

�
�1
�
exp (�� [u� s])

�����
s

�
ds

=
1

�

Z �

0

(1� exp (�� [� � s]))ds

=
1

�

�
s� 1

�
exp (�� [� � s])

�����
0

�
=

�

�
� 1

�2
+
1

�2
exp (���)
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Volatility e¤ect component for Slope/LevelZ �

0

exp (�� [� � s])

�Z �

s

du
�
ds =

Z �

0

exp (�� [� � s]) (� � s)ds

=

�
exp (�� [� � s])

1

�2
(1 + ��� s�)

�����
0

�
=

1

�2
� 1

�2
exp (���)� �

�
exp (���)

Volatility e¤ect component for Level/Slope + Slope/LevelZ �

0

�Z �

s

exp (�� [u� s])du
�
ds+

Z �

0

exp (�� [� � s])

�Z �

s

du
�
ds =

�

�
� �

�
exp (���)

= � � F (�; �)

Volatility e¤ect component for Slope/SlopeZ �

0

exp (�� [� � s])

�Z �

s

exp (�� [u� s])du
�
ds

=

Z �

0

exp (��s)
�
1

�
(exp (�� [� � s])� 1)

�
ds

=
1

�2

�
exp (2��)

�
exp (�� [� � s])� 1

2
exp (�2�s)

������
0

�
=

1

2�2
[1� exp (���)]2

B.1.5 AF/NS(2) forward rate curve

Substituting the results above into the AF/NS(2) forward rate expression gives equa-
tion 6.

B.2 AF/NS(2) interest rate curve

The AF/NS(2) interest rate curve may be evaluated using the standard relationship
R (t; �) = 1

�

R �
0
f (t; �)d� for each component of the AF/NS(2) forward rate curve. The

calculations are undertaken respectively in the subsections below.

B.2.1 Short rate Level component

1

�

Z �

0

d� =
1

�
(� j�0)

=
1

�
(�)

= 1
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B.2.2 Short rate Slope component
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Z �

0

exp (���)d� =
1
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�
�1
�
exp (���)

�����
0

�
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�
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�
[1� exp (���)]

�
=
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�
F (�; �)

B.2.3 Term premium Level component
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� 2
�����
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�
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�
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2
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B.2.4 Term premium Slope component
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Z �
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F (�; �)d� =
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�

Z �

0

1

�
[1� exp (���)]d�

=
1

�

�
�

�
+
1

�2
exp (���)

�����
0

�
=

1

�

�
�

�
� 1

�2
+
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�2
exp (���)

�
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�
F (�; �)

�
B.2.5 Volatility e¤ect Level/Level component
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Z �
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1

2
� 2d� =

1

�

�
1

6
� 3
�����
0

�
=

1

�

�
1

6
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�

=
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6
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B.2.6 Volatility e¤ect Slope/Slope component

1

�

Z �

0

[F (�; �)]2 d� =
1

�

Z �

0

1

�2
[1� exp (���)]2 d�

=
1

�

�
1

2�2
� +

1

�3
exp (���)� 1

4�3
exp (�2��)

�����
0

�
=

1

�

�
�

2�2
� 3

4�3
+
1

�3
exp (���)� 1

4�3
exp (�2��)

�
=

1

2�2
� 1

2�3�
[1� exp (���)]� 1

4�3�
[1� exp (���)]2

=
1

2�2

�
1� 1

�
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� [F (�; �)]2

�
B.2.7 Volatility e¤ect Level/Slope + Slope/Level component
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B.2.8 Final interest rate curve expression

R (t; �) = �1 (t) + �2 (t) �
1

�
F (�; �)

+�1
1 �
1

2
� + �2
2 �

1

�

�
1� 1

�
F (�; �)

�
��21 �

1

6
� 2 � �22 �
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�
1� 1
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F (�; �)� 1
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� [F (�; �)]2

�
���1�2 �

1

�2

�
1� 1

�
F (�; �) +

1

2
�� � 1

�2�
F (�; �)

�
which may be expressed in the form R (t; �) = �a (�) + �b (�) � (t) as in the main text.
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B.3 AF/NS(2) model Kalman �lter calculations

B.3.1 State equation

The AF/NS(2) state equation may be derived directly from the expected path of the
short rate, i.e.:

Et fEt+�r (t+ � +�t)g = Et [r (t+ � +�t)]

Et f[1; exp (���)] � (t+�t)g = [1; exp (�� [� +�t])] � (t)

[1; exp (���)]Et f� (t+�t)g = [1; exp (���)]
�
1 0
0 exp (���t)

�
� (t)

Et f� (t+�t)g = �(�;�t) � (t)

Removing the expectations operator, the state equation is therefore:

� (t+�t) = � (�;�t) � (t) + " (t+�t)

as in equation 8, where Et [" (t+�t)] = 0. Note that " (t+�t) has a correlated
bivariate Gaussian distribution given the correlated innovations assumed to underlie
equation 5, i.e. 
 [dW1 (t) ; exp (���) � dW2 (t)].

B.3.2 State covariance matrix

Q =

Z �t

0

� (�; s) 
 [� (�; s)]0 ds

=

Z �t

0

�
1 0
0 exp (��s)

� �
�21 ��1�2

��1�2 �22

� �
1 0
0 exp (��s)

�
ds

=

Z �t

0

�
�21 ��1�2 exp (��s)

��1�2 exp (��s) �22 exp (�2�s)

�
ds

=

�
�21s ���1�2 1� exp (��s)

���1�2 exp (��s) ��22 12� exp (�2�s)

������t
0

=

24 �21�t ��1�2

h
1
�
� 1

�
exp (���t)

i
��1�2

h
1
�
� 1

�
exp (���t)

i
�22

1
2�
[1� exp (�2��t)]

35
=

�
�21 ��t ��1�2 � F (�;�t)

��1�2 � F (�;�t) �22 � F (2�;�t)

�
B.3.3 Unconditional state covariance matrix

P1j0 =

Z 1

0

� (�; s) 
 [� (�; s)]0 ds

=

�
�21s ���1�2 1� exp (��s)

���1�2 exp (��s) ��22 12� exp (�2�s)

�����1
0

=

�
undef ��1�2

1
�

��1�2
1
�

�22
1
2�

�
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where the inde�nite integral evaluations use the results from the previous subsection.
Note that P1j0 (1; 1) = �2�=

�
1�  2

�
replaces the unde�ned expression �undef�to give

P1j0 as in equation 12.

B.3.4 Cholesky speci�cation for 


LL0 = 
�
�1 0

��2 �2
p
1� �2

� �
�1 ��2
0 �2

p
1� �2

�
=

�
�21 ��1�2

��1�2 �2�22 + �22 (��2 + 1)

�
=

�
�21 ��1�2

��1�2 �22

�

B.4 AF/NS(2) term premium functions

The AF/NS(2) forward term premium function can be obtained by subtracting the
AF/NS(2) forward rate expression excluding term premia (i.e. by setting 
0 = 0) from
the AF/NS(2) forward rate expression with term premia, i.e.:

FTP (�) = f (t; �)� [f (t; �) j
0 = 0]
= �1
0;1 � � + �2
0;2 � F (�; �)

The interest rate term premium function is then:

TP (�) =
1

�

Z �

0

FTP (�)d�

= �1
1 �
1

2
� + �2
2 �

1

�

�
1� 1

�
F (�; �)

�

B.5 The EA/AF/NS(2) model

There is almost certainly a straightforward way to establish the expressions for the
EA/AF/NS(2) model using a suitable modi�cation to the HJM framework. But, as-
suming that route exists, it has unfortunately escaped the investigations of the author.
However, it turns out that the EA/AF/NS(2) model is precisely a special case of

the Dai and Singleton (2002, hereafter DS) generic GATSM, as introduced in section
2, with two factors and limit of zero for one of the rates of mean reversion. The
derivations in the following subsections are therefore based on the generic GATSM with
the substitution of the EA/AF/NS(2) model parameters; i.e. X (t) = � (t), �0 = 0,
�1 = [1; 1]

0, KQ = diag[0; �], �0 = �
0, �1 = �
1, and KP = � = diag[0; �] + 
1.
Regarding the EA/AF/NS(2) forward rate and interest rate curves, the time-

invariant term premia associated with the constant market prices of risk 
0 remain
via the identi�cation �P = 0, as discussed at the end of section 6.2.1. The time-varying
term premia associated with matrix 
1 are captured in the state equation, as discussed
in the following subsection. The measurement equation for the EA/AF/NS(2) model
therefore remains identical to that of the AF/NS(2) model.
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B.6 EA/AF/NS(2) model Kalman �lter calculations

B.6.1 State equation

DS appendix A gives the following expression for the generic GATSM state equation:

Et [X (t+�t)] = exp (�KP �)X (t) + [I � exp (�KP �)] �P

Substituting the EA/AF/NS(2) parameters from the previous subsection into the
generic GATSM state equation expression gives exp (�KQ�t) = diag[1; exp (���t)] =
� (�;�t), exp (�1�) = exp (�
1�), and exp (�KP�t) = exp (���t). Therefore the
EA/AF/NS(2) state equation is:

Et [� (t+�t)] = � (�;�t) exp (�
1�) � (t)
= exp (���) � (t)

as in equation 14. Note that " (t+�t) is Gaussian as for the AF/NS(2) model.

B.6.2 State covariance matrix

Q =

Z �t

0

exp (��s) 
 exp (��0s)ds

=

Z �t

0

exp
�
�V DV �1s

�


�
exp

�
�V DV �1s

��0
ds

=

Z �t

0

V exp (�Ds)V �1

�
exp

�
�V DV �1s

��0
ds

=

Z �t

0

V

�
exp (�d1s) 0

0 exp (�d2s)

�
V �1


�
V �1�0 � exp (�d1s) 0

0 exp (�d2s)

�
V 0ds

= V

�Z �t

0

�
exp (�d1s) 0

0 exp (�d2s)

� �
u11 u12
u21 u22

� �
exp (�d1s) 0

0 exp (�d2s)

�
ds
�
V 0

= V

�Z �t

0

�
u11 exp (�2d1s) u12 exp (� [d1 + d2] s)

u21 exp (� [d1 + d2] s) u22 exp (�2d2s)

�
ds
�
V 0

= V

�
u11 � F (2d1;�t) u12 � F (d1 + d2;�t)

u21 � F (d1 + d2;�t) u22 � F (2d2;�t)

�
V 0

B.6.3 Unconditional state covariance matrix

P1j0 =

Z 1

0

exp (��s) 
 exp (��0s)ds

= V

�
u11F2 (2d1;1) u12F2 (d1 + d2;1)

u21F2 (d1 + d2;1) u22F2 (2d2;1)

�
V 0

= V

�
u11

1
2d1

u12
1

d1+d2

u21
1

d1+d2
u22

1
2d2

�
V 0

where the integral evaluations use the results from the previous subsection.
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B.7 EA/AF/NS(2) term premium functions

The time-varying component of the EA/AF/NS(2) forward term premium function
may be obtained using the time-varying component of the DS forward term premium
expression for the generic GATSM model.

B.7.1 DS discrete-time expression for forward term premium

DS appendix A obtains the following generic GATSM forward term premium expression
pnt using discrete increments of time �t:

pnt = fnt � Et [rt+n�t]

where:

fnt = �
1

�
log

P (t; [n+ 1]�t)

P (t; n�t)

and:

Et [rt+n�t] = �n + � 0nX (t)

�n = a1 + �0P [I � exp (�K 0
Pn�t)] b1

�n = exp (�K 0
Pn�t) b1

Note that a1 and b1 are constants associated with the one-period interest rate rt =
a1 + b1X (t). DS also notes that fnt is the one-period forward deliverable n-periods
forward, and Et [rt+n�t] is the conditional mean of the short rate.

B.7.2 DS continuous-time expression for forward term premium

In the reverse order of which they were introduced, take the limit of each quantity in
the previous section as �t! 0. Hence, lim�t!0 rt = r (t) = �0 + �01X (t) as de�ned in
section 2, so lim�t!0 b1 = �1 and lim�t!0 a1 = �0. Therefore:

lim
�t!0

�n = � (�) = exp (�K 0
P �) �1

lim
�t!0

�n = � (�) = �0 + �0P [I � exp (�K 0
P �)] �0

lim
�t!0

Et [rt+n�t] = �0 + �0P [I � exp (�K 0
P �)] �0 + �01 exp (�KP �)X (t)

Regarding the forward rate:

lim
�t!0

fnt = � @

@T
logP (t; T ) = f (t; T )

= �0 +
�
exp

�
�K 0

Q�
�
�1
�0
X (t)� @

@�
A (�)

where P (t; T ) and f (t; T ) are as outlined in section 2.
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The forward term premium expression therefore becomes:

lim
�t!0

pnt = p (t; �)

= f (t; T )� Et [rt+n�t]

= �0 + �01 exp (�KQ�)X (t)�
@

@�
A (�)

��0 � �0P [I � exp (�K 0
P �)] �0 � �01 exp (�KP �)X (t)

and the time-varying component of p (t; �) is:

p (t; �)� p (�) = �01 exp (�KQ�)X (t)� �01 exp (�KP �)X (t)

B.7.3 EA/AF/NS(2) forward term premium function

Substituting the EA/AF/NS(2) parameters and expressions from section B.5 and B.6.1
into the time-varying component of p (t; �) from the previous section gives:

p (t; �)� p (�) = f[1; 1] � (�;�t)g � (t)� [1; 1] exp (���) � (t)
FTP (t; �)� FTP (�) = [1; exp (���t)] � (t)� [1; 1] exp (���) � (t)

B.7.4 EA/AF/NS(2) interest rate term premium function

TP (t; �) =
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= TP (�) +
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�

�Z �

0
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�
1

�

n
� [�]�1 exp (���)

���
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� (t)
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�
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1

�
F (�; �)

�
� (t)� [1; 1] [�� ]�1 [I � exp (���)] � (t)

= TP (�) +
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1;
1

�
F (�; �)

�
� [1; 1] [�� ]�1 [I � exp (���)]

�
� (t)

Figure legends
Figure 1:
The 3�month and 15-year continuously compounding zero-coupon interest rate data

and the spread between those two rates.
Figure 2:
The estimated Level and Slope coe¢ cients and the model-implied short rate, i.e.

�1 (t), �2 (t), and r (t) = �1 (t) + �2 (t), for the AF/NS(2) model estimated over the
full sample using the 3-m/15-y data.
Figure 3:
Term premium functions as implied by the point estimates of the AF/NS(2) model

parameters in each sample, using the 3-m/15-y data and/or 3-m/30-y data as indicated.
Figure 4:
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The 5-year interest rate data and the 5-year term premium implied by the point
estimates of the EA/AF/NS(2) model parameters and state variables in each sample.
Sample A+B uses the 3-m/15-y data and sample B+C uses 3-m/30-y data, as indicated.
Figure 5:
The 5-year interest rate data and the 5-year term premium implied by the point

estimates of the EA/AF/NS(2) model parameters and state variables in each sample,
using the 3-m/15-y data and/or 3-m/30-y data as indicated.
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Notes
1Bank for International Settlements (2005) provides an overview of routine central bank use of

NS models and Coroneo, Nyholm and Vidova-Koleva (2008) notes their widespread use by �nancial
market practitioners. Diebold, Piazzesi and Rudebusch (2005) summarizes some recent time series
applications and more examples of NS model applications are referenced later in the present article.

2For example, from Christensen, Diebold and Rudebusch (2010) footnote 4: �Our strategy is to
�nd the a¢ ne AF model with factor loadings that match Nelson-Siegel exactly.�

3Dahlquist and Svensson (1996) originally advocated the suitability of NS models for monetary
policy purposes on these grounds. Diebold and Li (2006) extends the discussion to a dynamic setting.
Besides the examples noted in the present article, a more extensive list of applications is contained in
the working paper version.

4While Du¢ e and Singleton (1999) focuses on default risk, pp. 193-94 of that article notes that
other �nancial factors may also be treated in a similar manner.

5For example, all of the macro�nance models summarized in Rudebusch (2010) are speci�ed with
Gaussian innovations.

6Any other central measure of (�n0+1; : : : ; �N ) would su¢ ce for the exposition in this article. In
practice, � is an estimated parameter.

7That is, RNS (t; T ) = L (t) + S (t)
�
1�exp(���)

��

�
+ C (t)

�
1�exp(���)

�� � exp (���)
�
. Interestingly,

the original NS article, p. 475, also notes that �This model may also be derived as an approximation
to the solution in the unequal roots case by expanding in a power series in the di¤erence between the
roots.�The connection to the present article is coincidental however; from a mathematical perspective,
the second-order di¤erential equation assumed in NS happens to produce the same general solution as
a bivariate �rst-order di¤erential equation, which would be a minimal multifactor GATSM without an
allowance for stochastic dynamics. From an economic perspective, it would be theoretically untenable
to propose an N th -order di¤erential equation as the basis for a generic interest rate model.

8This assumes one component each to represent the near-zero and non-zero groups of eigenvalues
from the generic GATSM, which is arguably the minimal model one would want for empirical work.
An �over-parsimonious�NS model would be to use just a Slope component, in which case the AF
version would be the Vasicek (1977) model. The absolutely most parsimonious NS model would be
to use just a Level component. That is the basis for the traditional �duration� calculations from
Macauley (1938) that are often used to gauge the price-sensitivity of interest rate securities to a level
shift in the yield curve. The AF version would be the Vasicek (1977) model with the limit of a zero
mean-reversion parameter.

9That is, exp (��n�) ' 1��n� , and so
Pn0

n=1 qn (t) exp (��n�) '
Pn0

n=1 qn (t)� � �
Pn0

n=1 qn (t)�n.
10While it would be tempting to interpret time variation in � as representing time variation in

the mean-reversion matrix KQ, a generic GATSM that formally allowed for such �exibility would not
necessarily result in factor loadings reducible to the NS form using the Taylor approximation approach
as in section 2.
11The theoretical case for consistency was originally proposed in Björk and Christensen (1999) and

further established in Filopovíc (1999, 2000).
12I thank an anonymous referree for pointing out both the article and its implication in the context

of the present article. The practical relevance of AF terms for NS models has also been questioned in
Coroneo et al. (2008).
13All the results in this and the following subsection follow from straightforward but tedious calculus

and algebra. Full workings of all the results are contained in appendix B of the working paper version
of the article.
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14Hamilton (1994) chapter 13 provides appropriate background to this and general aspects regard-
ing the application of the Kalman �lter. Note that the parameter  was latter updated using the � (t)
coe¢ cients obtained from an initial maximum likelihood estimation, and another maximum likelihood
estimation was undertaken to provide the �nal estimates reported subsequently. However, the addi-
tional iterations made an immaterial di¤erence to the initial results. The estimates of �2�=

�
1�  2

�
were around 3 percentage points, which is quite di¤use (as would be expected from a near-unit-root
process).
15See the discussion in Hamilton and Wu (2010). That article and Joslin et al. (2010) have proposed

techniques to alleviate econometric issues associated with latent-factor GATSMs.
16The AF/NS(2) model and its Kalman �lter set-up is equivalent to the bivariate latent-factor

GATSM and set-up from Babbs and Nowman (1999), but with a limit of zero mean reversion for one
of the factors.
17This restriction could easily be modi�ed if one wanted to allow for the possibility of a pair of

complex congugate eigenvalues with positive real parts. From an economic perspective, that would
correspond to an expectation that innovations to the state variables would follow the product of a
sinusoidal cycle and an exponential decay (rather than just an exponential decay) when returning to
equilibrium.
18The estimated parameters �2� (�k) are not reported here and for the EA/AF/NS(2) model in the

following section to save space. The typical values were respectively 0.10 and 0.16 percentage points
for the 3-m/15-y and 3-m/30-y data.
19The point estimates are 1.77 percentage points (pps) for sample A 3-m/15-y, 1.60 pps for sample

B 3-m/30-y, and 1.49 bps sample C 3-m/30-y. The sample B 3-m/15-y point estimate is 2.47 pps,
but the results using the 3-m/30-y data should in principle be more reliable given they exploit the
additional information from longer maturities.
20Besides the di¤erences discussed, there are others that are not critical from an econometric per-

spective; i.e. RW assumes a lower-diagonal mean-reversion matrix for the state variables, and uses
maximum-likelihood estimation assuming no measurement errors for the interest rate data of two
selected maturities. The maturity span of the data is also di¤erent, from 1 month to 5 years.
21See, for example, Hull (2000) p. 570. The associated An (t; T ) terms have the form �a0�+A� (�),

and so have no in�uence on the factor loadings.
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Table 1:
NS models from a generic GATSM perspective

Representation of GATSM
NS model(5) Components �n ' 0(1) �n � 0(2) AF
DLY2008 2 1 [L] 1 [S] No
HJM1992 2 1 [L] 1 [S] Yes(3)

Variant 1 2 1 [L] 1 [S] Yes
NS1987 3 1 [L] 2 [S, C] No
Krip.2006 3 1 [L] 2 [S, C] Yes(3)

CDR2010 3 1 [L] 2 [S, C] Yes
Variant 2 3 1 [L] 1 [S1] 1 [S2] Y/N
Bliss1997(4) 3 1 [L] 1 [S1, �] 1 [�, C2] No
Variant 3 4 2 [L1, L2] 2 [S1, C1] Y/N
Sven.1995(4) 4 1 [L] 2 [S1, C1] 1 [�, C2] No
SF2004(4) 4 1 [L] 2 [S1, C1] 1 [�, C2] Yes
CDR2009 5 1 [L] 2 [S1, C1] 2 [S2, C2] Yes
Variant 4 6 2 [L1, L2] 2 [S1, C1] 2 [S2, C2] Y/N
Variant 5 6 3 [L1, L2, L3] 3 [S, C, C�] Y/N
Notes: (1) entry is the number of terms in the Taylor expansion around 0 followed
by the related NS component/s; (2) as for (1), but expansion is around � = mean
(�n0+1; : : : ; �N), or �1 = mean(�n0+1,: : :,�n1) etc. depending on the number of
groups assumed for the eigenvalues �n � 0; (3) innovations are assumed to be
independent; (4) without S2, the model cannot be a Taylor approximation of the
generic GATSM; (5) Diebold et al. (2008), Heath et al. (1992), Nelson and Siegel
(1987), Krippner (2006), Christensen et al. (2009), Bliss (1997), Svensson (1995),
Sharef and Filopovic (2004), Christensen et al. (2009), and NS model variants.

Table 2:
Parameter estimates for the AF/NS(2) model with 3-m/15-y data
Parameter Sample A+B Sample A Sample B

� 0.4994 (0.0083) 0.7028 (0.0140) 0.3931 (0.0082)

0;1 0.1428 (0.0029) 0.1255 (0.0033) 0.1514 (0.0046)

0;2 0.3079 (0.0130) 0.4659 (0.0223) 0.2223 (0.0169)
�1 0.0225 (0.0004) 0.0241 (0.0004) 0.0206 (0.0007)
�2 0.0339 (0.0014) 0.0367 (0.0018) 0.0295 (0.0021)
� 0.5729 (0.0307) 0.6728 (0.0427) 0.5257 (0.0403)

log L 17424.7 9706.7 8803.3
H0:A=B 910.5 [0.0000]
Note: (standard errors), [probabilities]
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Table 3:
Parameter estimates for the AF/NS(2) model with 3-m/30-y data
Parameter Sample B+C Sample B Sample C

� 0.3733 (0.0059) 0.3884 (0.0069) 0.3355 (0.0078)

0;1 0.1410 (0.0026) 0.1435 (0.0031) 0.1192 (0.0043)

0;2 0.2392 (0.0114) 0.2895 (0.0151) 0.0158 (0.0183)
�1 0.0172 (0.0002) 0.0172 (0.0002) 0.0191 (0.0003)
�2 0.0238 (0.0011) 0.0250 (0.0013) 0.0213 (0.0015)
� 0.3136 (0.0381) 0.4098 (0.0380) -0.3324 (0.0621)

log L 13621.6 10292.5 5095.4
H0:B=C 3532.4 [0.0000]
Note: (standard errors), [probabilities]

Table 4:
Estimates for EA/AF/NS(2) model with 3-m/15-y data
Parameters Sample A+B Sample A Sample B

� 0.5030 (0.0085) 0.7315 (0.0142) 0.3887 (0.0083)

0;1 0.1355 (0.0123) 0.0914 (0.0122) 0.1923 (0.0056)

0;2 0.2985 (0.0270) 0.5194 (0.0330) 0.1459 (0.0192)
�1 0.0227 (0.0006) 0.0193 (0.0006) 0.0276 (0.0007)
�2 0.0362 (0.0022) 0.0256 (0.0023) 0.0542 (0.0026)
� 0.3260 (0.2336) 0.1479 (0.5765) 0.4716 (0.1822)


1;11 0.3081 (0.4400) 0.0002 (0.0326) 1.1247 (0.7635)

1;12 -0.2610 (0.7073) 0.1892 (0.1555) -0.0235 (0.6909)

1;21 -0.3353 (0.4897) -0.1925 (0.0673) -0.0140 (3.7293)

1;22 0.2920 (0.4770) 0.0152 (0.2650) 0.4468 (0.8513)
log L 17429.3 9106.5 8835.7
H0:A=B 1025.7 [0.0000]
H0:
1=0 9.3 [0.0548] 59.6 [0.0000] 64.8 [0.0000]
Note: (standard errors), [probabilities]
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Table 5:
Estimates for EA/AF/NS(2) model with 3-m/30-y data
Parameters Sample B+C Sample B Sample C

� 0.3319 (0.0053) 0.3904 (0.0068) 0.3177 (0.0078)

0;1 0.1385 (0.0112) 0.1332 (0.0090) 0.1232 (0.0566)

0;2 0.2314 (0.0307) 0.3014 (0.0266) 0.2383 (0.0593)
�1 0.0182 (0.0003) 0.0169 (0.0003) 0.0219 (0.0008)
�2 0.0236 (0.0008) 0.0240 (0.0007) 0.0217 (0.0053)
� 0.0317 (0.2371) 0.1695 (0.2201) -0.9920 (1.5593)


1;11 0.2776 (0.1245) 0.1739 (0.1823) 6.8665 (6.0884)

1;12 -0.0516 (0.2160) -0.0565 (0.3121) 0.8017 (1.8018)

1;21 -0.2274 (0.1165) -0.2182 (0.0980) 1.7737 (1.4409)

1;22 0.0701 (0.1153) 0.1092 (0.1693) 0.2415 (0.3182)
log L 14982.3 10294.5 5180.2
H0:B=C 984.8 [0.0000]
H0:
1=0 2721.3 [0.0000] 4.0 [0.4066] 169.7 [0.0000]
Note: (standard errors), [probabilities]
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