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Abstract 

The Singapore Cohort Study of the Risk Factors of Myopia (SCORM) is used in this 

paper to assess determinants of childhood IQ and changes in IQ. This longitudinal 

data set, collected from 1999, includes a wealth of demographic, socioeconomic, and 

prenatal characteristics. Using ordered and multinomial logit analysis, we find 

mother’s education to be a consistent and key determinant of childhood IQ. We also 

find that father’s education and school quality are key drivers for increasing IQ levels 

above the average sample movement. 
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1. Introduction and Background 

 

There is a substantial and growing literature that investigates the pre- and post-natal 

determinants of intelligence and the associated later life-cycle health outcomes.  

These studies can essentially be split into three broad categories.  One group 

investigates pre-natal determinants such as birth weight 1-13, gestational age 7, 14, and 

birth order 15, 16.  A second group looks at post-natal determinants and/or interventions 

that may moderate or amplify pre-natal determinants.  Included in this research cluster 

are early intervention studies and those that emphasize the socio-economic interfaces 
15, 17-27 and/or childhood measures of intelligence 16, 28-36.  The final group investigates 

whether these effects continue into adulthood and how they manifest themselves in 

later health outcomes 3, 13, 29-31, 35-39.  This final group is growing rapidly as more 

longitudinal studies become available, including the Singapore Cohort Study of the 

Risk Factors for Myopia (SCORM) used in this work.   

 

Low levels of cognitive ability as a child are associated with numerous negative 

health and social outcomes later in life16. There is an extensive debate regarding the 

significant determinants of childhood intelligence, including the relative roles of 

individual characteristics of the child, household and socio-economic factors, etc. 

Such research is important in designing moderating interventions (for example, 

policies that are aimed at encouraging mothers to improve their nutrition during 

pregnancy to reduce the probability of low birth weight prevalence) and consequently 

managing life-cycle health costs from both an individual and public health system 

perspective. 

  

While numerous studies have investigated a range of pre and post natal determinants 

of childhood IQ, this research is distinctive in that the sample is based on two 

extremes of schooling quality. Half of data was collected from a school ranked in the 

bottom twenty in Singapore and the remaining participants were from schools ranked 

in the top twenty. This provided a diverse range of households and consequently a 

more enriched empirical analysis. Additionally, besides initial exploratory regression 

analysis that considers the various determinants of childhood IQ at age 11, one of the 

contributions of this study is to empirically examine factors that produce large shifts 

in IQ (specifically looking at drivers of movement between IQ quintiles). Logistic 



regression is applied to ascertain factors influencing significant shifts in childhood IQ, 

and consequent to this, multinomial logit models are employed to determine 

characteristics that impact whether the movement in IQ is higher or lower than the 

average sample movement.  

 

The remainder of this paper is organized as follows: Section 2 outlines the data 

sourced from Singapore and summarizes the econometric strategies undertaken in this 

study; and Section 3 provides the results and consequent discussion.    

 

2. Methodology 

 

This study uses SCORM data, which was initially collected in 1999 in two schools 

located in the northeastern and southeastern parts of Singapore.  In 2001 it was 

extended to include one school located in the west.  The schools were selected based 

on prior National Examination results with the northeastern school ranked among the 

bottom twenty schools and the southeastern and western schools both being ranked 

among the top twenty schools 40.  The data set consists of comprehensive information 

on the perinatal and socio-economic situations at the time of birth and also when IQ 

was tested at age 11.  There was some additional perinatal data available from the 

southeastern school (top twenty school), such as birth order, breast fed, mother’s work 

status, etc.  Further details on this data set are reported elsewhere 40-42.   

 

Three separate types of analyses were undertaken in this research that will each be 

reported in sequence.  Initially, IQ measured at age 11 was regressed against a range 

of individual, household/socio-economic and school determinants consistent with the 

study undertaken by Cesur & Kelly6.  IQ was then grouped into five categories 

(quintiles) and an ordered logistic regression model run.  Both of these analyses were 

run on the full sample and the half sample that had the additional perinatal variables 

from the southeastern school.  Finally a multinomial logit model was run to produce 

the drivers of movement between IQ quintiles; in particular, whether the movement 

was higher or lower than the average sample movement.  

 

 

 



3.  Results 

 

3.1 IQ Regression 

Initially, a simple OLS regression was run across the full sample of 662 individuals, 

with the dependent variable of childhood IQ at age 11. The independent variables 

included a range of child, household and school characteristics (as shown in Table 1). 

The same regression was also re-run for the half sample that had the additional data.  

The school variable was omitted from this half sample analysis as the additional data 

was only collected from participants enrolled at one of the schools.  The results from 

both of these regressions are presented in Table 1. 

 

Table 1:  Determinants of IQ age 11 
Variables  IQ Full Sample IQ Half Sample  

 
Individual characteristics  

  

Birth weight  -0.006  (0.007)  -0.003  (0.008)  
Birth weight squared   0.000  (0.000)   0.000  (0.000)  
Male  -0.300 (0.872)  -1.205  (1.161)  
Breast fed  -   1.007  (1.197)  
Birth order  -  -0.936  (0.907)  
Chinese   2.546  (1.697)   3.676*  (2.185)  
Malay  -2.771  (1.88)  -1.156  (2.644)  
 
Household characteristics  

  

Total combined income   1.391* (0.784)   0.504  (1.069)  
Father education  0.84  (0.596)   0.594  (0.803)  
Mother education  2.078*** (0.637)   2.709*** (0.882)  
Mother age  -0.372  (0.872)  -0.197  (1.387)  
Mother age squared  0.005  (0.014)   0.004  (0.023)  
Number of children  -  -1.147  (0.807)  
Mother working  -  0.999  (1.34)  
 
School characteristics  

  

School dummy  
 

5.878***  (0.982)  -  

Observations  662  320  
R squared  0.233  0.178  
***, **, and * denotes significance at 1%, 5%, and 10% levels, respectively. 
 

From the results presented in Table 1 it was found that the only determinant that was 

consistently significant across samples was Mother’s education.  School was also 



significant and importantly positive in the full sample.  This result is expected as the 

school dummy is 1 if enrolled in a top twenty school (i.e. the south eastern and 

western schools), and 0 otherwise. Weakly significant results hold for income and 

ethnicity. Specifically, in the full sample, total combined household income was 

positive and significant at the 10% level, and a similar result was found for being 

Chinese (relative to ethnicities other than Malay) in the half sample regression. 

Finally, while other determinants are not statistically significant in Table 1, many are 

in the direction expected. For example, the positive impact of being breast fed and the 

higher the father’s education, a negative impact the higher the birth order, and a U-

shaped pattern in terms of the impact of Mother’s age. 

 

3.2 Logistic Regression of IQ Quintiles 

Of particular interest to this study was the impact of possible interventions and 

consequently the need to model the transition between life stages.  Unfortunately, IQ 

was only collected at one point in time for children in this Singapore dataset, but 

given the early results where Mother’s education was found to be strongly and 

consistently significant, this motivates its use as a proxy for cognition at birth.   

 

Within the dataset Mothers’ education is split into 5 categories: No formal education, 

primary, secondary, pre-degree/diploma, and university.  Therefore it was sensible to 

split IQ into 5 categories too.  These categories are based on the standard 

interpretation of IQ and broadly matching those interpretations to the Mother’s 

education classifications. This resulted in the following five groups (standard 

interpretations of IQ to intelligence levels are shown in parenthesis): 

 

1 if IQ < 90   (below average) 

2 if 90<=IQ<=99  (low normal or average) 

3 if 100<=IQ<=109  (high normal or average) 

4 if 110<=IQ<=119  (superior) 

5 if IQ=>120   (very superior) 

 

Changes in IQ from birth (using mother’s education categories as the proxy) to age 11 

are analysed with the use of a multinomial logit model in Section 3.3 of this paper. 

Before that, it is useful to first apply ordered logistic regression. This approach is 



appropriate given the constructed ordinal and categorical nature of the dependent 

variable IQ. Additionally, the main advantage of this approach, as opposed to OLS 

and making use of continuous information on IQ (as shown in the regression in Table 

1), is that it allows easily interpretable odd-ratios to be calculated. These can be used 

to understand the odds of moving from one IQ category to another. The general form 

of the ordered logit model is: 

 
iii uXY += 'β   Ni ,...,2,1=         (1) 

 

with the ordered responses, Y, being the five IQ categories defined above.  

 

The ordered response model is defined as: 
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where 5,...2,1=j , −∞=0α , jj αα ≤−1 , ∞=mα  and F is the cumulative distribution 

function of the logistic distribution )))(exp(1/(1 'βα XF jj −−+= . 

 

The underlying IQ function for estimation with the full sample can be specified as: 
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The IQ function for estimation with half the sample (with additional perinatal 

variables) can be specified as: 

 

u

IQ
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Results including coefficients and odds ratios43 for both the full sample and the part-

sample are given below in Table 2. 

 
Table 2: Logistic regression analysis of IQ quintiles 
Variables  Coefficients Odds-Ratio Coefficients Odds-Ratio 
 (Full sample) (Half Sample) 
Individual 
characteristics  

    

Birth weight  -0.001  
(0.001)  

1.000  -0.000  
(0.001)  

1.000  

Birth weight 

squared  
0.000  
(0.000)  

1.000  0.000  
(0.000)  

1.000  

Male  0.087  
(0.150)  

1.091  0.012  
(0.227)  

1.012  

Breast fed  -  -  0.274  
(0.232)  

1.316  

Birth order  -  -  -0.252  
(0.176)  

0.778  

Chinese  0.331  
(0.283)  

1.393  0.602  
(0.416)  

1.827  

Malay  -0.373  
(0.313)  

0.689  -0.172  
(0.505)  

0.842  

Household 
characteristics  

    

Total combined 
income  

0.189  
(0.135)  

1.208  0.158  
(0.204)  

1.171  

Father education  0.098  
(0.102)  

1.102  -0.008  
(0.156)  

0.992  

Mother education  0.458***  
(0.114)  

1.581***  0.619***  
(0.179)  

1.857***  

Mother age  -0.010  
(0.146)  

0.989  -0.072  
(0.268)  

0.931  

Mother age squared  0.000  
(0.002)  

1.000  0.002  
(0.004)  

1.002  

Number of children  -  -  -0.180  
(0.157)  

0.835  

Mother working  -  -  0.021  
(0.259)  

1.021  

School 
characteristics  

    

School dummy  1.102***  
(0.171)  

3.011***  -  -  

   
Observations  662  662  320  320  
Pseudo R squared  0.102  0.102  0.081  0.081  
***, **, and * denotes significance at 1%, 5%, and 10% levels, respectively. 
 



Once again it is Mother’s level of education that is strongly significant within both the 

full sample and part-sample.  This strong effect could be accounted for by the 

environment and learning support provided by a better educated mother.  This is also 

entirely consistent with health literature that considers the home environment 15, 23, 27, 

32. Interestingly, in contrast to other studies that found that birth weight was a 

significant determinant of childhood IQ 4-6, this study did not find that was the case. 

An odds-ratio of 1 indicates the irrelevance of birth weight in this sample. Similarly in 

the half sample, although an odds ratio of 1.316 for being breast fed indicates that 

children breast fed (relative to those not) are 1.3 times more likely to have a higher 

IQ, this is not statistically significant.   

 

Besides mother’s education, the only other significant determinant of childhood IQ 

was schooling quality. This is reflective of the Singaporean education system and the 

selection of the participant schools.  The schools were chosen on their rankings in 

prior National Examination results therefore it would be expected that the school 

would reflect a number of confounding variables such as measures of the socio-

economic status of the family including parental education levels, income, housing 

quality and home environment.  This explanation is supported by omitting the school 

dummy from the analysis (results not reported here), and finding that father’s level of 

education and income both then become significant suggesting that the school 

variable is possibly indirectly capturing these effects.   

 
3.3 Multinomial logit model 
 
This model investigates the likelihood of moving across IQ quintiles between birth 

and age 11. As already explained in the previous section, mother’s education level 

presents as a good proxy for cognition at birth and hence is not included as an 

independent variable in the following analysis. Preliminary inspection of IQ 

movements in our sample show that most children move up atleast one quintile 

between birth and age 11. Therefore, rather than using multinomial logit analysis to 

capture the drivers of movements up, down or no change in IQ quintile, we focus on 

movements above average and below average. This means that the average sample 

movement was the base outcome. 

 



Additionally, given the small sample size for mother’s education level of 1, and the 

limited room for movement for mother’s education levels 4 and 5, we report results 

only for mother’s education levels 2 and 3. For these two starting points, Table 3 

presents the multinomial logit results showing determinants of movements in IQ 

above and below the average sample movement. 

 
Table 3: Movement in IQ quintile different from baseline 
 Mother education = 2 Mother education =3 
Above average   
Individual characteristics    
Birth weight  -0.001 (0.002)  0.001 (0.003) 
Birth weight squared   0.000 (0.000) -0.000 (0.000) 
Male  -0.136 (0.484)  0.192 (0.256) 
Chinese  -0.332 (0.873)  0.413 (0.553) 
Malay  -0.536 (0.910) -0.198 (0.641) 
Household 
characteristics  

  

Total combined income   0.568 (0.599) -0.036 (0.215) 
Father education   0.930 (0.423)** -0.110 (0.163) 
Mother age  -0.205 (0.452) -0.011 (0.285) 
Mother age squared   0.004 (0.008)  0.000 (0.005) 
School characteristics    
School dummy   1.157 (0.555)**  1.027 (0.318)*** 
   
   
Below average   
Individual characteristics    
Birth weight   0.016 (0.008)**  0.001 (0.004) 
Birth weight squared  -0.000 (0.000)** -0.000 (0.000) 
Male   0.425 (0.571)  0.225 (0.333) 
Chinese  -0.586 (1.138) -0.449 (0.600) 
Malay   0.819 (1.137) -0.313 (0.657) 
Household 
characteristics  

  

Total combined income   0.184 (0.726) -0.460 (0.300) 
Father education  0.342 (0.516) -0.360 (0.223)* 
Mother age  -0.139 (0.528)  0.018 (0.341) 
Mother age squared   0.003 (0.009)  0.000 (0.006) 

 
School characteristics    
School dummy   0.723 (0.671) -1.270 (0.358)*** 
   
Observations 171 331 
Pseudo R squared 0.154 0.106 
***, **, and * denotes significance at 1%, 5%, and 10% levels, respectively. 
 
 



Discussion 

The results from this analysis reinforce those found in the earlier regressions.  

Father’s education has a positive and significant impact.  The higher the father’s 

educational attainment, the more likely children are to move above the average rise in 

IQ rankings (as shown in the mother education = 2 column), and conversely, the 

higher the father education, the less likely the child is to make a movement below the 

average (as shown in the mother education = 3 column).  This result is potentially 

confounded by the father’s level of education often being related to mother’s 

education level if an assortive matching model is used 45 and also to income.  

However, given the nature of our model set up, we have already controlled for 

mother’s education. 

 

School remains strongly significant.  Sending your child to a good school appears to 

be of paramount importance, in terms of enabling them to move beyond the average 

shift in IQ of their peers.  Being at a top 20 school results in the child being more 

likely to move more than the average rise in IQ (as shown in the mother education = 2 

column), and conversely, being at the top 20 school results in the child being less 

likely to move below the average (as shown by the negative and significant 

coefficient in the mother education = 3 column).  

 

The last important variable is birth weight. In the earlier regression analyses (in 

Section 3.1 and 3.2) this was not found to be important, contrary to findings in past 

research.  In the multinomial logit however it does become important and the way it 

does is consistent with other studies.  There is no evidence of birth weight changes 

impacting on above average movement but a higher birth weight does make it more 

likely for the child to move below the average shift in IQ.  Combining this result with 

the significant, but infinitesimally small negative coefficient on birth weight squared, 

indicates an inverted U shaped effect of birth weight.  This is consistent with the 

studies investigating whether high birth weight matters as well as low birth weight 6.  

 

Overall, this analysis shows there are really only 3 important drivers of changes in 

childhood cognitive ability in this Singaporean sample – parental education, school 

attended, and to a small extent – birth weight. 
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