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Abstract 
This paper analyses an entry timing game with uncertain entry costs. Two firms 
receive costless signals about the cost of a new project and decide when to invest. We 
characterize the equilibrium of the investment timing game with private and public 
signals. We show that competition leads the two firms to invest too early and analyse 
collusion schemes whereby one firm prevents the other firm from entering the market. 
We show that, in the efficient collusion scheme, the active firm must transfer a large 
part of the surplus to the inactive firm in order to limit pre-emption. 
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1 Introduction

This paper studies investment decisions by two firms which compete to enter
new markets or develop new products. Firms are uncertain about the cost of
the investment. Before investing, they gradually acquire information about
the entry cost on the market. After investment, they have the opportunity
to collude by compensating one of the two firms for not entering the market.

The analysis of this paper can be applied to two different settings. When
firms contemplate entering a new geographical market, they conduct market
research to learn about the demand, and investigate various production and
distribution alternatives. The decision to enter or not a foreign market is
only taken after months of investigation. Furthermore, it is not uncommon
that two rival firm join forces by creating a joint subsidiary in order to access
foreign markets. When firms are engaged in a race to obtain an innovation,
they often starts building small prototypes, or running small scale experi-
ments before investing in a large scale research project. Once a firm has
started developing a new product, the race will often be concluded with a
merger, with one of the two firms acquiring the research output of the other
before the new product reaches the market.

In this paper, our objective is to better understand the interplay between
learning and preemption in entry timing games, and to study collusive mech-
anisms between two firms engaged in the development of new products or
the access to new markets. Do firms invest too early or too late? How does
the fact that signals are public or private affect the entry timing decisions?
When do simple compensating payment allow firms to achieve the collusive
outcome? Which share of the surplus should accrue to the two firms in the
collusive transfer scheme? When is the optimal time to implement coopera-
tion?

In order to answer these questions, we construct a model where firms
initially ignore the fixed cost of entry into a new market. They gradually
acquire signals about their entry cost through research and experimenta-
tion. (We consider here the case of private values, where the entry costs are
independently distributed across firms.) Upon observing their signals, and
forging beliefs about the signals received by their competitors, firms decide
when to enter. If both firms enter, they collect duopoly profits on the mar-
ket; if only one firm enters, it will receive monopoly profits. We suppose that
firms make positive profits as duopolists only when their entry cost is low,
and make positive expected profits as monopolists when they ignore their
costs. We compute the cooperative outcome, where the two firms choose
entry timing in order to maximize joint profits, and the outcome of the non-
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cooperative game of entry timing played by the two firms both when the
signals are public and private. We analyze how the two firms can implement
a collusive transfer scheme by which the firm which has entered the market
compensates the other firm for not entering.

Our first result is that competition leads firms to invest excessively early,
and that excess momentum is higher when signals are private than public. We
consider situations of project selection, where it is optimal for the two firms to
wait until they learn that one of the two projects is profitable before entering
the market. For some range of parameters, competition leads the two firms to
invest immediately in order to preempt entry by the rival firm. Furthermore,
there exists a parameter region for which firms choose to wait when signals
are public, but preempt at a finite time when signals are private. With
private signals, firms ignore whether their competitor has abandoned the
race or not. As time passes, firms become more and more convinced that the
other firm has dropped from the race (no news is good news). Hence, at some
finite date, firms become sufficiently confident that the other firm will not
enter the market, and choose to enter before they learn their entry cost. This
equilibrium is reminiscent of the preemption equilibrium in the innovation
race studied by Fudenberg and Tirole (1985) and Grossman and Shapiro
(1987). However, in our model, preemption occurs due to the endogenous
dynamics of beliefs, whereas in their model, preemption results from the
exogenous dynamics of the innovation cost.

Our second set of results deals with compensating payment schemes im-
plemented to achieve collusion. Competing firms face three sources of in-
efficiency: (i) market competition, (ii) duplication of entry costs and (iii)
excess momentum in market entry. In order to reach the collusive outcome,
they may implement compensating payments paid by one firm to the other
so that it stays out of the market. We show that collusion is possible only
when a firm enters the market sufficiently early. After a finite date, collusion
becomes impossible as the active firm becomes convinced that its rival has
dropped from the market and is unwilling to compensate it at a level which
would prevent entry. We also show that in order to achieve efficient entry
timing decisions, the monopoly surplus should be shared between the active
and inactive firms in an equitable fashion. The share of the active firm should
be large enough to give it an incentive to invest immediately after it learns
its cost. The share of the inactive firm should be large enough so that firms
have no incentive to enter early in order to preempt their rival.

Our analysis thus sheds light on situations of project selection, where
two independent firms run parallel research programs and a third party can
enforce a cooperative scheme to prevent inefficiencies. The third party can

2



for instance be a venture capitalist or a granting agency running competing
research project, the editor of an academic journal or organizer of a scientific
conference who discovers that two teams of scientists are working on the same
problem. Our analysis suggests that selection should neither occur too early
(before the profitabilities of the projects are known), nor too late (when the
firms have become very optimistic about their prospects given that the other
firm has not entered). It also shows that the share of the surplus transferred
to the firm which is not selected should neither be too large (in which case
the selected firm may have an incentive to delay the research project) nor too
small (the higher the payoff transferred to the firm which is not selected, the
smaller the gap between the payoffs of the leading and trailing firms, which
reduces inefficiencies due to excess momentum.)

Our analysis is rooted in the literature on patent races in continuous
time pioneered by Reinganum (1982) and Harris and Vickers (1985). The
first extensions of patent races allowing for symmetric uncertainty are due
to Spatt and Sterbenz (1985), Harris and Vickers (1987) and Choi (1991).
Models of learning in continuous time with public information have been
studied by Keller and Rady (1999) and Keller, Cripps and Rady (2005) in
the more complex environment of bandit problems. Rosenberg, Solan and
Vieille (2007) and Murto and Valimaki (2010) analyze general stopping games
with common values where players’ payoffs does not depend on the actions of
other players. By contrast, we consider the simpler setting of private values
but consider strategic interaction between the players after entry.)

The model of preemption we consider is formally identical to Fudenberg
and Tirole (1985)’s models of technology adoption with preemption. Innova-
tion timing games which can result either in preemption or in waiting games
have been studied by Katz and Shapiro (1987). Hoppe and Lehmann-Grube
(2005) propose a general method for analyzing innovation timing games. Fu-
denberg and Tirole (1985)’s model has been extended by Weeds (2002) and
Mason and Weeds (2010) to allow for stochastic values of the technology.
However, none of these models allows for private information. The closest
papers to ours are the recent papers by Hopenhayn and Squintani (2010)
on preemption games with private information and Moscarini and Squin-
tani (2010) on patent races with private information. Moscarini and Squin-
tani (2010) analyze a common values problem, where agents learn about the
common arrival rate of the innovation, whereas we analyze a private values
problem in which agents learn their individual market entry cost. Accord-
ingly, our model displays very different results. Even though Hopenhayn and
Squintani (2011)’s model is more general than ours in many aspects, it only
covers situations where agents receive positive information over time. In our
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model, research teams may either receive positive or negative signals about
the profitability of the research project, which impacts the results and so that
the insights of Hopenhayn and Squintani (2011) do not directly apply. Co-
operation among research teams with private information has been studied
in a mechanism design context by Gandal and Scotchmer (1993). Goldfain
and Kovac (2005) analyze the optimal design of contracts by a venture cap-
italist running two parallel projects. Gordon (2011) and Akcigit and Liu
(2011) study patent races with private signals, focussing on the incentives to
disclose information to competitors.

The rest of the paper is organized as follows. We introduce the model
and describe the collusive benchmark in Section 2. Section 3 contains our
core analysis of entry timing games with public and private signals. Section
4 discusses compensating payments and market monopolization. We analyze
consumer surplus and extend the model to allow for stochastic profits in
Section 5. Conclusions and directions for future research are given in Section
6. All proofs and derivations are collected in the Appendix.

2 The Model

2.1 Firms, new markets and entry costs

We consider two firms which may invest in order to enter a new market,
launch a new product or exploit a new process. The monopoly and duopoly
profits obtained after investment are given by πm and πd with πm > 2πd. The
entry cost to the new market is uncertain, and can either take a high or a
low value, θi ∈ {θ, θ}. We consider a model of private values, where costs are
independently distributed across the two firms. For simplicity, we suppose
that the two values of the cost are equiprobable and denote the expected

value of the entry cost by θ̃ = θ+θ
2

.
During the experimentation phase, each firm receives a perfectly informa-

tive signal about its entry cost according to a Poisson process with intensity
µ. Hence, the probability that a firm receives a signal during the interval
[0, t] is 1 − e−µt. With probability 1

2
the firm learns that it is of high type,

and with probability 1
2
, it learns that it is of low type. We assume that

the Poisson processes generating signals to the two firms are independent.
Given our assumption of private values, independence furthermore means
that the signals received by the two firms are independent. We let r denote
the common discount rate of the two firms.

We assume that high cost firms never have an incentive to invest, even
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if they receive monopoly profit. Low cost firms always have an incentive
to invest even if they receive duopoly profit. When entry cost remains un-
known, firms have an incentive to invest as monopolists but not as duopolists.
Formally,

Assumption 1

θ ≤ πd ≤ θ̃ ≤ πm ≤ θ. (1)

2.2 Entry timing and strategies

At any date t = 0,∆, 2∆, ..., both firms choose whether to enter the market.
(We will analyze situations where the time grid becomes infinitely fine, and
∆ converges to zero.) If firm i enters the market, it pays the fixed cost θi and
starts collecting monopoly (or duopoly) profits immediately. Investments to
enter the market are immediately observed by the other firm.

Given Assumption 1, it is a dominant strategy for a high cost firm not
to invest. Hence, the only relevant choices are choices made by a firm which
learns that its cost is low, or by a firm which still ignores its entry cost. A
strategy specifies, after every possible history, a pair of probabilities with
which the firm invests when it learns that its cost is low and when it ignores
its cost. We consider perfect equilibrium strategies which maximize the firm’s
expected discounted payoff after every possible history.

2.3 Collusive benchmark

We compute the expected profit of a single firm experimenting on the market
as:

VO =
µ

2(µ+ r)
(πm − θ) .

In order to compute the collusive benchmark, we note that the firms have
three options. First, they can choose to enter immediately, and earn an
expected profit of πm − θ̃. Second, they can wait to draw one signal, invest
immediately in the project if the cost is low, and invest immediately in the
other project (without knowing its cost) if the cost is high, resulting in an
expected profit:

VC1 =
2µ

2µ+ r

(
πm −

θ + θ̃

2

)
.
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parameter region optimal cooperative choice

θ̃ < πm − 2VO invest immediately

πm − 2VO ≤ θ̃ < πm − VO invest immediately after receiving the first signal

πm − VO ≤ θ̃ invest only after receiving a low-cost signal

Table 1: Optimal collusive choice

Third, they can wait until they learn whether one of the firm has a low cost
and only invest in a low cost firm to obtain an expected profit:

VC2 =
µ

2µ+ r
(πm − θ)

(
1 +

µ

2 (µ+ r)

)
.

Table 1 shows the optimal collusive strategy. After drawing a first nega-
tive signal, firms prefer to wait until they learn whether the second firm has
a low cost if and only if the benefit of waiting for one signal exceeds the cost,
i.e. V0 ≥ πm − θ̃. Firms prefer to draw one signal than invest immediately if
and only if 2V0 ≥ πm − θ̃. Hence, the parameter space can be divided into
three regions, where the optimal collusive choice corresponds to each of the
alternatives.

3 Entry timing

We now analyze the game played by two competing firms. We first compute
the profits of the leader and follower firms. Suppose that one firm (the leader)
invests first. The second firm (the follower) will only follow suit if it learns
that its cost is low. Hence the expected value of the follower is given by

VF =
µ

2(µ+ r)
(πd − θ).

The leader thus extracts monopoly profit as long as the other firm has not
entered, and duopoly profits after entry of the follower. The expected value
of the leader is thus given by:

VL = πm −
µ

2(µ+ r)
(πm − πd).
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3.1 Entry timing with public signals

In this subsection, we suppose that the signals received by the two firms
during the experimentation phase are public. Proposition 1 characterizes the
equilibrium of the entry timing game.

Proposition 1 In the entry timing game with public information, a firm
which learns that its cost is low invests immediately. If VL − θ̃ > VF , pre-
emption occurs and (i) a firm which ignores its cost invests with positive
probability at any date t = 0,∆, ... whenever the other firm has not invested
and (ii) a firm invests immediately after it learns that the other firm has a

high cost. If VL− θ̃ < VF , firms do not enter unless they learn that their cost
is low.

Proposition 1 shows that the entry timing game is either a preemption
game (when VL − θ̃ > VF ), or a waiting game (when VL − θ̃ < VF ). Notice
that VL − VF = πm − V0. Hence, there is a parameter region (πm − 2VO ≤
θ̃ < πm − VO) where firms prefer to wait in the collusive benchmark but
invest immediately in the noncooperative game. Firms invest too early in
the competitive entry game, and competition results in excess momentum.

3.2 Entry timing with private signals

When signals are private, firms do not learn the cost of their competitor.
Each firm holds beliefs γt(θ) about the cost of its rival. These beliefs evolve
over time given the strategies and the observation of investments. In order
to compute the beliefs, we let G(t, τ) denote the probability that a firm
which learns that its cost is low at date τ invests at t ≥ τ , with g(t, τ)
the instantaneous probability. We also let h(t) denote the instantaneous
probability that a firm which ignores its cost invests exactly at date t. Using
Bayes’ rule, the beliefs at period t are then given by:

γt(θ) =

∫ t
0
[1−G(t, τ)]µe−µτdτ

A(t)
,

γt(θ) =
1− e−µt
A(t)

,

γt(θ̃) =
2[e−µt −

∫ t
0
e−µτh(τ)dτ ]

A(t)
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where

A(t) =

∫ t

0

[1−G(t, τ)]µe−µτdτ + 1− e−µt + 2[e−µt −
∫ t

0

e−µτh(τ)dτ ].

We first establish that a firm which learns that its cost is low has an
incentive to invest immediately:

Lemma 1 In the entry timing game with private signals, a firm which learns
that its cost is low has an incentive to enter immediately.

By Lemma 1, if a firm has not invested at date t, it has either learned
that it has a low cost, or has not received a signal. This enables us to simplify
the beliefs:

γt(θ) = 0,

γt(θ) =
1− e−µt

1 + e−µt − 2
∫ t

0
e−µτh(τ)dτ

,

γt(θ̃) =
2[e−µt −

∫ t
0
e−µτh(τ)dτ ]

1 + e−µt − 2
∫ t

0
e−µτh(τ)dτ

.

It is easy to check that the belief that the other firm has learned that
it has a high cost, γt(θ), increases over time. The expected profit of a firm
which is the first to invest at date t is given by:

VL(t) = γt(θ)πm + γt(θ̃)VL = πm − γt(θ̃)
µ

2(µ+ r)
(πm − πd).

Because γt(θ) is increasing over time, the value of the leader is also in-
creasing. No news is good news: as time passes, each firm becomes more
convinced that the other firm has received a negative signal, and becomes
more optimistic about its own prospects. The value of the leader increases
from VL at t = 0 to πm when t goes to infinity. The value of the follower, VF ,
remains independent of time. Figures 1, 2 and 3 illustrate the three possible
régimes, ranking the values of the leader and the follower, as a function of
the parameters of the model.

Cases 1 and 3 correspond to the preemption and waiting cases in the tim-
ing game with public signals. Case 2 exploits the fact that beliefs evolve over
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Figure 1: Case 1: VL − θ̃ > VF
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Figure 2: Case 2: πm − θ̃ ≥ VF ≥ VL − θ̃
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VL − �θ

VF
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Figure 3: Case 3: VF > πm − θ̃
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time, and describes a new situation where preemption occurs at a finite time.
In this case, the entry timing game is formally identical to the innovation
game studied by Fudenberg and Tirole (1985). The expected payoff of the
leading firm is initially lower than the expected payoff of the following firm,
but is increasing over time and eventually becomes higher than the payoff of
the following firm. As in Fudenberg and Tirole (1985), the unique subgame
perfect equilibrium results in rent equalization: the leader invests exactly
at the time where the expected payoffs of the leader and follower coincide,
VL(t̃)− θ̃ = VF . Formally,

Theorem 1 In the entry timing game with private signals, a firm which
learns its cost invests immediately. If VL− θ̃ > VF , preemption occurs at the
beginning of the game and both firms invest with positive probability at time
0. If πm − θ̃ ≥ VF ≥ VL − θ̃, in a symmetric equilibrium, rents between the
leader and the follower are equalized and each firm invests with probability
1
2

at time t̃ such that: VL(t̃) − θ̃ = VF . If VF > πm − θ̃, firms do not enter
unless they learn that their cost is low.

Theorem 1 shows that excess momentum is higher with private signals
than with public signals. In one configuration of the parameters, when
πm − θ̃ ≥ VF ≥ VL − θ̃, firms wait to learn their costs in the collusive bench-
mark and when signals are public, but invest at finite time t̃ when signals are
private. This result stands in contrast to Hopenhayn and Squintani (2011)
who show that preemption is stronger with public signals than with private
signals. This difference is easily explained. In Hopenhayn and Squintani
(2011), new information can only signal an improvement in the competi-
tive situation of the firm, so that competition is fiercer when information
is public. In our model, private information can only signal a degradation
in the competitive situation of the firm, so that competition is fiercer when
information is private.

We now focus on Case 2 and perform a comparative static analysis of
the effect of changes in the parameters of the model on the preemption time
t̃. The preemption time is implicitly defined as the unique solution to the
equation:

VL (t)− θ̃ − VF = 0. (2)

By implicit differentiation of equation (2), we obtain the comparative
statics displayed in Table 2.

10



parameter comparative static
πm −
πd +

θ +
θ +
r −
µ +/−

Table 2: Preemption time t̃ – Comparative statics

All parameters have the expected effect on the preemption time t̃, except
for the intensity of the Poisson process µ.2 Changes in the Poisson arrival
rate µ have ambiguous effects. An increase in the arrival rate accelerates the
process by which a firm learns its cost, increasing the value of the follower:

dVF
dµ

=
r

2 (µ+ r)2 (πd − θ) > 0,

and decreasing the value of the leader at time zero

dVL
dµ

= − r

2 (µ+ r)2 (πm − πd) < 0.

In addition, an increase in µ increases the speed at which a firm updates
its belief about its opponent. hence, the rate at which VL(t) increases is
higher and

dVL(t)

dµ
= (− r

2(µ+ r)2
γt(θ̃)−

dγt(θ̃)

dµ

µ

2(µ+ r)
)(πm − πd),

where dγt(θ̃)
dµ

< 0.

2Changes in the Poisson arrival rate µ can be attributed to changes in the screening
technology to evaluate projects. It is often argued that because they screen many different
projects or because they have privileged access to information regarding the projects,
venture capitalists have a better ability to judge the profitability of early-stage ventures
than actors in different industries, such as industrial investors or even banks (See, for
example, Ueda (2004) and Fabrizi et al. (2011).) This would imply that projects funded
by venture capitalists have a higher Poisson arrival rate µ than projects independently run
by firms.
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Figure 4: Effect of an increase in µ on VL(t) and VF .

Figure 4 shows the effects of an increase in µ on VF and VL(t). We
conjecture that the effect of a change in µ on the preemption time t̃ is non-
monotonic. If µ is low and t̃ is low, an increase in µ will mostly have the effect
of increasing VF and reducing VL, resulting in an increase in the preemption
time. If, on the other hand, µ is high and t̃ is high, an increase in µ will
mostly have the effect of increasing VL(t), reducing the preemption time.
This non-monotonicity is illustrated in Figure 5 which shows how t̃ varies
with µ when πm = 0.7, πd = 0.3, θ = 0.8, θ = 0.2, and r = 0.05.

3.3 Efficiency comparison

We now compare the joint profits of the two firms in the collusive benchmark,
the equilibrium of the noncooperative game with public signals and with
private signals. We distinguish between four parameter regions, depending
on the magnitude of the expected entry cost θ̃:

1. θ̃ < πm − 2VO: immediate entry in the cooperative regime, and pre-
emption at zero in both competitive regimes;

2. πm − 2VO ≤ θ̃ < VL − VF = πm − VO: delayed entry in the cooperative
regime (firms wait for one signal), and preemption at zero in both
competitive regimes;
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Figure 5: t̃ as a function of µ for πm = 0.7, πd = 0.3, θ = 0.8, θ = 0.2,
and r = 0.05.

3. VL − VF = πm − VO ≤ θ̃ < πm − VF : delayed entry in the coopera-
tive regime (firms wait for up to two signals) and in the competitive
regime with public signals, preemption at finite time t̃ in the competi-
tive regime with private signals;

4. πm − VF ≤ θ̃: delayed entry in the cooperative regime (firms wait for
up to two signals) and in both competitive regimes.

We define the industry profits when both firms delay their entry until
they learn that their cost is low as:

VS =
µ

2µ+ r

[
(πm − θ) +

µ

2(µ+ r)
(2πd − 2θ)

]

and the industry profits with preemption at finite time t̃ as:

VP =
(

1− e−(2µ+r)t̃
) µ

2µ+ r

[
(πm − θ) +

µ

2(µ+ r)
(2πd − 2θ)

]

+ e−(µ+r)t̃
(

1− e−µt̃
) µ

2(µ+ r)
(πm − θ)

+ e−(2µ+r)t̃2
µ

2(µ+ r)
(πd − θ) (3)

It is easy to check that VC2 > VS > VP > 2VF and πm − θ̃ > 2VF . Table
3 lists the joint profits under the three regimes in the four configurations of
parameters.
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parameter region cooperative public private

θ̃ < πm − 2VO πm − θ̃ 2VF 2VF
πm − 2VO ≤ θ̃ < VL − VF = πm − VO VC1 2VF 2VF
VL − VF = πm − VO ≤ θ̃ < πm − VF VC2 VS VP
πm − VF ≤ θ̃ VC2 VS VS

Table 3: Efficiency comparisons

Not surprisingly, Table 3 shows that joint profits are always higher when
signals are public rather than private. Simple derivations also show that all
values VC1, VC2, VF , VS are strictly increasing in µ, and numerical computa-
tions suggest that VP is also increasing in µ as well. Hence, better screening
technologies or information collection methods always result in higher profits
for the two firms. Table 3 also illustrates three sources of inefficiency due to
competition. First, by competing on the market, the firms forgo the benefits
of market monopolization – the difference between monopoly profits, πm and
the sum of duopoly profits, 2πd. Second the firms pay twice the entry cost
θ, whereas in the collusive benchmark, only one firm enters. Finally com-
petition results in excess momentum, making firms enter the market before
they learn their cost, whereas in the collusive benchmark, they prefer to wait
until they learn their cost before entering.

4 Collusion and compensating payments

In this section, we analyze compensating payment schemes which allow the
firms to achieve the collusive outcome. Compensating payments are paid by
one firm in order to compensate the other firm for not entering the market.
These transfers can be implemented at three different points in time:

• ex ante: payments are made before the firms learn their entry cost;

• at the interim stage: payments are made by one firm after it learns its
cost, when it ignores the cost of the other firm;

• ex post: payments are made after the costs of both firms are common
knowledge.

The best timing of compensating payments depends on the specific con-
figuration of parameters and the publicity of signals. If θ̃ < πm − 2VO, it
is efficient to choose one of the two projects immediately, and compensating
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payments should be made ex-ante in order to prevent inefficiencies due to
market competition and duplication of entry costs.

If πm − 2VO < θ̃, the collusive outcome involves experimentation. When-
ever it is optimal to experiment, we argue that the best timing for compen-
sating payments is either the interim stage (for private signals) or the ex-post
stage (for public signals). At the ex-ante stage, if one of the firm pays the
other firm to leave the market, it loses access to that firm’s technology, and
may be unable to select the right project.3 When signals are public, coop-
eration should happen at the ex post stage, with compensating payments
being paid to the follower firm only when it learns that its cost is low. When
signals are private and firms cannot credibly convey information about their
entry cost, ex-post compensating payments can only be made after the fol-
lower firm has entered the market. In that case, the entry cost of the follower
firm has been sunk, so that it becomes impossible to alleviate the duplication
of entry costs with payments at the ex-post stage and the best timing for
compensating payments is the interim stage.

We focus on this last situation and analyze compensating payments made
at the interim stage when πm − 2VO < θ̃ and signals are private. Individual
rationality and incentive compatibility imply that the utility obtained by the
leader and the follower when investing at date t must satisfy:

UL(t) ≥ VL(t), (4)

UF (t) ≥ VF . (5)

The first inequality states that the leader is willing to pay the compensation.
The second inequality results from the follower’s incentive compatibility and
individual rationality constraints. As the follower’s type (whether he has
dropped from the race or not received a signal) is unknown, the follower
must receive a payment at least equal to VF , the expected continuation value
of a follower who ignores his cost. Budget balance implies that the sum of
utilities received by the leader and follower are exactly equal to the monopoly
profit:

UL(t) + UF (t) = πm. (6)

3Even if the firm could buy the technology of its rival, it would still need the collabo-
ration of workers in that firm. This would give rise to agency problems which involve an
efficiency loss.
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Given inequalities (4), (5) and equation (6), a necessary condition for the
existence of a budget balanced, individually rational and incentive compatible
transfer scheme is thus

πm ≥ VL(t) + VF .

As VL(t) is increasing, VL(0) < πm − VF and VL(∞) > πm − VF , there
exists a unique date t∗, such that no budget balanced individually rational
compensating payments exist if the first firm enters the market at date t ≥ t∗.
This remark captures the following simple intuition. As time passes, firms
become more optimistic about their prospects. If a firm enters at a late
date, it will expect the other firm to have dropped and will not be willing to
compensate the other firm at the level VF , which is the minimal level that a
firm which ignores its cost is willing to accept to drop from the market. This
remark also shows that there is no efficient, budget balanced and individually
rational collusive mechanism. To see this, consider a realization of the signals
where no firm has learned its cost before t∗. Either the mechanism prescribes
that one of the firm invests before t∗, and the mechanism is inefficient because
it will result in a high cost firm investing with positive probability, or the
mechanism prescribes to wait until one of the firm has learned it has a low
cost, and the mechanism is inefficient because there is no budget balanced,
individually rational compensating payment which prevents the other firm
from entering the race.

The latest point at which firms can collude, t∗, is implicitly determined
by

πm = VL(t∗) + VF . (7)

Table 4 shows the other comparative statics of changes in parameters
on the date t∗. Notice that a change in the Poisson arrival rate µ, has a
clear negative effect on τ ∗. When firms learn their costs more quickly, beliefs
evolve faster, and the last time at which collusion may occur is reduced.

We now consider the following problem: How should compensating pay-
ments be designed in order to guarantee that, whenever one firm learns that
it has a low cost before t∗, it is chosen to be the only firm operating on the
market?
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parameter comparative static
πm +
πd −
θ 0
θ +
r 0
µ −

Table 4: Latest time for cooperation t∗ – Comparative statics

Proposition 2 A differentiable compensating payment scheme UF (t) imple-
ments the cooperative benchmark when a firm learns that it has a low cost
before t∗ if and only if for all t < t∗,

πm − θ̃ < 2UF (t) <
2r + µ

r + µ
πm +

U ′F (t)

r + µ
.

Proposition 2 shows that efficient compensating payment schemes must
be designed to satisfy two requirements. First, the payment to the follower
must be large enough to prevent early entry by firms which ignore their costs.
Second, the payment to the follower should not be too large, in order to give
incentives to a firm which learns that its cost is low to enter immediately.
These two requirements provide an upper and a lower bound on the expected
payoffs of the follower and leader firm and show that the cooperative surplus
must be shared in a balanced way between the two firms.

In order to provide additional intuition, we specialize the model by as-
suming that the compensating payment scheme assigns a fixed bargaining
power to the leader and the follower, so that

UL(t) = VL(t) + α(πm − VL(t)− VF ), (8)

UF (t) = VF + (1− α)(πm − VL(t)− VF ). (9)

We observe that UL(t) is increasing and UF (t) decreasing over time. Fig-
ure 6 displays these profits for α = 0 and α = 1. It illustrates three aspects
of the model. First, it displays the t∗, for which πm − VL (t∗)− VF = 0. Sec-
ond, Figure 6 shows that payoffs are independent of time if α = 1, that is, if
all of the bargaining power is given to the leader. In this case, the follower
receives his outside utility, UF = VF , and the leader receives all surplus plus
his outside utility, UL(t) = πm − VF . Third, Figure 6 shows that the gap
between the payoff of the leader and follower is increasing in α.
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UF (t) = VF

UF (t) = πm − VL(t)

UL(t) = πm − VF

UL(t) = VL(t)

t∗

α = 0

α = 0

α = 1

α = 1

t

UF (t)
UL(t),

Figure 6: Expected utilities with compensating payments

Using (8) and (9), Proposition 2 imposes two restrictions on the share of
the surplus that accrues to the leader, α. On the one hand, to prevent firms
to invest early when they ignore their cost, α has to be sufficiently low:

α <
πm + θ̃ − VL(t)

2 (πm − VL(t)− VF )
. (10)

On the other hand, to give a firm that learns that it has low cost incentives
to enter immediately, α must be sufficiently high:

2 (πm − VL(t)) +
V ′L(t)

r+µ
− 2r+µ

r+µ
πm

2 (πm − VL(t)− VF ) +
V ′L(t)

r+µ

< α. (11)

Define

α ≡ min

{
πm + θ̃ − VL(t)

2 (πm − VL(t)− VF )
, 1

}

and

α ≡ max

{
0,

2 (πm − VL(t)) +
V ′L(t)

r+µ
− 2r+µ

r+µ
πm

2 (πm − VL(t)− VF ) +
V ′L(t)

r+µ

}
.

18



Corollary 1 A compensating payment scheme that assigns a fixed bargaining
power to the leader and the follower firm, so that a share α of the surplus
from cooperation accrues to the leader, implements the collusive outcome
when a firm learns that it has a low cost before t∗ if and only if for all
t < t∗,α ∈ [α, α].

A necessary condition for implementation of the collusive outcome is that
0 ≤ α ≤ α ≤ 1, which is guaranteed if the following conditions on the
parameters hold:

2VF ≥ πm − θ̃, (12)

2VF + 2(1− α)(πm − VL(0)− VF ) ≤ 2r + µ

r + µ
πm −

V ′L(0)

r + µ
. (13)

Notice that if condition (12) fails, early preemption will occur before t∗.
However, the value of α can be designed in order to delay entry of firms which
ignore their costs as far as possible. By reducing α, and giving a larger share
of the surplus to the follower, the mechanism designer reduces incentives to
preempt and delays inefficient entry of firms on the market.4 The optimal
compensating payment mechanism is then given by the lowest value of α for
which condition (13) holds.

5 Extensions

In this Section, we extend the analysis in two directions. We first investigate
the effect of collusion on consumer surplus. We then extend the model to
allow for stochastic profits after entry.

5.1 Consumer surplus

Expected consumer surplus is affected both by the market structure and the
expected time of entry. Expected consumer surplus is higher in duopoly than
monopoly, and decreases with the time of entry. Let CSm and CSd denote
consumer surplus in a monopoly and a duopoly with CSm ≤ CSd.

4The fact that giving a prize to the loser of a contest may be efficient, as it reduces the
gap between the winner and the loser and minimizes wasteful expenditures, has long been
noted in the literature on contests. See for example Moldovanu and Sela (2001).
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We define the expected consumer surplus with preemption at finite time
t̃ as

CSP =
(

1− e−(2µ+r)t̃
) µ

2µ+ r

[
CSm +

µ

2 (µ+ r)
(CSd − CSm)

]

+ e−(µ+r)t̃
(

1− e−µt̃
) µ

2(µ+ r)
CSm

+ e−(2µ+r)t̃

[
CSm +

µ

2 (µ+ r)
(CSd − CSm)

]
.

Denoting by p the probability with which each firm enters at date t = 0, we
can write the expected consumer surplus in the equilibrium with preemption
at time t = 0 as

CSP0 = p2CSd +
(
1− p2

)(
CSm +

µ

2 (µ+ r)
(CSd − CSm)

)
.

Finally, the expected consumer surplus when both firms delay their entry
until they learn that their cost is low can be written as

CSS =
µ

2µ+ r

[
CSm +

µ

2 (µ+ r)
(CSd − CSm)

]
.

The ranking of consumer surplus is exactly opposite to the ranking of joint
profits: while firms rank VS ≥ VP ≥ 2VF , consumers rank CSS ≤ CSP ≤
CSP0. Hence, consumer surplus is always higher in the non-cooperative
game with private signals than with public signals, and consumers prefer the
competitive outcome to the collusive outcome. As the ranking of consumer
surplus and joint profits are exactly opposite, the socially optimal policy
depends on the weights ascribed to consumer surplus and joint profits in the
social welfare function.

5.2 Market uncertainty

We extend the analysis by supposing that, after investment, the profits of the
two firms, πm and πd, are random variables rather than deterministic values.
More precisely, we consider a model where after investing in the project, the
two firms may either encounter success or failure. Furthermore, the market
can only sustain one firm: the first firm to succeed obtains a positive value,
whereas the other firm receives a zero profit.

This model captures an R&D race with two distinct phases. In the ini-
tial experimentation phase, as in Section 2, two firms receive signals about
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the fixed cost of investing in a research project. In the second, innovation
phase, the firms engage in a development process to obtain an innovation with
commercial value normalized to 1. After investing in the research project,
firms succeed in finding the innovation according to a Poisson process with
intensity λ.

We interpret the monopoly profit, πm, as the expected profit of a firm
when the other firm does not invest: πm =

∫∞
0
λe−λte−rtdt = λ

λ+r
, and the

duopoly profit, πd, as the expected profit of a firm when the other firm has
invested: πd =

∫∞
0
λe−2λte−rtdt = λ

2λ+r
.

Notice that 2πd > πm in this model. In order to guarantee that firms have
an incentive to select one of the two projects rather than running both in
parallel, we assume that the entry cost is larger than the difference 2πd−πm:

Assumption 2 2πd − πm = λr
(2λ+r)(λ+r)

≤ θ.

5.2.1 Collusive benchmark

In the collusive benchmark, under assumption 2, a single firm will be chosen
to develop the product. Hence, the values of VO, VC1, and VC2 and the
analysis of Section 2.3 remain unchanged, once the monopoly profit πm is
replaced by the specific value πm = λ

λ+r
.

5.2.2 Investment timing with public signals

In the non-cooperative investment timing game, we need to modify the ex-
pressions for the values of the leader and the follower, as the follower will
only obtain the duopoly profit πd if he enters before the leader has succeeded
in the innovation phase. Hence, we compute

VF =
µ

2(µ+ λ+ r)
(πd − θ) and

VL = πm −
µ

2(µ+ λ+ r)
(πm − πd).

With this modification, Proposition 1 can be extended to

Proposition 3 In the entry timing game with public information, a firm
which learns that its cost is low invests immediately. If VL − θ̃ > VF , pre-
emption occurs and (i) a firm which ignores its cost invests with positive
probability at any date t = 0,∆, ... whenever the other firm has not invested
and (ii) a firm invests immediately after it learns that the other firm has a
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high cost. If VL− θ̃ < VF , firms do not enter unless they learn that their cost
is low.

Notice that, in the market uncertainty model, VL−VF > πm−VO. Hence,
there is a new configuration of parameters, πm − VO < θ̃w < VL − VF , for
which the two firms choose to wait until they learn that one of the project
has low cost in the collusive benchmark (VC2 > VC1), whereas they invest
immediately in the non-cooperative entry game.

5.2.3 Investment timing with private signals

We again need to modify the values of the leader and follower to take into
account the possibility that the leader succeeds in the innovation phase before
the follower learns his cost.

VL(t) = γt(θ)πm + γt(θ̃)VL

= πm − γt(θ̃)
µ

2(µ+ λ+ r)
(πm − πd).

The analysis of section 3.2 can be replicated without any difficulty.

Proposition 4 In the entry timing game with private signals, a firm which
learns its cost invests immediately. If VL− θ̃ > VF , preemption occurs at the
beginning of the game and both firms invest with positive probability at time
0. If πm − θ̃ ≥ VF ≥ VL − θ̃, in a symmetric equilibrium, rents between the
leader and the follower are equalized and each firm invests with probability
1
2

at time t̃ such that: VL(t̃) − θ̃ = VF . If VF > πm − θ̃, firms do not enter
unless they learn that their cost is low.

An increase in the parameter λ governing the rate of success on the mar-
ket, intensifies competition between the two firms and reduces the time of
preemption t̃. Furthermore, the expected time before innovation is always
smaller in the competitive régime, when firms accelerate market entry to
preempt their rival than in the collusive régime where the two firms wait
until they learn their cost. In the Appendix, we compute the expected time
before innovation in the different régimes for different configurations of the
parameters as: Table 5 lists the expected time until an innovation is obtained
in the entry game with market uncertainty under the three regimes in the
five configurations of the parameters.
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parameter region cooperative public private

θ̃ ≤ πm − 2VO EC0(T ) EP0(T ) EP0(T )

πm − 2VO < θ̃ ≤ πm − VO EC1(T ) EP0(T ) EP0(T )

πm − VO < θ̃ ≤ VL − VF EC2(T ) EP0(T ) EP0(T )

VL − VF < θ̃ ≤ πm − VF EC2(T ) ES(T ) EP (T )

πm − VF < θ̃ EC2(T ) ES(T ) ES(T )

Table 5: Expected time until an innovation is introduced

where the formulae for expected time before innovation are given by:5

EC0(T ) =
1

λ
,

EC1(T ) =
1

2

(
2

λ
+

1

µ

)

EC2(T ) =
1

λ
+

5

6µ

EP0(T ) =
1

2λ
+

λ

2 (λ+ µ)2 +
µ

8λ (λ+ µ)
+

µ

4 (λ+ µ)2

ES(T ) =
1

12

(
9

λ
+

10

µ
+

2λ

(λ+ µ)2

)
.

Table 6 displays the magnitudes of the expected times to the introduction
of the innovation when the intensity of the Poisson processes λ or µ converges
to ∞, namely when either experimentation or innovation are immediate.

Table 6 confirms that the expected time before innovation is lowest when
the firms invest immediately (EC0 and EP0) and longest when the firms wait
until they learn that they have a low cost (EC2 and ES). Because firms
enter more rapidly in the competitive régime, and innovation is accelerated
when the two firms participate in the patent race, innovation is always faster
in the competitive régime, and private signals accelerate innovation. More
precisely, when µ → ∞, EP ·(T ) < ES(T ) < EC·(T ). For λ → ∞, EC0(T ) =
EP0(T ) < EC1(T ) < ES(T ) = EC2(T ).

5We omit the formula for EP (T ), expected time before innovation in the finite preemp-
tion case as it is very cumbersome.
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µ→∞ λ→∞
EC0(T ) 1

λ
0

EC1(T ) 1
λ

1
2µ

EC2(T ) 1
λ

5
6µ

EP0(T ) 5
8λ

0

EP (T ) 5
8λ

t̂ ∈
[
0, 5

6µ

]

ES(T ) 3
4λ

5
6µ

Table 6: Limits of the expected time until an innovation is in-
troduced

6 Conclusion

This paper analyzes a model of entry with learning. Two firms contemplate
entry into a new market, or the development of a new product and gradu-
ally learn about their private entry costs. We show that when signals are
public, the model either results in a preemption game or a waiting game,
and when signals are private, firms which ignore their cost may choose to
enter at a finite time, resulting in the same rent equalization phenomenon
as in Fudenberg and Tirole (1985). As opposed to Hopenhayn and Squin-
tani (2011), we find that preemption is greater when signals are private,
because firms do not know whether the other firm has given up on enter-
ing the market. As compared to the collusive outcome, the equilibrium of
the entry timing game exhibits three sources of inefficiencies: dissipation of
the monopoly rent, duplication of entry costs and excess momentum. We
analyze how compensating payments by one firm to prevent the other firm
from entering the market can be implemented. We observe that collusion
can only be effective if the first firm enters sufficiently early, and that com-
pensating payments must allocate a significant share of the surplus to the
excluded firm. Our model also covers two-stage R&D models, where firms
first experiment to learn their cost in the research project, and then enter
into a stochastic innovation race.

Our analysis belongs to an emerging literature on innovation races and
timing games with private signals. It leaves a number of questions unan-
swered. What happens if signals are not perfect, and what is the effect of
changes in the precision of the signals on preemption? What happens when
uncertainty pertains to the common value of the innovation rather than the
private value entry cost? What if firms can control the acquisition of infor-
mation by choosing their level of (costly) experimentation? What happens
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if the two firms, rather than being independent agents, are two teams in an
organization contracting with a principal? We plan to tackle these problems
in future research.
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A Proofs

A.1 Proof of Proposition 1

We first note that, if both firms learn that their cost is low, they have no
incentive to delay their investment and will both invest immediately. Con-
sider then a situation where firm i has learned that its cost is low and firm
j has not learned its cost yet. We will show that it is a dominant strategy
for firm i to invest immediately. If firm j invests, firm i obtains πd − θ by
investing immediately and (1− r∆)(πd− θ), by delaying its investment, and
thus prefers to invest immediately. If firm j does not invest, and chooses to
invest with probability p at period t + ∆, by delaying its investment until
t+ ∆, firm i will obtain a payoff:

W (t+ ∆) = (1− r∆)[(1− µ∆)[(1− p)VL + pπd]

+µ∆
πd + πm

2
− θ].

Now

W (t+ ∆)− (VL − θ) = −r∆(VL − θ)− µ∆(1− r∆)(VL −
πd + πm

2
)

−p(1− r∆)(1− µ∆)(VL − πd) +O(∆2).

Note that

VL −
πd + πm

2
=

r

2(µ+ r)
(πm − πd) > 0,

so that W (t+ ∆)− (VL − θ) < 0, establishing that firms invest immediately
after they learn that their cost is low.

Next, it is easy to check that a firm invests immediately after it learns
that the other firm has high cost if and only if

πm − VO = πm −
µ

2(µ+ r)
(πm − θ) = VL − VF ≥ θ̃.

Consider the investment game played by the two firms if none of them
has invested up to date t and costs are not known as shown in Table 7, where

W (t+∆) = (1−r∆)[(1−2µ∆)W (t)+2µ∆
VL − θ + VF + max[VO, πm − θ̃]

4
+O(∆2).
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invest not invest

invest (πd − θ̃, πd − θ̃) (VL − θ̃, VF )

not invest (VF , VL − θ̃) (W (t+ ∆),W (t+ ∆))

Table 7: Investment game played by the two firms is none of
them has invested up to date t and costs are not known.

We first consider a symmetric equilibrium where both firms invest with
positive probability p ∈ (0, 1). In that equilibrium,

W (t) = p(πd) + (1− p)VL − θ̃,
and

W (t) = pVF + (1− p)(W (t) + δ).

Solving this equation, we find

p =
VL − θ̃ − VF
VL − πd

,

showing that an equilibrium with preemption exists if and only if VL−VF ≥ θ̃.
Next, we consider a symmetric equilibrium in the waiting game when

VL − VF ≤ θ̃. Notice that, by delaying investment one period, the firm
obtains a payoff:

W (t+∆) = (1−r∆)[(1−2µ∆)(VL−θ̃)+2µ∆
VL − θ + VF + πm − θ̃

4
+O(∆2).

Next notice that

πm − θ > πd − θ, =
2(µ+ r)VF

µ
.

Next, as VF > VL − θ̃,

µ

2
πm − θ + VF + VL − θ̃ > (µ+ r)VF +

µ

2
(VF + VL − θ̃),

> (2µ+ r)(VL − θ̃)
establishing that W (t+ ∆) > VL − θ̃, so that firms always have an incentive
to wait.

28



A.2 Proof of Lemma 1

Suppose that firm i learns that its cost is low at date t. If firm j invests at
t, firm i obtains πd − θ by investing at t and (1 − r∆)(πd − θ) by delaying
investment. As πd − θ > 0, it has an incentive to invest. If firm j does not
invest, and firm i invests at t, it obtains a discounted expected payoff:

W (t) = γt(θ)πm + γt(θ̃)VL + γt(θ)πd − θ.

By delaying investment until time t + ∆, the firm will obtain an expected
discounted payoff:

W (t+ ∆) = e−r∆
([

1−
∫ t+∆

t

(∫ t+∆

0

g(ρ, τ)
µ

2
e−µτdτ + e−µρh(ρ)

)
dρ

]

[
γt+∆(θ)πm + γt+∆(θ̃)VL + γt+∆(θ)πd − θ

]

+

∫ t+∆

t

[∫ t+∆

0

g(ρ, τ)
µ

2
e−µτdτ + e−µρh(ρ)dρ

]
[πd − θ]

)
.

For small ∆, we have:

W (t+ ∆) = [1− r∆−∆

∫ t

0

g(t, τ)
µ

2
e−µτdτ − e−µth(t)]W (t)

+ [πd
∂γt(θ)

∂t
+ πm

∂γt(θ)

∂t
+ VL

∂γt(θ̃)

∂t
]∆

+ ∆[

∫ t

0

g(t, τ)
µ

2
e−µτdτ − e−µth(t)](πd − θ).

We compute:

∂γt(θ)

∂t
=

µ
2
e−µt −

∫ t
0
g(t, τ)µ

2
e−µτdτ

A(t)
− A′(t)

A(t)
γt(θ),

∂γt(θ)

∂t
=

µ
2
e−µt

A(t)
− A′(t)

A(t)
γt(θ),

∂γt(θ̃)

∂t
=
−µe−µt − e−µth(t)

A(t)
− A′(t)

A(t)
γt(θ̃)

29



Hence

W (t+ ∆)−W (t) = −r∆W (t)−∆
µe−µt

A(t)
[VL −

πm + πd
2

]

+ ∆

∫ t

0

g(t, τ)
µ

2
e−µτdτ

W (t)− πd
A(t)

+ ∆h(t)e−µt
W (t)− πd
A(t)

.

Notice that if h(t) = g(t, τ) = 0, W (t + ∆) −W (t) < 0, so it never pays to
delay investment if the other firm does not delay investment.

However, if the other firm delays investment (g(t, τ) > 0 or h(t) > 0), a
firm may benefit from delaying investment, as delaying will enable it to learn
the type of the other firm. We now prove that in fact firms will never face a
positive incentive to delay investment in order to learn the type of the other
firm. To see this, consider now a firm which has not yet learned its cost and
contemplates delaying its investment between t and t+ ∆. We compute the
discounted expected value of leaving at t as:

Y (t) = γt(θ)πm + γt(θ̃)VL + γt(θ)πd − θ̃.

and the discounted expected value of leaving at t+ ∆ as:

Y (t+ ∆) = e−r∆([1−
∫ t+∆

t

(

∫ t+∆

0

g(ρ, τ)
µ

2
e−µτdτ) + e−µρh(ρ)dρ]

[e−µ∆(γt+∆(θ)πm + γt+∆(θ̃)VL + γt+∆(θ)πd − θ̃)

+
1− e−µ∆

2
(γt+∆(θ)πm + γt+∆(θ̃)VL + γt+∆(θ)πd − θ)]

+ (

∫ t+∆

t

(

∫ t+∆

0

g(ρ, τ)
µ

2
e−µτdτ) + e−µρh(ρ)dρ)

[e−µ∆(πd − θ̃) +
1− e−µ∆

2
(πd − θ)]).

We compute:
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Y (t+ ∆)− Y (t) = −r∆Y (t)−∆
µe−µt

A(t)
[VL −

πm + πd
2

]

+ ∆

∫ t

0

g(t, τ)
µ

2
e−µτdτ

W (t)− πd
A(t)

+ +∆h(t)e−µt
W (t)− πd
A(t)

+ ∆
θ − Y (t)

2
.

Hence,

(Y (t+ ∆)−Y (t))− (W (t+ ∆)−W (t)) = r∆(W (t)−Y (t)) + ∆
θ − Y (t)

2
.

As Y (t) < W (t) and θ−Y (t) > 0, Y (t+∆)−Y (t) > W (t+∆)−W (t) for all
t,∆. Hence, a firm always has a stronger incentive to wait when it ignores
its cost than when it knows that its cost is low. In particular, this implies
that whenever g(t) > 0 (so that the firm is indifferent between investing at
t and t + ∆ when it knows that its cost is low), then a firm must prefer to
wait when it ignores its cost.

Suppose by contradiction that g(t, τ) > 0 for some t, τ < t and let t∗ =
min{τ |g(t, τ) > 0 for some τ < t} be the earliest date at which one of the
firms delays its investment. By the previous argument, at t∗, a firm which
ignores its cost must prefer to wait so that h(t∗) = 0. Furthermore, by

construction,
∫ t∗

0
g(t∗, τ)µ

2
e−µτdτ = 0. But, as VL − πm+πd

2
> 0, this implies

that

W (t∗ + ∆)−W (t∗) < 0,

contradicting the fact that a firm which learns its cost at t∗ has an incentive
to delay its investment.

A.3 Proof of Theorem 1

As in the proof of Proposition 1, we first note that, if VL − θ̃ ≥ VF , there
exists an equilibrium where both firms preempt with positive probability at
time t = 0 and at any time t > 0. Suppose next that VL − θ̃ ≤ VF and
πm− θ̃ ≥ VF . Then there exists t̃ > 0 such that VL(t̃)− θ̃ = VF . By investing
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at t < t̃, a firm either obtains πd − θ̃ < VF (if the other firm invests) or

VL(t)− θ̃ < VF (if the other firm does not invest). By investing at time t̃, the
firm obtains VF . Hence it is a dominated strategy to invest at any time t < t̃.
At any time t ≥ t̃, there is a preemption equilibrium where both firms invest
with positive probability p(t) at date t. As t converges to t̃, the loss due to
coordination failures converges to zero, so that at t = t̃, as in Fudenberg and
Tirole (1985), rent equalization occurs and both firms receive an expected
payoff of VL(t̃) = VF .

Finally, suppose that πm − θ̃ < VF . We show that, any time t, the firm
has an incentive to wait. If the firm waits one period before investing it will
obtain a payoff of VF > πd− θ̃ if the other firm invests. If the other firm does
not invest, it obtains a payoff of

W (t) = VL(t)− θ̃ = γt(θ)(πm − θ̃) + γt(θ̃)(VL − θ̃)

by investing, and

W (t+ ∆) = (1− r∆)W (t) + ∆h(t)e−µt(VF −W (t)) + ∆
µ

2
(VF + VL(t)− θ)

−3∆
µ

2
W (t) + ∆γ′(t+ ∆)(θ)(πm − VL(t))

by waiting until t+ ∆, for ∆→ 0. Now VF > W (t) and γ′t(θ) > 0. Further-
more,

VL(t)−u th > VL − θ
> πd − θ

>
2(µ+ r)

µ
VF .

Hence,

VF + VL(t)− θ >
3µ+ 2r

µ
VF

>
3µ+ 2r

µ
W (t)

establishing that W (t+∆)−W (t) > 0, so it is profitable for the firm to wait.
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A.4 Proof of Proposition 2

In order to implement the cooperative benchmark, two conditions must be
satisfied: (i) no firm must be willing to enter the market at t < t∗ if it ignores
its cost and (ii) a firm which learns that it has a low cost must be willing to
enter the market immediately. The first condition will hold as long as:

UF (t) > UL(t)− θ̃.

As UL(t) = πm − UF (t), this results in

2UF (t) > πm − θ̃.

For the second condition to hold, we characterize the conditions under which
an equilibrium where a firm immediately invests after it observes that its
cost is low exists. The discounted expected payoff of investing at period t
when the other firm does not invest is:

W (t) = UL(t)− θ,

whereas by waiting one period the firm will obtain a discounted expected
payoff of

W (t+ ∆) = e−r∆[(1− e−µ∆

2
)UF (t+ ∆) +

e−µ∆

2
UL(t+ ∆)].

For ∆ small enough and assuming that utilities are differentiable,

W (t+ ∆)−W (t) = ∆[(−2r − µ)UL(t) + µUF (t) + U ′L(t)]

so that the firm has an incentive to enter immediately if and only if:

2UF (t) <
2r + µ

r + µ
πm +

U ′F (t)

r + µ
.
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A.5 Derivation of the expected time until the innova-
tion is introduced in a patent race

EC0(T ) =

∫ ∞

0

λte−λt dt =
1

λ

EC1(T ) = 2

∫ ∞

0

µe−2µτ

∫ ∞

τ

λte−λ(t−τ) dt dτ =
1

2

(
2

λ
+

1

µ

)

EC2(T ) =
4

3

[∫ ∞

0

µe−2µτ

∫ ∞

τ

λte−λ(t−τ)dtdτ

+

∫ ∞

0

µe−µτ
∫ ∞

τ

µ

2
e−µρ

∫ ∞

ρ

λte−λ(t−ρ)dtdρdτ

]
,

=
1

λ
+

5

6µ
.

EP0(T ) =

∫ ∞

0

λte−λt
1

2

(
1 + e−µt

)
dt

+

∫ ∞

0

µ

2
e−µτ

∫ ∞

τ

λte−λte−λ(t−τ)dtdτ,

=
1

2λ
+

λ

2(λ+ µ)2
+

µ

8λ(λ+ µ)
+

µ

4(µ+ λ)2

ES(T ) =
4

3

(∫ ∞

0

µe−µτ
(∫ ∞

τ

1

2
(1 + e−µt)λte−λ(t−τ) dt

+

∫ ∞

τ

µ

2
e−µρ

∫ ∞

ρ

λte−λ(t−ρ)e−λ(t−τ) dt dρ

)
dτ

)

=
1

12

(
9

λ
+

10

µ
+

2λ

(λ+ µ)2

)
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