
Department of Computer Science,

University of Otago

Technical Report OUCS-2019-02

Novice programmers and introductory programming

Authors:

Anthony Robins

Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,

University of Otago, PO Box 56, Dunedin, Otago, New Zealand

https://www.otago.ac.nz/computer-

science/research/publications/reports/index.html

This document is a pre-publication draft of:
Robins, A. V. (2019) Novice programmers and introductory programming. In S. A. Fincher &
A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge,
UK: Cambridge University Press, 327 - 376

The published version has been further edited, please obtain and cite the published version
from:
http://www.cambridge.org/9781108721899
https://www.amazon.com/s?k=cambridge+handbook+computing+education

This draft has been made available (in an institutional archive or document repository) with
permission, under the Cambridge University Press Green Open Access policy:
https://www.cambridge.org/core/services/open-access-policies/introduction-to-open-access

Novice programmers and introductory programming

A. V. Robins

1 Introduction

One of the central topics in computing education research (CEdR) is the exploration of how a
person learns their first programming language, also described in terms such as understanding
“novice programmers”, introductory programming, teaching and learning in “CS1” (a first course
in computer science), and so on. This chapter explores key issues and surveys some of the
important research in this domain.

Programming languages are complex artificial constructs. Like the grammatical rules of natural
language, they consist of a relatively small number of elements which can be combined in
infinitely many productive ways. The question of how people come to understand and
practically apply such a body of knowledge is inherently interesting in the context of disciplines
such as psychology and education. There is also a significant practical interest from computing
educators. Decades of experience have shown that learning to program is a difficult process for
many people. Introductory programming courses typically have high rates of student dropout
and failure. This creates significant challenges for educators, who naturally want their students
to progress successfully, and sometimes face significant institutional pressures if they do not.

Issues around programming have also been a focus of attention for major IT companies such as
IBM and Google, and an important focus for the technology sector’s main professional and
scientific society, the Association for Computing Machinery (ACM). The ACM acknowledges
both the challenges facing teachers and the lack of consensus on many topics, and therefore
offers little advice on teaching, and a range of suggestions on curriculum structure which is
indicative of the wide variety of opinion in the field (ACM/IEEE-CS, 2013). More recently the
question of how best to teach programming has attracted the attention of national teaching

organisations and governments, as several countries grapple with how best to deliver
technology topics, and when to introduce programming in the school curriculum.

In short the motivational context for exploring the teaching and learning of programming
includes academic, pedagogical, and practical factors. The field has attracted considerable
interest from researchers, teachers, practitioners, industry, and governments alike. There is now
a significant body of relevant literature, but many important questions remain open.

The sections of this chapter review the challenge of programming (from various perspectives),
literature relating to novice programmers (largely from a cognitive perspective), and
recommendations relating to teaching programming (in the context of a typical CS1 course).
Although the focus is on CS1, much of this material is relevant to learning programming in any
context, e.g. schools.

2 The challenge of programming

2.1 Historical perspectives

The ACM was founded as a scientific and educational computing society in 1947. Computing
developed as a widespread technology and commercial reality during the 1950s and 1960s.
Programming rapidly emerged as the central challenge:

“It was generally assumed that coding the computer would be a relatively simple process of
translation that could be assigned to low-level clerical personnel. It quickly became apparent
that computer programming, as it came to be known, was anything but straightforward and
simple. Skilled programmers developed a reputation for creativity and ingenuity, and
programming was considered by many to be a uniquely intellectual activity, a black art that
relied on individual ability and idiosyncratic style. By the beginning of the 1950s, however,
programming had been identified as a key component of any successful computer
installation. By the early 1960s, the “problem of programming” had eclipsed all other aspects
of commercial computer development.” (Ensmenger, 2010, p. 29).

The early decades of rapid growth were characterised by a continual shortage of programmers,
a state of “chronic crisis” (Gibbs, 1994).

Prior to the development of academic qualifications, most programmers were trained “in-house”
by their employers. The outcomes were very mixed, with high rates of failure. In 1962 the US
Army applied its own tests to 190 trainees in their Automatic Data Processing Programming
course “in an attempt to reduce the wasted training time and costs associated with the
prevailing high attrition rate” (Bauer, Mehrens & Vinsonhaler, 1968).

The obvious challenges of programming and the desire to reduce the costs of selecting and
training successful programmers led to the development of various screening tests. The most

significant of these was the IBM Programmer Aptitude Test (PAT), first released in 1955. By the
early 1960s an estimated 80% of businesses employing programmers used aptitude tests,
around half of them the PAT (Lawson, 1962). In 1967 alone the PAT was administered to over
700,000 people (McNamara, 1967). Other popular tests included the Computer Programmer
Aptitude Battery and the Wolfe Programming Aptitude Tests, as described for example by Pea
and Kurland (1984).

Despite their widespread use it was never clear that early aptitude tests were actually effective:

“Ever since the 1950s, when the [PAT] was developed by IBM to help select programmer
trainees, consistently modest correlations (at their best from 0.5 to 0.7, hence accounting for
only a quarter to a half of the variance), and in many cases much lower, have existed
between an individual's score on such a measure and his or her assessed programming
skill.” (Pea & Kurland, 1984).

Many studies from the 1960s to the 1980s reported that the predictions of programmer aptitude
tests with respect to actual job performance were poor, and that tests of this type should not be
administered to university students because the results are unreliable (Robins, 2010). More
sophisticated tests were subsequently developed, with the Berger Aptitude for Programming
Test (B-APT) emerging as the most popular. Several alternatives for predicting success were
also explored, including the use of demographic factors, past high school achievement (SAT
scores), mathematical ability, and “general cognitive processes” such as problem-solving
strategies. No reliable predictor of programming ability was found, however, and even large
scale analysis of multiple factors results in only limited predictive power (Robins, 2010).

Beyond in-house training, a large number of vocational schools sprang up during the mid 1960s.
These were “generally profit-oriented enterprises more interested in quantity than quality”
(Ensmenger, 2010, p. 75), with correspondingly poor outcomes. Increasing academic
involvement was reflected in the foundation of The ACM Special Interest Group in Computer
Personnel Research (SIGCPR) in 1962, and its publication of two major journals, Computer
Personnel and the yearly Proceedings of the Nth Annual Computer Personnel Research
Conference. The ACM introduced and popularised the idea of “computer science” as a
discipline, and an ACM committee developed the first standardised curriculum. For different
reasons both vocational schools (regarded as too lax) and early academic programmes
(regarded as too stringent) were regarded as problematic, and “Neither was believed to be a
reliable short-term solution to the burgeoning labor shortage in programming” (Ensmenger,
2010, p. 80).

Two well received and influential books appeared in the 1970s; The Psychology of Computer
Programming (Weinberg, 1971) and The Mythical Man Month (Brooks, 1975). Weinberg
presented the first empirical study of programming as a complex human activity, setting the
stage for much that followed in the field of CEdR. Brooks addressed the practical process of
software development and the reasons that so many programming based projects failed,
drawing attention to the need for new ideas about how to manage programmers.

One of the most influential claims to emerge from early research was that of huge variability in
the productivity of professional programmers. An early IBM study claimed that a good
programmer was at least 25 times more efficient than an average one (Sackman, Erickson &
Grant, 1968), with others claiming an even greater disparity. Sackman et al. opined that
“When a programmer is good, he is very, very good. But when he is bad, he is horrid”.

The stubborn problems in predicting and training successful programmers, combined with the
significant variability in their effectiveness, lead to a widespread acceptance of the claim that
good programmers are “born, not made” (Dauw, 1967; Webster, 1996). Other persistent and
widely held beliefs about programming can also be traced back to these early decades. These
include claims that programming is an inherently creative or “artistic” process, that it is not
amenable to “scientific” analysis or standard managerial methods, and that programmers are
typically male and often socially withdrawn. While many would argue today that these are
mostly outmoded myths (see Chapter 3.5), they have influenced both the nature of CEdR and
the public perception of programming. Further perspectives on the history of research into
programming can be found in Chapter 1.2 of this Handbook.

2.2 The nature of learning outcomes

The opportunity to learn programming today is available in many forms, including a wide range
of academic courses, private and commercial training, online resources such as interactive
environments, open course materials, and Massive Open Online Courses (MOOCs). This
chapter focuses on issues that are relevant to a first academic course in programming, often
called CS1 (Computer Science 1). Other modes of teaching and learning are addressed
elsewhere in the Handbook.

2.2.1 High dropout and failure rates

Consistent with the historical issues surrounding programming, CS1 has typically been regarded
as difficult for students, with persistent and widespread reports of high student fail and dropout
rates, see for example Newman, Gatward and Poppleton (1970), Garcia (1987), Allan and
Kolesar (1997), Sheard and Hagan (1998), Guzdial and Soloway (2002), Beaubouef and Mason
(2005), Kinnunen and Malmi (2006), Howles (2009), Guzdial (2010), Corney, Teague and
Thomas (2010), Teague (2011), Mendes et al.(2012), Watson and Li (2014). This issue has
been one of the main practical concerns for computing teachers, and one of the main drivers of
research in CEd.

In an attempt to quantify the problem, Bennedsen and Caspersen (2007) surveyed 63
institutions internationally, collecting data on numbers of students who abort (drop out), skip the
final exam, or sit and fail. They observed an aggregated failure rate that was on average
roughly 33% and commonly up to 50% or more, but with huge institutional variation (as is to be
expected with different countries, institutions, courses and policy settings). In a follow-up study

Watson and Li (2014) surveyed literature relating to 51 institutions. The results reported were
very similar, with the same average fail rate, and huge variation. Fail rates varied by different
countries, but did not vary over programming language or improve over time.

Both studies found that small class size was correlated with lower fail rates. Both informally
conclude that while fail rates in CS1 courses appear to be high, they are not “alarmingly” so.
Unfortunately both studies suffer from failing to compare CS1 courses with other courses at the
same institution, making it difficult to separate the effects of institutional variation from the
effects of programming as a subject. (Luxton-Reilly (2016) compares the 67% pass rate found in
both studies with an 82% pass rate “across all degree-level courses” in New Zealand.) The
authors also themselves urge caution in the interpretation of their results. The first study is
based on a survey of research active computing teachers with an institutional response rate of
just 12.7%. The second is based on an analysis of research literature. In both cases it is highly
likely that the data is drawn from engaged and active sources, possibly presenting the upper
end of the spectrum of outcomes. Bennedsen and Caspersen note that “We hypothesize that if
we could see the full picture, things would look very different, but we have no data to support
this belief”.

2.2.2 Fragile learning

Concerns have also been raised about whether all of those who pass CS1 have learned what
they should. An early study of students who had completed a single semester of programming
(Soloway et al., 1983) found that when asked to write a loop which calculated an average only
38% were able to complete the task correctly (even when syntax errors were ignored). The
averaging task, called the “rainfall problem”, has been something of a benchmark in the
literature ever since. A similar study of students with two years of programming instruction
(Kurland et al.,1989) concluded that “many students had only a rudimentary understanding of
programming”. In an overview Winslow comments that “One wonders […] about teaching
sophisticated material to CS1 students when study after study has shown that they do not
understand basic loops...” (Winslow, 1996).

The most influential work on the limitations of learning in CS1 was the report of a 2001 ITiCSE
working group (McCracken et al., 2001). The “McCracken group” consisted of 10 authors from
8 tertiary institutions in various countries. The group assessed the ability of a combined pool of
216 post CS1 students using a common set of programming problems selected such that
“students in any type of Computer Science programme should be able to solve them”
(McCracken et al., 2001). The majority of students performed much worse than their teachers
expected, with most failing to finish the problem set. Given the scale and the multi-national
nature of the collaboration these results were widely viewed as significant and compelling.

The McCracken study motivated a range of follow-up projects. Utting et al. (2013) revisited the
study with improved support for 418 student participants, finding both well- and poorly-
performing groups. The Leeds group (Lister et al., 2004) examined the performance of 941
nearly or recently completed CS1 students. The study used multiple-choice questions designed

to explore basic programming skills and the ability to trace (follow and reason about) short
pieces of code. Results showed that “many students were weak at these tasks” suggesting that
“such students have a fragile grasp of skills that are a prerequisite for problem-solving” (Lister et
al., 2004).

Unfortunately, such studies suggest that many students are “passing” CS1 courses without a
strong grasp of programming basics. This is consistent with ample anecdotal evidence that
some students who attempt later programming courses are poorly equipped to do so,
contributing to the widespread perception of programming as a difficult topic at all levels.

2.2.3 Bimodal outcomes

Based on the evidence so far reviewed it is tempting to assume that programming is simply
harder than most other topics to learn and to teach. This alone would more than justify the field
of CEdR and attempts to find effective methods. A further observation complicates this simple
view however, namely that typical CS1 courses often have an unusually high rate of highly
achieving students. It is as if there is a significant subset of students who find programming
easy:

“In every introduction to programming course, 20% of the students just get it effortlessly --
you could lock them in a dimly lit closet with a reference manual, and they'd still figure out
how to program. 20% of the class never seems to get it.” (Guzdial, 2007).

Similar comments from other teachers refer to “two populations: those who can, and those who
cannot” Dehnadi (2006), and that there is a “double hump” in grade distributions which “has
been observed in programming courses all over the world, largely independent of geographical
or social context, and over a long period of time” (Kölling, 2009).

This paradoxical state of affairs has of course been the focus of considerable attention. The
term “bimodal” is often used to describe the resulting grade distributions (with higher than usual
rates of both failure and of high grades there are necessarily fewer students in the mid range).
Bimodal distributions are described as characteristic of CS1 in for example Hudak and
Anderson (1990), Bornat, Dehnadi and Simon (2008), Corney, Teague and Thomas (2010),
Robins (2010), Yadin (2013) and Elarde (2016). Student outcomes in the influential McCracken
study discussed above have also been described as bimodal (Lister & Leaney, 2003) and
exhibiting the “two hump effect” (Guzdial, 2010), with a follow-up study (Utting et al., 2013)
observing that “there are clearly two distinct populations within the current study’s overall
cohort” (low and high performing groups). Note that a wide variation in student outcomes is
consistent with historical observations of the variation in professional programmer performance.

In a widely circulated and commented on draft (Dehnadi & Bornat, 2006) the authors claimed to
have developed a diagnostic test that could accurately predict which students would or would
not succeed at programming. Other researchers were unable to replicate the results
(Caspersen, Larsen & Bennedsen, 2007; Bornat, Dehnadi & Simon, 2008) and the claim of a

predictive test was later withdrawn (Bornat, 2014). Patitsas et al. (2016) claim to present
“Evidence that computer science grades are not bimodal”, but the claim is problematic. The
grade distributions analysed are all from one institution, and they do not include data for
students who withdraw (abort). The “psychology experiment” demonstrates that participants
can be cued to report bimodality in a noisy artificial dataset (see the issue of subject bias in
research design, e.g. Mitchell and Jolley (2012)), but this does not show that the pattern does
not exist in real world datasets. For more on evidence relating to bimodal outcomes see Robins
(2018).

Despite contributing to the practice (Robins, 2010) I now consider the use of the term “bimodal”
to be somewhat unfortunate. It has invited a focus on statistical definitions and tests, often
without clarity on the underlying definition or counting of abort or skip outcomes (as stressed by
Bennedsen and Caspersen (2007)), and often without recognition that binning grades in various
ways leads to different results (as demonstrated by Höök (2015)). Given that there are huge
variations in institutional outcomes and reporting practice, I suggest that the more useful
questions are broader and more contextual. If a given CS1 course has a higher failure rate than
comparable courses (at the same institution) then this is a concern. If it also typically has a
higher rate of high grades then this is of interest. If the grade distribution reflects both these
effects then it might usefully but informally be described as “bimodal”. It is probably too late to
attempt to change the term in widespread use in the literature, but it should be used with
caution. We return to a discussion of potential reasons for “bimodal” outcomes in Section 3.7
below.

2.2.4 Summary

It is certainly not the case that all CS1 courses have bimodal outcomes, though reports of this
trend are common. Nor is it the case that they all have high dropout and failure rates, though
reports of this are even more common (and further concerns have been raised about the
performance of passing students). We suggest that both trends will be more typically seen in
large courses with open entry to students (compared to small and selective courses), and note
that institutional background and policy settings, and the intended scope and nature of each
individual course, can significantly impact outcomes. Both trends are consistent with the
historical development of programming as a discipline, and are observed and commented on
frequently enough to be part of the “received wisdom” of the CEd community.

2.3 The task

Given the historical and current educational complexities around learning to program it is useful
to briefly examine what is involved. Programming is often called “coding”, but this is a very
limited term for the richness and complexity of the task.

2.3.1 Requirements

A good overview (du Boulay, 1989) describes five overlapping domains that must be mastered:
1. general orientation, what programs are for and what can be done with them; 2. the notional
machine, a general model of the computer as it relates to executing programs; 3. notation, the
syntax and semantics of a particular programming language; 4. structures, the use of schemata
/ plans as ways of organising knowledge; 5. pragmatics, the skills of planning, developing,
testing, debugging, and so on. While most explicit programming instruction and attention is
focused on the third item, in general of course a novice programmer will be dealing with many of
these issues at once, compounding the difficulties.

In a broad review of literature relating to novice programmers, Robins, Rountree and Rountree
(2003) summarised the range of topics explored using the dimensions shown in Figure 1. The
columns describe the attributes that are required to write a program, namely knowledge of a
programming language and tools, the strategies for applying this knowledge appropriately, and
the capacity to construct and compare mental models of program state. The rows describe the
stages of creating a program, namely the processes of design, generation (writing code), and
evaluation. The cells of this framework should be thought of as fuzzy rather than absolute
divisions, and once again at any given time an actual programmer will usually be dealing with
several of these requirements at once.

 Knowledge Strategies Models

Design of planning methods,
algorithm design,
formal methods

for planning,
problem-solving,
designing algorithms

of problem domain,
notional machine

Generation of language, libraries,
environment/tools

for implementing
algorithms, coding,
accessing knowledge

of desired programs

Evaluation of debugging tools
and methods

for testing,
debugging, tracking /
tracing, repair

of actual program

Figure 1: A programming framework (adapted from Robins, Rountree and Rountree (2003)).

Rogalski and Samurçay (1990) summarise the task of programming as involving “a variety of
cognitive activities, and mental representations”, the “construction of conceptual knowledge, and
the structuring of basic operations [...] into schemas and plans” and the need for flexible
strategies. Emphasising the active and dynamic nature of programming, Green (1990)
suggested that programming is best regarded as an exploratory process where programs are
created “opportunistically and incrementally”. Similarly Davies (1993) concluded that “emerging
models of programming behavior suggest an incremental problem–solving process where
strategy is determined by localized problem–solving episodes and frequent problem re–
evaluation”. Kim and Lerch (1997) describe programming as a process of scientific discovery,
with different representations required in multiple “problem spaces”.

2.3.2 Perceived difficulties and errors

Along with the multiple necessary competencies and the complex and interactive nature of the
programming process, it is also worth noting that strict constraints apply to the final product of
the programming process. In human languages shared context and “common sense” fill in
many of the gaps, while ambiguity and miscommunications abound. In programming languages
the final product must be, at least to a certain functional level, complete, unambiguous, and
error free.

Lahtinen, Ala-Mutka and Järvinen (2005) surveyed 559 novice programming students (and 34
teachers) at six European universities. Respondents perceived the most difficult aspects of
programming to be “understanding how to design a program to solve a certain task”, “dividing
functionality into procedures” and “finding bugs from their own programs”. None of these issues
relate to knowledge of the specifics of any programming language, or even of general language
constructs, they are issues of developing mental models (“understanding”) and strategy (Figure
1).

A related study explored the problems encountered by novice students attempting laboratory
tasks for two populations (roughly 220 and 250) over two successive years (Garner, Haden, &
Robins, 2005; Robins, Haden & Garner, 2006). The most frequently recorded problems were
understanding the task, issues relating to overall program design and structure, and “basic
mechanics” (a general category covering typos, trivial syntax errors, missing semicolons and the
like). Of the many specific language related problems observed, the most frequent related to
loops, arrays, and passing data to / from modules. Like the study discussed above, this
suggests that developing an overall program design / algorithm is a more difficult task than
deploying any particular programming language construct (although in aggregate there are
many language constructs to consider).

McCall and Kölling (2014) review attempts to use the analysis of compiler error messages to
classify the mistakes made by novices, pointing out that different conceptual mistakes can
generate the same error message, and conversely that the same conceptual mistake can
manifest itself in different error messages. The authors hand analyse 333 error messages and
the associated code produced by 240 students and other anonymous users of the BlueJ Java
programming environment. The most common errors are “Variable not declared”, “; missing”,
“Variable name written incorrectly” and “Invalid Syntax”. This is consistent with the dominance of
the “basic mechanics” category in the previous study above.

3 Novice programmers

Many topics relating to novice programming have been explored since the 1960s. During the
1970s to the 90s there was an active and productive focus on the “psychology of programming”.

This work drew on concepts from cognitive psychology, such as knowledge representation,
problem solving, working memory, and so on (see Chapter 2.6).

Several key books marked the development of the field. Weinberg (1971) was influential in
identifying programming as an area of psychological interest and stimulating research. The
collection of papers in Studying the Novice Programmer, Soloway and Spohrer (1989) was a
significant contribution, similarly see Hoc et al. (1990). Sheil (1981) is an early review which
discusses a range of methodological issues. Other reviews include Robins, Rountree and
Rountree (2003) and Pears et al. (2007). Drawing on these and other sources, this section
notes some of the main trends and topics, with a focus on the cognitive properties of novice
programmers.

3.1 Properties of novices

One way of exploring the challenges faced by novices in a field is to compare them to experts.
Soloway and Spohrer (1989) outline deficits in novice programmers’ understanding of various
specific language constructs (e.g. variables, loops, arrays and recursion), note shortcomings in
their planning and testing of code, explore general issues relating to the use of program plans,
show how prior knowledge can be a source of errors, and more. Similarly Winslow (1996) notes
that novice programmers are limited to surface and superficially organised knowledge, lack
detailed schemata / scripts / mental models, fail to apply relevant knowledge, and approach
programming “line by line” rather than using meaningful program “chunks” or structures. In
short, novices are “very local and concrete in their comprehension of programs” (Wiedenbeck et
al., 1999). Winslow (1996) states that it takes around ten years for a novice to become an
expert programmer.

During the early stages of teaching and learning the contrast between novice and expert is less
important than that between different kinds of novice. Perkins et al. (1989) distinguish between
“stoppers”, “movers” and “tinkerers”. Stoppers are those who stop and appear to “abandon all
hope” when confronted with a problem or a lack of a clear direction to proceed. They are likely
to be those who are frustrated by or have a negative emotional reaction to errors. Movers are
those who keep trying, experimenting, modifying their code. They can use feedback about
errors effectively to solve problems and progress. Tinkerers are extreme movers, who are not
able to trace their code and may be making changes more or less at random, with little chance
of progress.

Perkins et al.’s categories have proved to be very enduring and are still cited. Note however
that the term “tinkering” is variously applied in the CEdR literature. Berland et al. (2013) review
many other uses, concluding that tinkering is commonly defined as an “exploratory activity” and
suggested to play a crucial role in successful learning.

Two simple functional categories are suggested by the tendency to polarised / bimodal
outcomes in CS1 courses as discussed above (Robins, Rountree & Rountree, 2003). Effective
novices are those who make progress in learning to program, typically leading to successful

outcomes. Ineffective novices are those that do not make progress (or require inordinate effort
and personal attention), typically leading to unsuccessful outcomes. Both the historical use of
aptitude testing and much of the research reviewed below can be seen as attempting to predict
whether given individuals will be effective or ineffective novice programmers, and / or to
understand the properties of these groups.

3.2 Knowledge

Learning to program involves acquiring both declarative knowledge, e.g. being able to state how
a “for” loop works, and practical strategies for its application, e.g. using a “for” loop appropriately
in a program (Davies, 1993). Of the two it is knowledge that receives the most explicit attention
in typical textbooks and CS1 courses, which usually focus on presenting knowledge about a
particular language. Related domains include knowledge of computers, programming tools and
resources, and theory and formal methods.

One kind of knowledge representation that has historically been identified as central to both
reading / understanding and writing programs is the structured chunk of related content. This
has variously been called a schema or frame, or (if action oriented) a script or plan (Ormerod,
1990). For example, most experienced programmers will have a schema for the design of a
class with encapsulated data fields and a public interface, or a plan for finding the average of
the values stored in a one-dimensional array. There is considerable evidence that the plan is
the basic cognitive unit used in program design and understanding, but what specifically is
meant by a plan has varied considerably between authors (Rist, 1995).

Soloway and Ehrlich (1984) present a study supporting their claims that expert programmers
use two types of programming knowledge, plans (“generic program fragments that represent
stereotypic action sequences”), and “rules of programming discourse” (the conventions that
govern the composition of the plans into programs). Expert programmers are characterised in
part by the large number of schemata / plans that they have internalised, and many studies
have emphasised the importance of acquiring these organising structures. Brooks (1990)
introduced a special issue of the International Journal of Man–Machine Studies devoted to plans
and other knowledge representations used by programmers. Soloway (1986) proposed that
novices should be explicitly taught about common plans and “stereotypical solutions”, and how
to combine and use them (see also Clancy and Linn (1999)). Rist (2004) describes learning to
program as a process of schema creation, application, combination and evaluation, and
explores “how changes in the form and structure of knowledge lead to the different types of
behaviour seen at different levels of expertise”. A distinct approach to understanding
programming based on the explicit use of “design patterns” has emerged: see for example texts
such as Gamma et al. (1995) and Freeman et al. (2004).

Two related educational theories regarding particularly important forms of knowledge,
fundamental ideas (Bruner, 1960) and threshold concepts (Meyer & Land, 2003, 2006), have
both received attention within CEd. Fundamental ideas are those which have “wide as well as

powerful applicability” and apply “at any stage of development” (Bruner, 1960). Discussing
fundamental ideas in CEd, Schwill (1994, 1997) suggests four criteria, horizontal (the idea is
relevant across many disciplines or sub-disciplines), vertical (the idea pervades all levels from
elementary through to highly advanced), time (the idea is recognised as important and it
endures), and sense (the idea has meaning in “everyday life”). Schwill argues that candidate
fundamental ideas in computing include algorithmisation, structured dissection and language,
with more specific ideas definable under each category (e.g. under language the ideas of syntax
and semantics).

Threshold concepts are those that are key challenges in learning a given knowledge domain, if
successfully acquired they enable a qualitatively different understanding. Meyer and Land
(2003, 2006) describe them as likely to be transformative (creating a new way of viewing,
understanding, or describing), integrative (allows new connections and relationships to be
perceived), irreversible (causing a fundamental change that cannot be “unlearnt”), troublesome
(problematic to grasp or difficult to integrate into current understanding), and boundary markers
(helping define scope of the knowledge domain).

Threshold concepts attracted considerable attention within CEdR. In 2005 a group of
researchers from several institutions across Europe and the USA launched an ongoing effort to
identify threshold concepts in computer science, resulting in several publications, as described
in Shinners-Kennedy and Fincher (2013). An initial informal survey of thirty-six instructors from
nine countries identified 33 candidate concepts “with most popular being: levels of abstraction;
pointers; the distinction between classes, objects, and instances; recursion and induction;
procedural abstraction; and polymorphism”. Note that “while some concepts came up again and
again, there was no universal consensus” (Boustedt et al., 2007).

A lack of consensus has proved to be a general problem within the literature on threshold
concepts, with problems of definition, subjectivity, granularity and the like identified by several
authors, e.g. Rowbottom (2007) and O’Donnell (2009). Shinners-Kennedy and Fincher (2013)
conclude that researchers have reached a “dead end” in the exploration of threshold concepts in
CEd, but work continues in other disciplines. Further ideas on the interaction between
fundamental ideas and threshold concepts in CEd are explored in both Sorva (2010) and
Rountree, Robins and Rountree (2013).

3.3 Strategies

As discussed above, programming knowledge necessarily goes hand in hand with the strategies
/ skills that are required to apply it. The latest ACM Curriculum Report for computer science
(ACM/IEEE-CS, 2013) lists one of its goals as to “identify the fundamental skills and knowledge
that all computer science graduates should possess” and notes that “graduates need to
understand how to apply the knowledge they have gained to solve real problems”. The
distinction between programming knowledge and strategies echoes fundamental distinctions in
human memory and cognition between declarative (or semantic) and procedural knowledge, or
the philosophical contrast between “knowing that” and “knowing how”. The field of mathematics

education has a long-standing and important distinction between “conceptual” and “procedural”
knowledge: see for example Hiebert and Lefevre (1986).

Strategies are relevant at all stages of the programming process, from design to evaluation /
debugging (Figure 1). Design may involve utilising problem solving strategies such as divide-
and-conquer or means-ends analysis, the use of patterns and analogies, or evaluating task or
language-specific factors that influence the structure of an appropriate program. Program
generation involves strategies for implementing the design / algorithm, accessing knowledge as
required and applying it appropriately, and using any relevant coding environment or tools.
Program evaluation may involve strategies for tracing / tracking, testing and debugging code.

Within CEdR several authors have stressed the importance or preeminence of the strategic
aspects of programming to successful learning outcomes (Soloway, 1986; Perkins et al., 1989;
Davies, 1993; Robins, Rountree & Rountree 2003), and similar discussion can be found using
related terms such as programming skills, practice or problem solving. Many of the factors that
distinguish expert from novice programmers relate to strategies (Sheil, 1981; Widowski &
Eyferth, 1986). Perkins and Martin (1986) show (relating to the fragile learning discussed in
Section 2.2.2 above) that both knowledge and strategies can be missing (forgotten), inert
(learned but not used), or misplaced (learned but used inappropriately), and note that novices
are often observed to be using generic and inefficient problem solving strategies. Eckerdal
(2009) argues that “concepts and practise are equally important parts of the learning goals, and
equally difficult for students to learn” and that “there is a mutual dependency and complex
relationship between the two”. In concluding their discussion of threshold concepts Shinners-
Kennedy and Fincher (2013) noted that “the [Threshold Concept] group altered direction and
started to search not for threshold concepts in computing, but instead posited the existence of
threshold skills”.

Davies (1993) reviews a range of literature on programming strategies and suggests that
research should move beyond attempts to simply characterise strategies and focus on why they
emerge, and how they relate to the factors such as the problem domain, the specific task, and
the programming language and tools. In particular research should focus on “exploring the
relationship between the development of structured representations of programming knowledge
and the adoption of specific forms of strategy” (Davies, 1993).

An excellent example of research fulfilling this specification is developed in a sequence of
studies of novice and experienced programmers by Rist (1986, 1989, 1995, 2004), reviewed in
Sorva (2012). Rist describes top-down, bottom-up, forward-development, backward-
development, breadth-first and depth-first design / programming strategies, and mechanisms for
schema expansion and combination. Rist suggests that programmers use top-down, forward-
developing, breadth-first strategies whenever they have a suitable schema / plan available. In
the absence of suitable schemata (e.g. for unfamiliar or particularly difficult problems)
programmers revert to bottom-up, backward-developing, depth-first strategies in order to
develop new solutions and new schemata / plans for later use. Programmers can use a mixture
of these strategies as they work on familiar or unfamiliar subproblems. Implicit in this theory is

that the availability of relevant knowledge is a major driver of strategy, confirming the widely
agreed principle that the most significant difference between novices and experts is the richness
of their respective experience / libraries of learned schemata.

Also implicit in Rist’s framework is that the key factor separating novices (who all lack rich
schemata) into effective and ineffective groups is the relative effectiveness of the strategies that
they are employing (Robins, Rountree & Rountree, 2003), and therefore the speed with which
problems can be solved and schemata acquired. The knowledge required to support this
process is available from a range of sources, with courses and textbooks designed to introduce
it in a structured way. Without the strategies for accessing this knowledge and applying it to the
practical task of programming, however, successful progress and therefore the acquisition of
effective schema cannot take place. Conversely a novice with the right initial strategies can
teach themselves to program by drawing on knowledge sources as needed. We suggest that
progress in the successful teaching of programming can be made by exploring the questions:
what are strategies employed by effective novices, how do they relate to their knowledge and
their relevant mental models, and can these strategies be taught to ineffective novices?

3.4 Mental models

The concept of a “mental model” has a long history in CEdR. Like “schema”, the term is
adopted from the cognitive science literature, where it is widely used and variously defined
(Gentner & Stevens, 1983; Johnson-Laird, 1983; Gentner, 2002). Mental models are generally
held to be internal models of how some aspect of the world works, an iconic representation of
selected aspects of external objects and systems. Mental models have predictive power, they
can be used to understand the observed behaviour of the world and reason about future
behaviour.

One important model that novices need to acquire is of the “notional machine”, an abstraction of
the software and hardware of a computer which characterises its role as executor of programs,
and which therefore provides a context for understanding the behaviour of those programs (du
Boulay, 1986; Mayer, 1989; du Boulay, O’Shea & Monk, 1989; Hoc & Nguyen–Xuan, 1990;
Cañas, Bajo & Gonzalvo, 1994). Du Boulay (1986) suggests that “A running program is a kind
of mechanism and it takes quite a long time to learn the relation between a program on the page
and the mechanism it describes”, and likens the task to trying to understand how a car engine
works based on a diagram. In the absence of an accurate understanding of a notional machine
novices can develop their own “bizarre theories” about how programs are executed (du Boulay,
1986). Mayer (1989) showed that students supplied with a notional machine model (which he
called a “concrete model”) were better at solving some kinds of problem than those without the
model.

Du Boulay, O’Shea and Monk (1989) suggest that different programming languages afford
different features of a notional machine, that they can be used to explain “hidden” actions and
side-effects of a program’s operation, and that they should be should be simple, and supported

with some kind of concrete tool which allows the machine to be observed (a “glass box” instead
of a “black box”). The later requirement is met by Berry and Kölling (2014), who propose an
example notional machine and graphical notation for object oriented programming, and
introduce an implementation of it within the popular BlueJ programming environment for Java
(Kölling et al., 2003). See also the “stepper” in DrScheme for a functional programming
example (Findler et al., 2002), and similar examples discussed in Chapter 3.10.

Sorva (2013) presents an excellent review of the notional machine concept and the
misconceptions that can arise from incorrect models, even for topics that most programmers
regard as obvious, such as simple assignment. A particular strength of the review is the
discussion of notional machines in the context of broader theoretical frameworks such as mental
models, constructivism, phenomenography, and threshold concepts. Sorva argues that
teachers should “acknowledge the notional machine as an explicit learning objective and
address it in teaching” and that in some cases such as object-oriented languages teaching “may
benefit from using multiple notional machines at different levels of abstraction”.

Schulte and Bennedsen (2006) surveyed 457 CS1 teachers on the importance and difficulty of
broad categories of programming topics. Among their findings the authors noted that only 29%
of respondents explicitly addressed a notional machine in their teaching. While factors relevant
to notional machines were rated as important, the topic of notional machines as a whole was
rated as relevant but not important. This suggests that the theoretical significance of notional
machines has not been successfully communicated to teaching practitioners, or at the very least
that there is confusion about the definition. See also chapters 1.2, 3.2, 3.4, 3.10 and 3.16 for
other perspectives on the notional machine.

Programming is sometimes described as a particular “way of thinking” (Eckerdal, Thuné &
Berglund, 2005). Beyond the notional machine, writing a program involves holding many details
in mind, including the problem domain and target design / algorithm, knowledge of a
programming language and tools, the current state of the program, and plans and strategies for
proceeding. Many of these requirements have been explored within the framework of mental
models.

“Models are crucial to building understanding. Models of control, data structures and data
representation, program design and problem domain are all important. If the instructor omits
them, the students will make up their own models of dubious quality.” (Winslow, 1996).

Problem domain models have been explored by, for example, Brooks (1977, 1983), Spohrer,
Soloway and Pope (1989), Davies (1993), Rist (1995), and the interaction between “domain
models” and “program models” by Corritore and Wiedenbeck (1991), Wiedenbeck and
Ramalingam (1999), Wiedenbeck et al. (1999), and Burkhardt, Détienne and Wiedenbeck
(1997, 2002). The topic of program models is complicated by the distinction between a program
as it was intended, and the program as it actually is. Designs can be incorrect, unpredicted
interactions can occur, bugs happen, and programmers are frequently faced with the need to
understand unexpected program behaviour. This requires the ability to trace code to build a

model of the program and its behaviour (which Perkins et al. (1989) call “close tracking” and
describe as “taking the computer’s point of view”), and the capacity to compare this model with
the intended model / behaviour.

In some situations (e.g. major bug fixes) significant alterations to a desired program model may
be necessary. Gray and Anderson (1987) call alterations to program code “change episodes”,
and suggest that they can be rich in information, helping to reveal the programmer’s models,
goals and planning activities. Wiedenbeck, Fix and Scholtz (1993) described expert mental
models programs as grounded in the use of schemata / patterns which are hierarchical and
multilayered, with explicit mappings between layers, well connected internally, and well founded
in the program text. Novice representations generally lacked these characteristics, but in some
cases were working towards them. Soloway (1986) suggested that “learning to program
amounts to learning how to construct mechanisms and how to construct explanations” and
“language constructs do not pose major stumbling blocks for novices […] the real problems
novices have lie in ‘putting the pieces together,’ composing and coordinating components of a
program”.

One of the earliest studies of mental models and programming is also one of the most
comprehensive. Mayer (1985) presented a formal analysis of the models underlying BASIC
statements, empirical evidence of the utility of the analysis in explaining the way BASIC is
learned, comprehended and used, and an analysis of common misconceptions. Learning the
language is more successful when it is based on rich and relevant conceptual knowledge.
Mayer suggests that “specific kinds of mental models can be successfully taught and that such
training tends to enhance students’ ability to solve programming problems”. Other empirical
studies that explore the problems arising from misconceptions and illustrate the advantages of
rich mental models for learning and transfer include Kurland and Pea (1985), Bhuiyan, Greer
and McCalla (1992), Cañas, Bajo and Gonzalvo (1994) and Shih and Alessi (1993).

Consistent with the fragile learning discussed above, Ma et al. (2007) explore the viability of
mental models at the end of a CS1 Java course. The authors found that “approximately one
third of students held non-viable mental models of value assignment and only 17% of students
held a viable mental model of reference assignment”. Unsurprisingly, students with viable
mental models performed significantly better than those with non-viable models. Sorva (2013)
presents a useful review of relevant literature, and explores the activity of code tracing as an
example of the active / predictive nature of mental models. Sorva concludes that the main
challenges to the successful running of a program model are “keeping track of program state in
working memory, and the difficulty of forming mental models that are robustly founded on
context-free runtime semantics of each construct”.

As a final observation, the construction of mental models of programs can clearly be supported
by a range of tools such as debuggers, software visualisation tools, and features of rich
programming environments such as BlueJ. See for example Storey, Fracchia and Müller
(1999), and Chapter 3.10.

3.5 Cognitive load

The concept of “cognitive load” has been a more recent addition to the CEdR literature, again
adopted from cognitive science. Cognitive load theory is a broad framework for describing the
load placed on (or the “effort” expended by) working memory during the execution of a task
(Sweller, 1988, 1994; Paas, Renal & Sweller, 2003; Plass, Moreno, & Brünken, 2010). As
originally proposed the theory described three kinds of load: intrinsic (the difficulty or required
effort inherent in a specific task or topic), extraneous (effort arising from and varying with the
way that information is presented), and germane (the effort required to integrate new
information into permanent schemata). (Subsequent variations are discussed in Chapter 2.6.)
One of the main determinants of intrinsic load is element interactivity, the extent to which the
task involves interacting elements that must be held in working memory simultaneously. Many
principles of good pedagogy can be construed as attempts to reduce (particularly extraneous)
cognitive load for learners, or to promote the useful learning resulting from germane load.

It seems obvious that programming tasks typically involve high element interactivity and
therefore high intrinsic load. The most effective way to manage this is to exploit one of the
known properties of working memory, our ability to “chunk” elements together into meaningful
wholes. The capacity of working memory (number of elements that can be simultaneously
“held”) is generally taken to be 4 ± 1 (Cowan, 2001). However, what exactly constitutes an
“element” is not well defined, and elements can be complex, containing other elements. For
example humans are generally able to recall a list of four single-digit numbers (e.g. 3, 7, 2, 9),
but they can also recall four multi-digit numbers (72, 123, 18, 446), which between them contain
many more digits. In short, the judicious use of “chunking” is a way to effectively hold many
elements in working memory (as parts of more complex elements). This is the reason that
structured units of knowledge such as schemata are so important in programming (and
cognition generally), where experts are distinguished largely by their learned libraries of useful
schemata, and novices experience many difficulties as they work to acquire them.

Cognitive load theory leads to several empirically verified “effects” or “principles” (Plass,
Moreno, & Brünken, 2010), some of which are discussed in the context of CEd by Sorva (2012).
Whereas learning through problem solving is a popular technique, the cognitive load for novices
(lacking the necessary schemata) is high. The worked-out-example effect suggests that
extraneous load is reduced by studying worked examples of problems rather than trying to solve
the problems from scratch, and similarly the completion effect suggests that load is reduced
when the learner starts with partial solutions. Other examples include the guidance-fading
effect, that novices need extensive support which can be reduced over time, and the isolated /
interacting elements effect, that tasks with high element interactivity will be learned more
successfully if elements are first introduced in isolation before being combined.

Sorva (2012) reviews examples where cognitive load theory has been applied to CS1. Van
Merriënboer (1990) and van Merriënboer and de Croock (1992) present evidence for the
completion effect over two experiments where students who modified and extended existing

programs achieved better outcomes than control groups that wrote programs from scratch.
Garner (2002) presents a programming environment that facilitates code completion examples.
Linn and Clancy (1992) demonstrated advantages for novices who were supplied with expert
worked examples compared to novices who designed and wrote their own programs. “These
activities emphasize the pedagogical value of reading code, as opposed to merely designing
and writing it” (Sorva, 2012).

Evidence supporting the guidance-fading effect is described in Stachel et al. (2013). Student
participants in a Visual Basic for Applications programming course were divided into a control
group and an experimental group, the latter being provided an additional scaffolding tool to
support laboratory assignments. In the first phase of the study the experimental group achieved
better laboratory scores and reported lower self-rated cognitive load scores. These advantages
persisted during the second phase when the scaffolding tool was withdrawn, and the
experimental group also achieved a higher average final score. Gray et al. (2007) suggest
combining worked example programs and guidance fading to generate “faded worked
examples”, i.e. worked example sequences with fewer code steps explicitly provided as the
learner progresses through the sequence.

Caspersen and Bennedsen (2007) combine cognitive load theory with related ideas (cognitive
apprenticeship, skill acquisition, and worked examples) to describe a CS1 design that utilises
“worked examples, scaffolding, faded guidance, cognitive apprenticeship, and emphasis of
patterns to aid schema creation and improve learning”. Similarly Mead et al. (2006) combine
cognitive load theory, fundamental ideas, threshold concepts and standard curriculum designs
to propose the ideas of “anchor concepts” and “anchor graphs” as tools for curriculum planning
in the CS1/CS2 sequence. Alexandron et al. (2014) suggest that “scenario based
programming” using visual “live sequence charts”, encourages abstract thinking and ordering
tasks by level of increasing complexity, and is an effective way of reducing cognitive load.
Morrison, Dorn and Guzdial (2014) adapted an existing “Cognitive Load Component Survey” to
the domain of introductory programming and observed the correlations between different
components of load over two lectures, concluding that results replicated earlier studies in the
domain of statistics, and that the revised survey would be a useful tool for comparing
pedagogical interventions.

While the previous section concluded that learning outcomes are improved by tools that aid
program visualisation and the construction of accurate mental models, research on cognitive
load suggests a competing design imperative, the need to keep novice programming tools as
simple as possible so as to reduce extraneous load. In a study of novices using a block-based
programming environment, Mason and Cooper (2013) conclude that “having extra options
available in the environment - even if they are not used or referenced - hinders learning”,
crucially that it also “causes the students to perceive programming in both that environment and
subsequent environments as more difficult”, and overall that “novice students benefited from a
simplified first-programming environment”. A review is beyond the scope of this chapter, but the
desire to reduce complexity underlies the design of novice programming environments such as
DrScheme (Findler et al., 2002), BlueJ (Kölling et al., 2003) and Greenfoot (Kölling, 2010), of

“teaching languages” such as Pascal and ABC (precursor to the currently popular Python), and
of block-based programming languages.

3.6 Taxonomies and measures

Cognitive scientists have developed many tools for classifying and understanding people and
the learning process. These include personality inventories, developmental models, measures
of attitude and motivation, IQ tests and more. Many of these have been applied to novice
programmers, often in an attempt to explain or predict the patterns of success or failure
discussed above.

The most influential of these tools is Bloom’s taxonomy of learning objectives, which has been
widely used in educational research and practice. The original taxonomy (Bloom et al., 1956)
described six levels of increasingly sophisticated objectives for learning within the “cognitive
domain”, namely: Remembering, Comprehending, Applying, Analysing, Synthesising, and
Evaluating. (Similar frameworks were set out for “affective” and “psychomotor” domains.) The
Revised Bloom’s Taxonomy (RBT) (Anderson et al., 2001; Krathwohl, 2002) proposes a two
dimensional model: the Knowledge Dimension defined over the categories of Factual,
Conceptual, Procedural and Metacognitive knowledge (the latter two are effectively “strategies”
in the language of this chapter), and the Cognitive Process Dimension defined over the levels of
Remember, Understand, Apply, Analyse, Evaluate, and Create.

Versions of Bloom’s taxonomy have been widely applied in computing education and in studies
of novice programming. The ACM curriculum guidelines discussion of learning outcomes states
that “In defining different levels we drew from other curriculum approaches, especially Bloom’s
Taxonomy, which has been well explored within computer science” (ACM/IEEE-CS, 2013). The
taxonomy has influenced many other curriculum documents, including the CSTA K-12
Computer Science Standards (CSTA, 2017) from the Computer Science Teachers Association.
In a useful review, Sorva (2012) notes that there is general agreement that programming
involves performance at high (and therefore difficult) levels of the taxonomy. Oliver et al. (2004)
used a weighted average of the Bloom levels of assessment items to calculate a “Bloom rating”
for a range of computing courses. Their analysis suggested that typical CS1 courses have high
Bloom ratings compared to other computing topics.

While there is general agreement that the ability to create a program to solve an unfamiliar
problem can be classified at the (original) Synthesising or (revised) Create level, there is less
agreement about more specific tasks. Thompson et al. (2008) note that a task may be
classified as Apply if the student has relevant knowledge / experience, but as Create otherwise.
Sorva (2012) states that “Code-tracing skills, for instance, have been variously classified within
the literature as understand or analyze, and many interpretations have been presented as to
how to ‘Bloom rate’ program-writing assignments of different kinds”. Some of the disagreement
may relate to varying assumptions about the backgrounds and current levels of varying
students. Bloom’s original group stressed the role of prior knowledge in determining relevant

levels, and this is consistent with the importance of known schemata and cognitive load,
reviewed above. Further CEdR studies that employ Bloom’s taxonomy are too numerous to
review individually, they include: Buck and Stucki (2000), Lister (2000), Lister and Leaney
(2003a, 2003b), Scott (2003), Johnson and Fuller (2006), Whalley et al. (2006), Thompson et al.
(2008), Starr, Manaris and Stalvey, (2008), Lopez et al. (2008), Alaoutinen and Smolander
(2010), Meerbaum-Salant, Armoni and Ben-Ari(2010), Gluga et al. (2012), Sarawagi (2014), and
Ginat and Menashe (2015).

Another very influential educational tool is the developmental stage theory of Jean Piaget
(Piaget, 1964, 1971a, 1971b). Piaget defined four stages of children’s development,
sensorimotor (from birth to the acquisition of language around 2 years old), pre-operational (to 7
years), concrete operational (to 11 years) and formal operational (to adulthood between 15 and
20 years). The later stages in particular are defined largely in terms of the acquisition of logical
capacities such as transitive inference. Within CEd it has been suggested (Barker & Unger,
1983) that developmental stages, particularly the transition to the formal operational stage, may
have an important impact on computational thinking. In a brief review White and Sivitanides
(2002) conclude that reaching the formal operational stage “is a required cognitive characteristic
of people for learning procedural programming”, and claim that “the majority of adults and many
college students fail to develop to full formal operational thinking skills.” In contrast, Bennedsen
and Caspersen (2006) found no correlation between stage of development (particularly
“abstraction ability”) and final grade in an introductory object–oriented programming course.
Further ambiguous results are reviewed by Lister (2011).

Piaget’s theory has been criticised, particularly in terms of the observed variation between the
capacities of individuals of different ages, and the lack of explanation for the “miraculous”
transition between stages (Feldman, 2004). Attempts to address such problems have led to
various “neo-Piagetian” theories. These typically distinguish stages of development based on
“features of the child’s information processing system” (such as speed of processing and
working memory capacity) rather than logical competence (Morra et al., 2007), and include
“domain specificity” (that an individual may display different levels of performance across
different domains, for some task types performance is highly dependent on relevant
knowledge).

Lister (2011) summarises a strong neo-Piagetian position, “that people, regardless of their age,
are thought to progress through increasingly abstract forms of reasoning as they gain expertise
in a specific problem domain”. Lister goes on to explore aspects of programming within neo-
Piagetian interpretations of functionally defined (but still classically named) stages, noting that
many students do not progress beyond the pre-operational stage, while much instruction is
delivered at the formal operational level (see also Corney et al. (2012)). Teague (2015)
conducted think aloud studies with novice programmers and found evidence consistent with the
neo-Piagetian model. Falkner, Vivian and Falkner (2013) present an analysis of students’
reflections on their software development processes, characterising the stages in terms of
“representative mental models” based on observed behaviours and strategies.

Inspired by Piaget and influential within CEd, the SOLO taxonomy (Biggs & Collis, 1982) is a
general educational framework for describing the “Structure of the Observed Learning Outcome”
in terms of levels of increasing complexity, from pre-structural (displaying no understanding), to
uni-structural, multi-structural, relational, and extended abstract (understanding is abstracted to
a high level and may be generalised to other tasks or topics). Brabrand and Dahl (2009)
analysed a range of courses at a Danish university (that consistently uses the SOLO taxonomy
to specify course goals), finding that programming-related competencies were typically
relational, and that computing courses in general had significantly higher levels than
mathematics or other science courses.

A range of studies have found that the taxonomy can be fairly consistently applied to evaluating
novice programmers (Whalley et al., 2006; Clear et al., 2008; Lister et al., 2006; Sheard et al.,
2008). The BRACElet project (an ITiCSE working group) conducted a multi-year multi-national
study of novice programmers which analysed examination answers for both code reading and
writing tasks, and refined and extend earlier SOLO level definitions as applied to programming
(Lister et al., 2010). Other applications to programming include Jimoyiannis (2013), Ginat and
Menashe (2015), Izu, Weerasinghe and Pope (2016), and Castro and Fisler (2017).

The Bloom and SOLO taxonomies are complementary, and they are sometimes discussed
together in the context of CEdR, for example Whalley et al. (2006). Creating a program for an
unfamiliar task requires performance at the SOLO relational level / Bloom synthesising or create
level. As noted above, programming related courses have been rated as more challenging than
other courses using both the SOLO (Oliver et al., 2004) and Bloom (Brabrand & Dahl, 2009)
taxonomies. Difficulties have been observed for both taxonomies in categorising performance
or tasks reliably, and in accounting for the way that prior experience / variation in existing
knowledge or skills affects classification level. Fuller et al. (2007) discuss these and other
problems for applying generic taxonomies to computing. The authors propose a version of
Bloom’s revised taxonomy adapted to the requirements of computing tasks, conceived of as a
matrix through which different paths are possible. Similarly Bower (2008) proposed a hierarchy
of task types based specifically on programming.

In a fascinating study Margulieux, Catrambone and Schaeff er (2018) present a methodology
which appears to rank learning domains by complexity for the learner. Students solving
problems in one of three domains (programming, chemistry or statistics) were supplied with
relevant subgoal labelled worked examples, and / or subgoal labelled explanatory text. A
different pattern of results was observed in the three domains: “While the subgoal labeled
worked example consistently improved performance, the subgoal labeled expository text, which
interacted with subgoal labeled worked examples in programming, had an additive effect with
subgoal labeled worked examples in chemistry and no effect in statistics” (Margulieux,
Catrambone & Schaeff er, 2018). The results suggest that programming is the most difficult
domain (both forms of support material interacted in improving performance), followed by
chemistry, then statistics. The authors note that “Differences in patterns of results are believed
to be due to complexity of the content to be learned”.

A wide range of other tests and instruments have been used to explore novice programmers
and the factors which influence their performance. The review presented in Robins (2010)
covers the following topics. Demographic factors – following on from early aptitude tests a
range of subsequent studies have explored the significance of factors such as age, gender,
ethnicity, marital status, GPA, mathematics background, science background, ACT/SAT math
scores, ACT composite score, SAT verbal scores, high school rank, previous computing
experience and more. Cognitive capacity – aptitude tests and related research have used a
range of tasks including letter series, figure analogies, number series, verbal meaning, and tests
of accuracy, mathematical reasoning, algorithmic execution, alphanumeric translation, deductive
and logical ability, the ability to reason with symbols, the detection of patterns and reading
comprehension (many of these are components of common IQ tests as discussed in the next
section). Cognitive style – Is there a particular learning style or personality type which
contributes to success? Tests that have been used to explore the possibility include the Myers-
Briggs Type Indicator and the Kolb Learning Style Inventory. Attitude and motivation – similarly,
is attitude / motivation critical? Studies have explored the Biggs revised two-factor Study
Process Questionnaire R-SPQ-2F, students’ self reports, measures of self-efficacy, and factors
such as perfectionism, self-esteem, coping tactics, affective states and optimism. General
conclusions are discussed in the next section.

3.7 Predicting or accounting for novice outcomes

Given the wealth of research on novice programmers, what factors are most significant in
influencing success at learning to program, and what if anything explains the pattern of
polarised / bimodal outcomes that is often observed in CS1? As noted above, frustration at the
failure of early attempts to predict aptitude lead to the widely held and subsequently enduring
belief that programmers are “born and not made” (Dauw, 1967; Webster, 1996), or (tongue in
cheek) that there exists a “geek gene” for programming (Lister, 2010): either you have it or you
don’t. If so we would expect to have found some evidence, component or correlate of this
innate ability by now. In this section the strongest potential factors identified in the above review
are briefly evaluated, and a different kind of possible explanation is discussed.

The early attempts to develop cognitive aptitude tests met with limited success. Building on this
experience a number of subsequent tests, and studies of demographic and cognitive factors,
likewise did not reach strong conclusions (Robins, 2010). The range of studies of multiple
factors that find conflicting results or at best modest statistical correlation with programming
success (typically as measured by final course grade) include: Mayer and Stalnaker (1968),
Bateman (1973), Newstead (1975), Wileman, Konvalina and Stephens (1981), Wileman,
Konvalina and Stephens (1981), Pea and Kurland (1984), Curtis (1984), Werth (1986), Evans
and Simkin (1989), Cronan, Embry and White (1989), Subramanian and Joshi (1996), Wilson
and Shrock (2001), Rountree et al. (2004), Woszczynski, Haddad and Zgambo (2005),
Bennedsen and Caspersen (2005), Ventura (2005), Bergin and Reilly (2006), Simon et al.
(2006) and Lau and Yuen (2011). The use of behavioural measures to augment such
“traditional” factors in predictive models is discussed by Carter, Hundhausen and Adesope

(2017). In short, no factor or combination of factors which clearly predict success in learning a
first programming language has been found.

The most widely studied and intuitively appealing potential cognitive factor is mathematical
ability. Most (though not all) studies that explore it find that it is one of the better predictors.
However, as was noted more than 30 years ago:

“To our knowledge, there is no evidence that any relationship exists between general math
ability and computer programming skill, once general ability has been factored out. For
example, in some of our own work we found that better Logo programmers were also high
math achievers. However, these children also had generally high scores in English, social
studies, and their other academic subjects as well. Thus, attributing their high performance
in computer programming to their math ability ignores the relationship between math ability
and general intelligence.” (Pea & Kurland, 1984).

As we might expect, a high IQ is also moderately associated with success in programming (Pea
& Kurland, 1984), and most of the individual mathematical, verbal, spatial and logical factors
noted above are employed in a range of IQ tests. One of the most pervasive and general
results about IQ, however, is that performance on various standard psychometric measures are
highly correlated, a phenomenon known as “the positive manifold”. This is sometimes used as
an argument for the existence of a single general factor of intelligence called “g”. Thus the
various cognitive factors which are weak to moderate predictors of success in programming
may have no explanatory power which is independent of IQ. Furthermore, given that
intelligence is at least roughly normally distributed in the population, it is not at all obvious how
variations in IQ can simply account for any bimodal distribution of outcomes.

Affective factors such as motivation, constructive attitudes to learning, positive expectations,
and high self-efficacy or effort are also usually found to be correlated with success in
programming (see Chapter 3.17). However, the same proviso applies. These factors are
moderate predictors of success in many domains, and thus not likely to account for any
particular properties or pattern of outcomes in programming.

Developmental factors appear to offer a strong potential explanation for programming
outcomes. For example White and Sivitanides (2002) suggest that in cases of bimodal grade
distributions “The low mode may indicate Piaget's concrete operation stage” and “The high
mode may indicate Piaget's formal operation stage”. While this is intuitively appealing for
students in the critical age range (15 to 20 years) it does not work for younger or older learners,
who are just as likely to exhibit polarised outcomes. This is an example of the kind of problem
with Piaget’s original theory which motivated the neo-Piagetian and SOLO frameworks,
replacing the reliance on chronological age with levels which are complex, contextual, and
dependent on individual factors such as prior knowledge. Note that these frameworks are
therefore descriptive rather than predictive: the range of studies reviewed above describe
observed behaviours (or artefacts) as exhibiting performance at different levels. But to then use

that level as an “explanation” of success at programming seems rather circular -– learners who
are observed to perform well at programming are observed to perform well at programming.

The failure of more than forty years of research to find a factor or factors that strongly and
reliably (let alone uniquely) predict success or failure suggests that we may be looking in the
wrong place for an explanation of programming outcomes. Maybe there is no “geek gene” /
innate capacity, or combination of cognitive or other factors which predicts or accounts for
success or failure at programming, any more or less than for other domains of learning. Robins
(2010) proposed a different kind of possible explanation for programming outcomes, the
Learning Edge Momentum (LEM) hypothesis.

The theoretical foundation for LEM is the principle that we learn “at the edges” of what we
already know, by adding to existing knowledge. The more that new information is given a
meaningful interpretation, i.e. the richer and more elaborate the links between new and old
knowledge, the more effective learning appears to be (see for example the topics of educational
scaffolding, transfer in learning, analogy, and the zone of proximal development, as discussed
in Chapter 2.6). The hypothesis is simply that, given some target domain of concepts to be
learned, successful learning makes it somewhat easier to acquire related concepts, and
unsuccessful learning makes it somewhat harder. In other words, the early acquisition (or
otherwise) of concepts in a new domain becomes self-reinforcing, creating momentum towards
successful or unsuccessful outcomes.

This LEM effect will vary in strength depending on the extent to which the concepts in the target
domain are either independent or interdependent. When the domain consists of tightly
integrated concepts (strong and well defined edges) the momentum effect will be strong.
Robins (2010) further proposed that a typical programming language is a domain of concepts
which are unusually tightly integrated (at one end of the spectrum when compared to other
domains). Factors which appear to support this proposal include the formal precision of
programming languages (syntax and semantics), the ratings that programming content has
received compared to other subjects on both the SOLO and Bloom taxonomies (Oliver et al.,
2004; Brabrand & Dahl, 2009), preliminary evidence that programming is more complex than
other learning domains (Margulieux, Catrambone & Schaeff er, 2018), and the lack of
agreement among computing educators on the correct order in which to teach programming
language concepts.

If we accept these assumptions then a plausible explanation for polarised / bimodal distributions
of outcomes in CS1 emerges. They occur not because CS1 students are somehow different
from others, but because the subject matter is different. The tightly integrated nature of
language concepts results in a strong LEM effect. It is not the case that programming is
simultaneously both hard and easy to learn for two different populations, rather programming
effectively becomes both harder and easier to learn for two different emerging groups. In short,
an inherent systemic bias arising from the interaction between the learner and the learned acts
to drive different subsets of the student population towards extreme outcomes. In this context
the historical failure to distinguish special kinds of programming students is entirely

understandable. Programming students are much like any others, and they succeed or fail for
reasons which are idiosyncratic and complex (although this review has stressed the importance
of effective strategies, and, as in other subjects, factors such as IQ, attitude and prior
experience are significant).

Studies that have supported predictions of the LEM account of programming outcomes,
particularly with respect to the importance of the first 1 to 3 weeks of a CS1 course, include
Porter and Zingaro (2014), Porter, Zingaro and Lister (2014), Hola and Andreae (2014) and
McCane et al. (2017).

3.8 Further topics

The material in this section has explored the psychology of novice programmers, focusing on
their knowledge, strategies, mental models, cognitive load, classification in various learning
related taxonomies, and the nature of possible explanations for the polarised outcomes often
observed in typical CS1 courses. Many other topics relevant to novice programming have been
explored, from narrow topics such as the relative ease of learning different kinds of
programming language, to very broad ones such as issues of equity and diversity in the makeup
of CS1 courses. Some of these are major topics explored elsewhere in this Handbook. A very
brief pointer to some relevant topics and literature is noted below.

Researchers have debated the merits of teaching different kinds of programming language,
such as procedural vs. object oriented languages (Rist, 1995; Wiedenbeck & Ramalingam,
1999; Wiedenbeck et al., 1999; Burkhardt, Détienne & Wiedenbeck, 2002; Schulte &
Bennedsen, 2006; Kunkle & Allen, 2016), and the recent use of block based languages as an
alternative or supplement to textual languages (Bau et al., 2017; Maloney et al., 2010; Price &
Barnes, 2015; Weintrop & Wilensky, 2015; Weintrop, Killen & Franke, 2018). The relationship
between the separate but related skills of program code generation / writing and comprehension
/ reading (also called tracing or tracking) have been widely studied (Brooks 1977, 1983;
Corritore & Wiedenbeck, 1991; Davies, 1993; Rist, 1995; Wiedenbeck et al., 1999; Lister et al.,
2004, Whalley et al., 2006; Lopez et al., 2008; Venables, Tan & Lister, 2009; Busjahn & Schulte,
2013). Various methods have been used to explore the specific difficulties experienced by
novice programmers (Pea, 1986; Soloway & Spohrer, 1989; Spohrer & Soloway, 1989;
Ebrahimi, 1994; Winslow, 1996; Lahtinen, Ala-Mutka & Järvinen, 2005; Garner, Haden &
Robins, 2005; Jadud, 2006; McCall & Kölling, 2014; Altadmri & Brown, 2015). For further
issues relating to programming paradigms see Chapter 3.2 of this Handbook. Pedagogical tools
such as programming environments are explored in Chapter 3.10, issues relating to prior
knowledge and misconceptions in Chapter 3.16, attitude and motivation in Chapter 3.17, the
teaching of programming in schools in Chapter 3.7, and pervasive issues of equity and diversity
in Chapter 3.5.

4 Teaching and learning in CS1

The basics of effective teaching and learning are the same in most subjects. For teachers they
include the provision of clear and relevant course materials, clear learning objectives,
assessment that is well aligned with objectives, rich and timely feedback to students, fostering
student engagement, pastoral care, competent classroom skills, and more. Educators are
increasingly exploring the use of new tools and methods such as online resources and social
media, feedback mechanisms, peer assessment, blended learning, flipped classrooms, and the
use of naturally occurring performance measures (“learning analytics”). For students, learning
outcomes will be influenced by motivation and attitude, forms of engagement, IQ, attitudes to
learning, time management skills, personal circumstances, sociocultural factors and more. The
teaching and learning process as a whole is interpreted in the context of underlying educational
philosophies or styles, such as cognitivism or constructivism. In general the goal is to foster
deep learning of principles and skills, and to create independent, reflective, lifelong learners.

Most of these topics are explored elsewhere in the Handbook. In this section we focus on
issues are specific to introductory programming as a subject, or are particularly significant in this
context. Pears et al. (2007) provide an excellent review of relevant literature; see also Robins,
Rountree and Rountree (2003).

4.1 A lack of agreement

There is unfortunately no agreement on the practical details of the best way to teach
programming, or even on fundamentals such as which topics should be taught and what order
they should be taught in. The most influential source of curriculum advice, the Joint Task Force
on Computing Curricula begins its chapter on introductory courses as follows:

“Computer science, unlike many technical disciplines, does not have a well-described list of
topics that appear in virtually all introductory courses. In considering the changing landscape
of introductory courses, we look at the evolution of such courses from CC2001 to CS2013.
[...] we believe that advances in the field have led to an even more diverse set of
approaches in introductory courses than the models set out in CC2001. Moreover, the
approaches employed in introductory courses are in a greater state of flux.” (ACM/IEEE-CS,
2013).

For perspectives from teachers see Bruce (2004), titled “Controversy on how to teach CS 1: a
discussion on the SIGCSE-members mailing list”. It was suggested above that this lack of
agreement arises in part because of the densely connected and interdependent nature of the
concepts in the domain of a programming language. There is no one right path through the
maze. Despite disagreements on practical specifics, however, there is consensus on many
theoretical issues and guidelines arising from the experience of practitioners and from CSEd
research.

4.2 CS1 design and pedagogy

Various iterations of the ACM Computing Curricula have presented a range of course options
and exemplars which serve as useful reference points for the field. Beyond such guidelines,
however, there are many challenges involved in learning to program, as reviewed in Section 3
above. In this context the design and delivery of a CS1 course should be realistic in its
expectations and systematic in its development. In a significant survey of literature on teaching
programming, Pears et al. (2007) discuss three general approaches based on “the primary
emphasis of the instructional setting”, namely: “problem solving, learning a particular
programming language, and code/system production”.

Schneider (1978) presents ten principles which he suggests capture the “essential objectives of
an initial programming course”, all of which remain relevant for consideration today. The
principles (abstracted from the explanatory text) are:

“1) Students should immediately be taught that a clear, concise problem statement is always
the first step in programming. 2) The single most important concept in a programming
course is the concept of an algorithm. 3) It is important to introduce the duality of data
structures and algorithms in the programming process. 4) Choose a programming language
that enhances the learning process. 5) The presentation of a computer language should
concentrate on semantics and program characteristics not syntax. 6) The presentation of a
computer language must include concerns for programming style from the very beginning.
7) The subject of debugging should be formally presented. 8) The subject of program testing
and verification should be formally presented. 9) The subject of documentation should be
formally presented. 10) A student should be introduced to realistic programming applications
and realistic programming environments.” (Schneider, 1978).

Linn and Dalbey (1989) set out an ideal “chain of cognitive accomplishments” for teaching and
learning programming. The links of the chain are: (1) features of the language being taught; (2)
design skills, including knowledge templates/schemata/plans and the procedural skills of
planning, testing, and reformulating code; and (3) problem-solving skills, including knowledge,
strategies and procedural skills abstracted from the specific language that can be applied to
new languages and situations.

Recognising the importance of problem solving, many of the ACM course exemplars since 2001
address it before or along with language features (ACM/IEEE-CS, 2013). Some (but not all)
studies show improved outcomes for this approach (Davies, 2008; Koulouri, Lauria & Macredie,
2014; Hill, 2016). Rist (1995) and Winslow (1996), however, suggest that problem solving is
necessary but not sufficient for programming. Winslow notes for example that most
undergraduates can average a list of numbers, but fewer than half of them can write a loop to
do the same operation. A discussion of the issues involved in problem based learning, a
description of various examples, and a three year longitudinal follow-up of students is described
in Kay et al. (2000). The authors observe “a substantial improvement in basic programming

competence” (although possible confounding factors are acknowledged). The relationship
between problem solving and programming skills is extensively reviewed by Palumbo (1990).

Fincher (1999) asks “What are we doing when we teach programming?”, and compares four
conceptual frameworks, “syntax-free", "problem-solving", "literacy" and “computation-as-
interaction”. Felleisen et al. (2001) argue that programming is for everyone, and that it is best
learned by focusing on the design process. The authors provide “a set of explicit design
guidelines” (such as data- and test-driven program design, and writing examples before code)
for developing computational solutions in a step by step manner. Other resources produced by
the Program by Design group (www.programbydesign.org) include a specialised programming
environment for beginners. Fisler (2014) provides evidence of the success of this approach in a
study of five CS1 classes at four institutions (using program by design methods and a functional
language). Students in this cohort significantly outperformed other reported study results on the
classic rainfall problem. For a very different perspective, that argues in favour of teaching
programming based on formal methods such as predicate calculus and proofs of correctness,
see Edsger Dijkstra’s much debated “On the cruelty of really teaching computer science”
(Dijkstra, 1989).

Underlying much of the debate about the strengths and weaknesses of various approaches to
teaching is the issue of transfer in learning. Facts and skills which are learned in one context,
e.g. problem solving, do not necessarily transfer to other contexts, e.g. writing code. Mayer
(1992) notes that in practice CS1 courses have typically focused on language features, with
varying opportunities to learn in ways that promote transfer. Transfer in learning programming
is further discussed in Chapter 1.4, and transfer as a general phenomenon is learning is
explored in Chapter 2.6.

The known difficulties of teaching programming have motivated various special languages and
tools, an early example being the Logo language and “turtle graphics” introduced in 1967. Du
Boulay, O’Shea and Monk (1989) made a case for the use of simple, specially designed
teaching languages. Examples of such languages include Logo (released in 1967), Pascal (in
1970), Eiffel (in 1986), Python (in 1989), Alice (in 1994), the student languages of Racket (in
2001) and Scratch (in 2003). Pears et al. (2007) discuss factors that influence the choice of
language in current courses, and tradeoffs such as richness vs. complexity. Commercially
popular languages such as Java, C and C++ are dominant for practical reasons (e.g. student
demand), but their suitability for teaching has been much debated. The obvious and
widespread intuition that syntactic complexity hampers learning has been supported by many
studies, e.g. Mannila, Peltomäki and Salakoski (2006), Yadin (2011), Koulouri, Lauria and
Macredie (2014). One popular approach to exercises for teaching and assessing programming
is Parsons problems (Parsons & Haden, 2006), which present unordered statements that can
be correctly ordered into working code. This approach is generally held to reduce cognitive load
by providing syntactically correct building blocks.

Soloway and Spohrer (1989) summarise several suggestions relating to the design of
programming environments / tools for novices, including: the use of “graphical languages” to

make control flow explicit; a simple underlying machine model; short, simple and consistent
naming conventions; graphical animation of program states (with no “hidden” actions or states);
design principles based on spatial metaphors; and the gradual withdrawal of initial supports and
restrictions. Kelleher and Pausch (2005) present a taxonomy and review of languages and
environments “designed to make programming more accessible to novice programmers of all
ages”. Some recent research on visualisation tools, programming environments and block
based programming languages is noted above. See Pears et al. (2007) and Chapter 3.10 for
much broader reviews.

Given that much is now known about novice programmers, it is possible for teachers to
anticipate and attempt to support different kinds of learner. Within any large class there is likely
to be a group who are making excellent progress (effective novices), a large group who are
struggling (ineffective), and others in between. It is not possible for a typical course to perfectly
suit both the effective and ineffective groups – CS1 will almost certainly move too quickly for
many students, and too slowly for some. This can be partially addressed by trying to set the
course at the level of the “average” student, and providing both extension work for the high
achieving group and targeted support to those who are struggling. If the strategies of effective
novices can be identified it may be possible to promote effective strategies to all groups. In
other words, rather than focusing exclusively on the end product of programming knowledge,
teachers could focus at least in part on the enabling step of functioning as an effective novice.
Considerations of motivation and self-efficacy (Chapter 3.17) and gender and diversity (Chapter
3.5) are also important in this context. Ideally course design and delivery would motivate all
students, engage them in the process, and support them with the tools and strategies needed to
become effective learners of programming.

4.3 Dimensions of learning and practical examples

Considering CS1 in terms of the three dimensions of knowledge, strategies, and mental models,
provides a useful framework for course design and delivery. Making these explicit to students
may also aid their understanding of the learning process in which they are engaged. Successful
learning on all three dimensions is crucially dependant on broad experience of practical
programming tasks.

The typical CS1 course focuses on knowledge of the elements of a programming language and
practice in their application. As noted in Section 2.3.2 above, however, surveys and studies of
novice programmers have shown that the main problems that they experience relate not to
individual language constructs, but to overall program design and structure. This is consistent
with frequent recommendations in the literature, that instruction should emphasise the
combination and use of language features and the underlying issue of program design. Spohrer
and Soloway suggested “focusing explicitly on specific strategies for carrying out the
coordination and integration of the goals and plans that underlie program code”, that “students
should be made aware of such concepts as goals and plans, and such composition statements
as abutment and merging”, and that “students be given a whole new vocabulary for learning

how to construct programs” (Spohrer & Soloway, 1989). Mayer (1989) suggested that “explicit
naming and teaching of basic schemata [...] may become part of computer programming
curricula”. Bearing out this prediction:

“A minor but remarkable collection of programming education research from the past ten to
fifteen years concerns a pattern-based approach to instruction which utilize a shift from
emphasis on learning the syntactic details of a specific programming language to the
development of general problem-solving and program-design skills.” (Caspersen &
Bennedsen, 2007).

(Here the authors use the “pattern” as more or less synonymous with “schema”.) The use of
full-fledged design patterns (Gamma et al., 1995; Freeman et al., 2004), particularly common in
an object-oriented context, is widely regarded as too complex for CS1 unless simplified and
customised (Lewis et al., 2004; Wick, 2005; Hundley, 2008).

Several authors have noted that the teaching of knowledge structures must be anchored in, and
learning may most effectively emerge from, practical experience and examples.

“The acquisition of schemata, such as a general design schema or programming plans,
requires mindful abstraction, presupposes the confrontation with a well-chosen range of
problems and their solutions (i.e., worked examples), and provides analogies that may guide
subsequent behavior in solving unfamiliar aspects of new programming problems.” (van
Merriënboer & Paas, 1990).

Caspersen and Bennedsen (2007) also stress the importance of worked examples, along with
“scaffolding, faded guidance, cognitive apprenticeship, and emphasis of patterns to aid schema
creation and improve learning”.

As noted in Section 3.3 above, many authors have suggested that strategies are the most
important factor in determining the success or failure of learning to program. We have similarly
proposed (Robins, Rountree & Rountree, 2003) that it is differences in strategy that most
significantly separate ineffective and effective novices. Despite their importance, strategies
typically receive less explicit attention in CS1 than knowledge. Furthermore, as Brooks (1990)
points out, strategies themselves cannot (in most cases) be deduced from the final “static” form
of a program, even though they may have had a strong impact in the design and coding process
and thus on the final form. As pedagogical examples, finished programs are rich and accessible
sources of information about the language, but the strategies that created those programs are
much harder to make explicit.

These factors highlight the importance of actively developing programs and explicitly addressing
the strategies involved as part of CS1 design and delivery. While this can be demonstrated in
lectures and teaching resources, hands-on experience is obviously the most effective form of
learning for students. This highlights again the need for well designed example tasks and the

practical opportunities for students to engage with them. The design, delivery and assessment
(see below) of laboratory / practical sessions may be the most important element of CS1.

The mental models that novices must develop, both with respect to an underlying notional
machine and as important aspects of planning, understanding and debugging programs, are
also very important to successful learning outcomes. As noted above, a broad survey (Schulte
& Bennedsen, 2006) suggests that teachers regard an explicit notional machine as relevant, but
only 29% of respondents explicitly addressed it in their teaching. Mental models of specific
programs are of course internal, personal, and relative to particular examples, and therefore
impossible to “teach”, but many aspects of typical CS1 design and pedagogy can implicitly
support learners in the process of their acquisition. Example methods include the use of
modelling languages such as UML, demonstrating and encouraging the practice of program
tracing / tracking, graphical representations of program states and animations of their
operations, and the use of tools such as debuggers or programming environments that facilitate
the observation of program state.

In summary, programming knowledge, skills and mental models cannot be effectively acquired
in the abstract, they must be anchored in rich practical experience. This highlights the
importance of laboratory / practical sessions in the design and delivery of CS1. Programming
tasks also have many pedagogically useful features. Each one can form a “case based”
problem solving session where students can work and learn at their own pace. The feedback
supplied by compilers and other tools is immediate, consistent and (ideally) informative. For
teachers, change episodes (where an alteration is made to code) may be rich in information
about the students’ models, plans and goals (Gray & Anderson, 1987). For students, the
reinforcement and motivation derived from creating a working program can be very powerful
(programs with graphical and animated output can be particularly popular). One of the
strongest results to emerge from the study of practical programming tasks is the success of
collaborative work and “peer learning”, see Chapters 3.18 and 3.19.

4.4 Effective and ideal interventions

One of the most important ways of supporting learning in educational contexts in general is the
effective use of formative assessment: “Assessment that is explicitly designed to promote
learning is the single most powerful tool we have for raising standards and empowering life-long
learning” (Assessment Reform Group, 1999). While this finding is not specific to CEd, there are
a number of discipline specific factors to consider in the assessment of programming, as
discussed in Chapter 3.3. It may well be that understanding and improving our assessment
practices is the single most effective intervention we can make. Hattie (2009, 2012) presents a
large scale meta-analysis of a range of factors influencing educational outcomes in general.

The literature reviewed above includes many research-based examples of course design
decisions or interventions which are specific to teaching programming, and which have been
shown to have a beneficial effect on learning outcomes. These include: the use of syntactically

simple languages and rich (but not overly complex) programming environments and tools;
providing and encouraging the use of a notional machine that underlies the language; attention
to both reading (tracing / tracking) and writing code; a focus on problem solving, combining
language elements and program design; explicit attention to programming strategies; facilitating
the acquisition of appropriate mental models; the extensive use of well designed example
programs and practical tasks; and (Chapters 3.18, 3.19) the use in this context of pair
programming and peer learning methods.

In a very useful review, Vihavainen, Airaksinen and Watson (2014) attempt to quantify the
improvements in learning outcomes which can be attributed to various kinds of intervention.
From a broad initial sample the authors identified 32 articles describing interventions in CS1
courses that included pre- and post-intervention pass rates, sometimes over multiple instances
(e.g. semesters), for a total of 60 interventions. Within this sample the authors collaboratively
coded the intervention types. The ten most commonly observed interventions were:
collaboration (encouraging student collaboration), content change (updates to teaching
material), contextualization (alignment towards a specific context e.g. games or media), CS0
(the creation of a preliminary course), game-theme (introduction of a game-themed component),
grading schema (e.g. increase the weighting for practical tasks), group work (e.g. team-based
learning or cooperative learning), media computation (programming in the context of digital
media), peer support (pairs, groups, or peer tutors), and support (an umbrella term for e.g.
increased teacher hours or additional support channels). The most frequent intervention was
content change (followed by peer support and collaboration), the least was CS0.

As an overall summary, the average course pass rate prior to an intervention was a mean of
61.4% (sd 1.15%) and after intervention 74.4% (sd 11.7%). The average “realised
improvement” (the extent to which the post-intervention pass rate closed the gap between the
pre-intervention pass rate and 100%) for each of the interventions ranged from media
computation (mean 48% sd 16%) to game-theme (mean 18% sd 23%). The authors note that
there was considerable variation over individual interventions and combinations of interventions,
including 5 (of the 60) cases of pass rates decreasing. They conclude that “the interventions
reported in the literature increase introductory programming course pass rates by one third on
average”, and that “no statistically significant differences between the effectiveness of the
teaching interventions were found”. However, given that “the results suggest that almost any
planned intervention improves the existing state” the source articles need to be evaluated for
the extent to which they did (or did not) account for common threats to validity such as
experimenter bias or the Hawthorne effect (Mitchell & Jolley, 2012).

Returning to the LEM hypothesis (Section 3.7), recall that it suggests that both early success or
failure in learning programming become, over time, compounding effects. Once negative
momentum is established it is very hard to overcome; ideally positive momentum should be
established right from the start. This implies that the very early stages of CS1 are critical to
outcomes. Everything possible should be done to ensure that the initial student experiences are
successful, and to facilitate learning during this critical time. Particular attention should be paid
to the careful introduction of concepts and the systematic development of the connections

between them. Any extra resources or support (e.g. increased access to tutors) should be
focused on the early stages. Students showing signs of disengagement (missing labs or
tutorials, failing to submit work) should be followed up immediately and actively, as early as the
first week. Students could also be told why the early period of learning is critical, as this “meta-
knowledge” may increase engagement and motivation. They should absolutely be encouraged
to seek immediate help at the first sign of difficulty, keeping up is vital. Studies which have
supported predictions of the LEM hypothesis, particularly with respect to the importance of the
early weeks of a CS1 course, were noted in Section 3.7.

Most CS1 courses are constrained by practical considerations of resources, time, and large
student populations. In an ideal world we would like to provide individual and personally
designed tuition and support to every student. It may be that breakthroughs in intelligent
tutoring systems will one day achieve this ideal. In the meantime, however, the closer we can
get to this goal within the practical constraints that we have, the more successful learner
outcomes will be.

One suggestion in this context is to address the usual constraint of a single fixed flow (rate and
path of progression) through the curriculum. The clear message from the literature is that there
is no point in expecting a student to acquire a new layer of complex concepts if the foundation of
prerequisite concepts does not exist. This could potentially be addressed by introducing some
flexibility into the delivery of the course, so that students are more able to work and learn at their
own pace, and in ways that allow them to make sustainable progress. For example, CS1 could
be offered in multiple streams which progress at different rates or vary in the amount of material
covered. Students could select streams, or move between them, possibly as guided by an early
diagnostic test. “Recovery streams” could be offered so that students have the option to
backtrack and revise. For maximum flexibility, streams (through which students progress at the
same rate) could be replaced by self-paced learning, where courses consist of just resource
materials and a sequence of exercises to be completed at any time. Mastery models of learning
and apprenticeships are common in some teaching contexts and may be interesting to explore
as alternative models for the teaching of programming.

5 Discussion

There are many reasons that so much of CEdR is directed at the topics of novice programmers
and CS1 (this motivational context was described in the introduction). From this research
many implications for practice have emerged. We know that both the teaching and the
learning of programming can be improved, resulting in better learning outcomes. We know a
fair bit about specific methods that improve teaching and / or learning, although perhaps we
don’t know much of this for sure (see below). It is therefore incumbent on us as teachers to
familiarise ourselves with this literature, to adopt the methods that will work in our context, and
to be the best teachers that we can be. Specific methods that appear to be effective in practice
for programming are summarised in Section 4.4. These should be seen in the context of the
broader issues of pedagogic methods, motivation and affect, tools, assessment, issues of equity

and diversity, and other matters that are addressed elsewhere in this Handbook. As always the
most general and important lesson is that by understanding the learner, and designing our
courses to support the learning process, we can achieve better outcomes as teachers. Much is
known about novice programmers as learners, giving teachers much to work with.

There remain many open questions. Further investigation and replication within most CEdR
topics would be welcome (in a sense all questions are open). In particular, we can’t be sure that
we know all the reasons that programming is so difficult to learn for so many, and we still don’t
know much about why it appears to be quite easy for some. Most CEdR has been inward
looking. Although we think programming has some unique challenges, we still don’t know much
about how similar or how different it is from other topics for teachers and for learners. We
absolutely don’t know the best language(s) for learners, the best way to teach any given
language, or that we have yet found the most effective ways of supporting learners.

Of the dimensions of knowledge, strategies and mental models, we know least about the mental
models constructed by learners. How are they acquired, how do they vary, how can we
facilitate useful ones, how do we intervene and correct false ones? How do we best reduce the
cognitive load of programming or learning to program? While we know a fair bit about the
differences between experts and novices, we know less about the differences between effective
and ineffective novices. What are effective novices doing that works so well? Can it be
identified, and can it be used to support currently ineffective novices? Have we found out as
much as we can about why some novice programmers succeed and not others? Are the crucial
differences cognitive, attitudinal, or behavioural, or impossible to separate? What is best
teaching practice as it relates to each of these dimensions? We haven’t found one yet, but is
there a configuration of circumstances or a diagnostic test which can accurately predict who will
or will not be successful at programming? Can we yet rule out the meme of the programmer
gene, and do away with the idea that programmers are born and not made? Many countries are
currently embarking on a large-scale educational experiment, but will the move towards
teaching computational thinking or elements of programming in schools be successful? How
best can it be supported? What are the implications for teaching and learning programming at
later levels?

As argued in the introduction to this Handbook, this is an important and exciting time to be
engaged in CEdR. A focus on novice programmers, and the topics of teaching and learning
programming, are likely to remain of central interest to the field for the foreseeable future.

REFERENCES

ACM/IEEE–CS Joint Task Force on Computing Curricula (2013). Computer Science Curricula
2013. USA: ACM Press and IEEE Computer Society Press.

Alaoutinen, S. & Smolander, K. (2010). Student Self–Assessment in a Programming Course
Using Bloom’s Revised Taxonomy. In Proceedings of the Fifteenth Annual Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’10) (pp. 155–159). New
York, NY: ACM.

Alexandron, G., Armoni, M., Gordon, M. & Harel, D. (2014). Scenario–based programming:
Reducing the cognitive load, fostering abstract thinking. In Companion Proceedings of the 36th
International Conference on Software Engineering (pp. 311–320). New York, NY: ACM.

Allan, V. H. & Kolesar, M. V. (1997). Teaching computer science: a problem solving approach
that works. ACM SIGCUE Outlook, 25(1–2), 2–10.

Altadmri, A. & Brown, N. C. (2015). 37 million compilations: Investigating novice programming
mistakes in large–scale student data. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (pp. 522–527). New York, NY: ACM.

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P.
R., Raths, J. & Wittrock, M. C., eds. (2001). A Taxonomy for Learning and Teaching and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, New York: Addison
Wesley Longman.

Assessment Reform Group (1999). Assessment for Learning: Beyond the Black Box,
Cambridge, UK: Cambridge University

Barker, R. J. & Unger, E. A. (1983). A predictor for success in an introductory programming
class based upon abstract reasoning development. ACM SIGCSE Bulletin, 15(1), 154–158.

Bateman C.R. (1973). Predicting performance in a basic computer course. In Proceedings of
the Fifth Annual Meeting of the American Institute for Decision Sciences (pp. 130–133). Atlanta,
GO: AIDS Press.

Bau, D., Gray, J., Kelleher, C., Sheldon, J. & Turbak, F. (2017). Learnable programming: blocks
and beyond. Communications of the ACM, 60(6), 72–80.

Bauer, R., Mehrens, W.A. & Vinsonhaler, J.F. (1968). Predicting performance in a computer
programming course. Educational and Psychological Measurement, 28, 1159–1164.

Beaubouef, T. B. & J. Mason (2005). Why the High Attrition Rate for Computer Science
Students: Some Thoughts and Observations. Inroads – The SIGCSE Bulletin, 37(2), 103–106.

Bennedsen, J. & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM
SIGCSE Bulletin, 39(2), 32–36.

Bennedsen, J. & Caspersen, M.E. (2005). An investigation of potential success factors for an
introductory model-driven programming course. In Proceedings of the First International
Workshop on Computing Education Research (ICER '05) (pp. 155–163). New York, NY: ACM.

Bennedsen, J. & Caspersen, M.E. (2006). Abstraction ability as an indicator of success for
learning object-oriented programming? SIGCSE Bulletin, 38(2), 39–43.

Bergin, S. & Reilly, R. (2006). Predicting introductory programming performance: A multi-
institutional multivariate study. Computer Science Education, 16(4), 303–323.

Berland, M., Martin, T., Benton, T., Petrick Smith, C. & Davis, D. (2013). Using learning
analytics to understand the learning pathways of novice programmers. Journal of the Learning
Sciences, 22(4), 564–599.

Berry, M. & Kölling, M. (2014). The state of play: a notional machine for learning programming.
In Proceedings of the 2014 conference on Innovation & technology in computer science
education (pp. 21–26). New York, NY: ACM.

Bhuiyan, S., Greer, J. E. & McCalla, G. I. (1992). Learning recursion through the use of a mental
model-based programming environment. In International Conference on Intelligent Tutoring
Systems (pp. 50–57). Berlin, Heidelberg: Springer.

Biggs, J. B. & Collis, K. F. (1982). Evaluating the Quality of Learning: The SOLO Taxonomy
(Structure of the Observed Learning Outcome), New York: Academic Press.

Bloom, B., Englehart, M.D., Furst, E.J., Hill, W.H. & Krathwohl, D. (1956). Taxonomy of
Educational Objectives: Handbook I: Cognitive Domain, New York: Longmans.

Bornat, R. (2014). Camels and humps: a retraction. Downloaded 11 October 2017 from:
http://eis.sla.mdx.ac.uk/staffpages/r_bornat/papers/camel_hump_retraction.pdf

Bornat, R., Dehnadi, S. & Simon (2008). Mental models, consistency and programming
aptitude. In Proceedings of the Tenth Australasian Computing Education Conference (ACE
2008) (pp. 53–62). Darlinghurst, Australia: Australian Computer Society.

Boustedt, J., Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., Sanders, K. & Zander,
C. (2007). Threshold concepts in computer science: Do they exist and are they useful?. ACM
SIGCSE Bulletin, 39(1), 504–508.

Bower, M. (2008). A Taxonomy of Task Types in Computing. ACM SIGCSE Bulletin, 40(3),
281–285.

Brabrand, C. & Dahl, B. (2009). Using the SOLO Taxonomy to Analyze Competence
Progression of University Science Curricula. Higher Education, 58(4), 531–549.

Brooks, F. P. (1975). The Mythical Man–Month: Essays on Software Engineering, New York:
Addison–Wesley.

Brooks R. E. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man–Machine Studies, 9, 737–751.

Brooks R. E. (1983). Towards a theory of the comprehension of computer programs.
International Journal of Man–Machine Studies, 18, 543–554.

Brooks R. E. (1990). Categories of programming knowledge and their application. International
Journal of Man–Machine Studies, 33(3), 241–246.

Bruce, K. B. (2004). Controversy on how to teach CS 1: a discussion on the SIGCSE–members
mailing list. ACM SIGCSE Bulletin, 36(4), 29–34.

Bruner, J. S. (1960). The Process of Education, Cambridge, MA: Harvard University Press.

Buck, D. & Stucki, D. J. (2000). Design early considered harmful: graduated exposure to
complexity and structure based on levels of cognitive development. ACM SIGCSE Bulletin,
32(1), 75–79.

Burkhardt, J. M., Détienne, F. & Wiedenbeck, S. (2002). Object–Oriented Program
Comprehension: Effect of Expertise, Task and Phase. Empirical Software Engineering, 7(2),
115–156.

Burkhardt, J. M., Détienne, F. & Wiedenbeck, S. (1997). Mental Representations Constructed
by Experts and Novices in Object–Oriented Program Comprehension. In Proceedings of the
IFIP TC13 International Conference on Human–Computer Interaction (INTERACT ’97) (pp.
339–346). London: Chapman & Hall.

Busjahn, T. & Schulte, C. (2013). The use of code reading in teaching programming. In
Proceedings of the 13th Koli Calling international conference on computing education research
(pp. 3–11). New York, NY: ACM.

Cañas, J. J., Bajo, M. T. & Gonzalvo, P. (1994). Mental models and computer programming.
International Journal of Human–Computer Studies, 40(5), 795–811.

Carter, A. S., Hundhausen, C. D. & Adesope, O. (2017). Blending Measures of Programming
and Social Behavior into Predictive Models of Student Achievement in Early Computing
Courses. ACM Transactions on Computing Education (TOCE), 17(3), Article 12 (20 pages).

Caspersen, M. E. & Bennedsen, J. (2007). Instructional design of a programming course: a
learning theoretic approach. In Proceedings of the Third International Workshop on Computing
Education Research (pp. 111–122). New York, NY: ACM.

Caspersen, M. E., Larsen, K. D. & Bennedsen, J. (2007). Mental models and programming
aptitude. ACM SIGCSE Bulletin, 39(3), 206–210.

Castro, F. E. V. & Fisler, K. (2017). Designing a multi-faceted SOLO taxonomy to track program
design skills through an entire course. In Proceedings of the 17th Koli Calling International
Conference on Computing Education Research (Koli Calling '17) (pp. 10-19). New York, NY:
ACM.

Clancy, M. J. & Linn, M. C. (1999). Patterns and pedagogy. ACM SIGCSE Bulletin, 31(1), 37–
42.

Clear, T., Whalley, J., Lister, R. F., Carbone, A., Hu, M., Sheard, J., Simon, B. & Thompson, E.
(2008). Reliably classifying novice programmer exam responses using the SOLO taxonomy. In
21st Annual conference of the National Advisory Committee on Computing Qualifications
(NACCQ 2008) (pp. 23–30). Auckland, New Zealand: National Advisory Committee on
Computing Qualifications.

Corney, M., Teague, D. & Thomas, R. N. (2010). Engaging students in programming. In
Proceedings of the Twelfth Australasian Conference on Computing Education Volume 103 (pp.
63–72). Darlinghurst, Australia: Australian Computer Society,

Corney, M., Teague, D., Ahadi, A. & Lister, R. (2012). Some empirical results for neo–Piagetian
reasoning in novice programmers and the relationship to code explanation questions. In
Proceedings of the Fourteenth Australasian Computing Education Conference Volume 123 (pp.
77–86). Darlinghurst, Australia: Australian Computer Society.

Corritore, C. L. & Wiedenbeck, S. (1991). What do novices learn during program
comprehension?. International Journal of Human–Computer Interaction, 3, 199 – 222.

Cowan, Nelson (2001). The magical number 4 in short–term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

Cronan, T.P., Embry, P.R. & White, SD. (1989). Identifying factors that influence performance
of non–computing majors in the business computer information systems course. Journal of
Research on Computing in Education, 21 (4), 431–441.

CSTA (2017). About the CSTA K–12 Computer Science Standards. Downloaded 24 November
2017 from https://www.csteachers.org/page/standards

Curtis, B. (1984). Fifteen years of psychology in software engineering: Individual differences and
cognitive science. In Proceedings of the 7th international conference on Software Engineering
(pp. 97–106). New York, NY: IEEE.

Dauw, D. (1967). Vocational Interests of Highly Creative Computer Personnel. Personnel
Journal, 46(10), 653–659.

Davies S. P. (1993). Models and theories of programming strategy. International Journal of
Man–Machine Studies, 39, 237–267.

Davies, S. P. (2008). The effects of emphasizing computational thinking in an introductory
programming course. In Frontiers in Education Conference (FIE 2008) (pp. T2C–3). New York,
NY: IEEE.

Dehnadi, S. (2006). Abstract for Dehnadi & Bornat (2006). Downloaded 09 November /2017
from: http://www.eis.mdx.ac.uk/research/PhDArea/saeed/

Dehnadi, S. & Bornat, R. (2006). The camel has two humps (working title). Downloaded 11
November 2017 from: http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Dijkstra E. W. (1989). On the cruelty of really teaching computer science. Communications of
the ACM, 32(12), 1398–1404.

du Boulay, B., O’Shea, T. & Monk, J. (1989). The black box inside the glass box: presenting
computing concepts to novices. In E. Soloway & J. C. Spohrer, eds, Studying the Novice
Programmer (pp. 431–446). Hillsdale, NJ: Lawrence Erlbaum.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57–73.

du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway & J. C. Spohrer,
eds, Studying the Novice Programmer (pp. 283–299). Hillsdale, NJ: Lawrence Erlbaum.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition.
International Journal of Human–Computer Studies, 41(4), 457–480.

Eckerdal, A. (2009). Novice Programming Students' Learning of Concepts and Practice.
Doctoral dissertation, Acta Universitatis Upsaliensis.

Eckerdal, A., Thuné, M. & Berglund, A. (2005). What does it take to learn 'programming
thinking'?. In Proceedings of the First International Workshop on Computing Education
Research (pp. 135–142). New York, NY: ACM.

Elarde, J. (2016). Toward improving introductory programming student course success rates:
experiences with a modified cohort model to student success sessions. Journal of Computing
Sciences in Colleges, 32(2), 113–119.

Ensmenger, N. L. (2010). The Computer Boys Take Over: Computers, Programmers, and the
Politics of Technical Expertise, Cambridge, MA: MIT Press.

Evans, G.E. & Simkin, M.G. (1989). What best predicts computer proficiency?.
Communications of the ACM, 32(11), 1322–1327.

Falkner, K., Vivian, R. & Falkner, N. J. (2013). Neo–piagetian forms of reasoning in software
development process construction. In Learning and Teaching in Computing and Engineering
(LaTiCE) (pp. 31–38). New York, NY: IEEE.

Feldman, D.H. (2004). Piaget’s stages: the unfinished symphony of cognitive development.
New Ideas in Psychology, 22, 175–231.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2001). How to Design Programs: an
Introduction to Programming and Computing, Cambridge, MA: MIT Press.

Fincher, S. (1999). What are we doing when we teach programming?. In Frontiers in Education
Conference (FIE'99) Volume 1 (pp. 12A4-1–12A4-5). New York, NY: IEEE.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler, P. & Felleisen,
M. (2002). DrScheme: A programming environment for Scheme. Journal of Functional
Programming, 12(2), 159–182.

Fisler, K. (2014). The recurring rainfall problem. In Proceedings of the Tenth Annual Conference
on International Computing Education Research (pp. 35–42). New York, NY: ACM.

Freeman, E., Robson, E., Bates, B. & Sierra, K. (2004). Head First Design Patterns: A Brain–
Friendly Guide, Sebastopol, CA: O'Reilly Media.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán–Losada, I., Jackova, J.,
Lahtinen, E., Lewis, T. L., Thompson, D. M., Riedesel, C. & Thompson, E. (2007). Developing a
computer science–specific learning taxonomy. ACM SIGCSE Bulletin, 39(4), 152–170.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995). Design patterns: Elements of
reusable object–oriented software, New York, USA: Addison–Wesley.

Garcia, R. A. (1987). Identifying the Academic Factors that Predict the Success of Entering
Freshmen in a Beginning Computer Science Course. Doctoral dissertation, Texas Tech
University.

Garner, S. (2002). Reducing the cognitive load on novice programmers. In Proceedings of
World Conference on Educational Multimedia, Hypermedia and Telecommunications (pp. 578–
583). Chesapeake, VA: AACE.

Garner, S., Haden, P. & Robins, A. My program is correct but it doesn’t run: a preliminary
investigation of novice programmers’ problems. In Proceedings of the Seventh Australasian
Computing Education Conference (ACE2005) CRPIT 42 (pp. 173–180). Darlinghurst, Australia:
Australian Computer Society.

Gentner, D. (2002). Mental Models, Psychology of. In N. Smelser & P. B. Bates, eds.,
International Encyclopedia of the Social and Behavioral Sciences. Amsterdam: Elsevier
Science, pp. 9683–9687.

Gentner, D. & Stevens, A.L., eds (1983). Mental Models, Hillsdale, NJ: Erlbaum.

Gibbs, W. W. (1994). Software’s Chronic Crisis. Scientific American, 271(3), 86–95.

Ginat, D. & Menashe, E. (2015). SOLO Taxonomy for Assessing Novices' Algorithmic Design. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education (pp. 452–
457). New York, NY: ACM.

Gluga, R., Kay, J., Lister, R., Kleitman, S. & Lever, T. (2012). Coming to terms with Bloom: an
online tutorial for teachers of programming fundamentals. In Proceedings of the Fourteenth
Australasian Computing Education Conference Volume 123 (pp. 147–156). Darlinghurst,
Australia: Australian Computer Society,

Gray W. D. & Anderson J. R. (1987). Change–episodes in coding: when and how do
programmers change their code? In G. M. Olson, S. Sheppard & E. Soloway. eds., Empirical
Studies of Programmers: Second Workshop. Norwood NJ: Ablex, pp. 185–197.

Gray, S., St Clair, C., James, R. & Mead, J. (2007). Suggestions for graduated exposure to
programming concepts using fading worked examples. In Proceedings of the Third International
Workshop on Computing Education Research (pp. 99–110). New York, NY: ACM.

Green T. R. G. (1990). Programming languages as information structures. In J. M. Hoc, T. R.
G. Green, R. Samurçay & D. J. Gillmore, eds., Psychology of Programming. London:
Academic Press, pp. 117–137.

Guzdial, M. (2007) What makes programming so hard? Downloaded 11 December 2017 from
http://home.cc.gatech.edu/csl/uploads/6/Guzdial–blog–pieces–on–what–is–CSEd.pdf

Guzdial, M. (2010). Why is it so hard to learn to program. In A. Oram & G. Wilson, eds, Making
Software: What Really Works, and Why We Believe It. Sebastopol, CA: O’Reilly Media, pp.
111–124.

Guzdial, M. & Soloway, E. (2002). Teaching the Nintendo generation to program.
Communications of the ACM, 45(4), 17–21.

Hattie, J. A. (2009). Visible Learning: A Synthesis of 800+ Meta-Analyses on Achievement,
Abingdon: Routledge.

Hattie, J. (2012). Visible Learning for Teachers: Maximizing Impact on Learning, Abingdon:
Routledge.

Hiebert, J. & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An
introductory analysis. In J. Hiebert, ed., Conceptual and Procedural Knowledge: The case of
mathematics, 2. Hillsdale, NJ: Erlbaum, pp. 1-27

Hill, G. J. (2016). Review of a problems–first approach to first year undergraduate programming.
In S. Kassel & B. Wu, eds., Software Engineering Education Going Agile. Switzerland: Springer
International Publishing, pp. 73–80

Hoc J .M. & Nguyen–Xuan, A. (1990). Language semantics, mental models and analogy. In J.
M. Hoc, T. R. G. Green, R. Samurçay & D. J. Gillmore, eds., Psychology of Programming.
London: Academic Press, pp. 139–156.

Hoda, R. & Andreae, P. (2014). It's not them, it's us! Why computer science fails to impress
many first years. In Proceedings of the Sixteenth Australasian Computing Education
Conference Volume 148 (pp. 159–162). Darlinghurst, Australia: Australian Computer Society.

Höök, L. J. & Eckerdal, A. (2015). On the bimodality in an introductory programming course: An
analysis of student performance factors. In Learning and Teaching in Computing and
Engineering (LaTiCE 2015) (pp. 79-86). New York, NY: IEEE.

Howles, T. (2009). A study of attrition and the use of student learning communities in the
computer science introductory programming sequence. Computer Science Education, 19(1), 1–
13.

Hudak, M.A. & Anderson D.E. (1990). Formal operations and learning style predict success in
statistics and computer science courses. Teaching of Psychology, 17(4), 231–234.

Hundley, J. (2008). A review of using design patterns in CS1. In Proceedings of the 46th Annual
Southeast Regional Conference (ACM SE’08) (pp. 30–33). New York, NY: ACM.

Izu, C., Weerasinghe, A. & Pope, C. (2016). A study of code design skills in novice
programmers using the SOLO taxonomy. In Proceedings of the 2016 ACM Conference on
International Computing Education Research (pp. 251–259). New York, NY: ACM.

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. In
Proceedings of the Second International Workshop on Computing Education Research (pp. 73–
84). New York, NY: ACM.

Jimoyiannis, A. (2013). Using SOLO taxonomy to explore students’ mental models of the
programming variable and the assignment statement. Themes in Science and Technology
Education, 4(2), 53–74.

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness, Cambridge, MA: Harvard University Press.

Johnson, C. G. & Fuller, U. (2006). Is Bloom’s Taxonomy Appropriate for Computer Science?.
In Proceedings of the 6th Baltic Sea Conference on Computing Education Research, Koli
Calling (pp. 120–123). New York, NY: ACM.

Kay, J., Barg, M., Fekete, A., Greening. T., Hollands, O., Kingston, J. & Crawford, K. (2000).
Problem–based learning for Foundation Computer Science Courses. Computer Science
Education, 10, 109–128.

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of
programming environments and languages for novice programmers. ACM Computing Surveys
(CSUR), 37(2), 83–137.

Kim, J. & Lerch, F. J. (1997). Why is programming (sometimes) so difficult? Programming as
scientific discovery in multiple problem spaces. Information Systems Research, 8(1), 25–50.

Kinnunen, P. & Malmi, L. (2006). Why students drop out CS1 course?. In Proceedings of the
Second International Workshop on Computing Education Research (pp. 97–108). New York,
NY: ACM.

Kölling, M. (2009). Quality–oriented teaching of programming. Downloaded 11 November 2017
from: https://blogs.kcl.ac.uk/proged/2009/09/04/quality–oriented–teaching–of–programming/

Kölling, M. (2010). The Greenfoot programming environment. ACM Transactions on Computing
Education (TOCE), 10(4), Article 14 (21 pages).

Kölling, M., Quig, B., Patterson, A. & Rosenberg, J. (2003). The BlueJ system and its pedagogy.
Computer Science Education, 13(4), 249–268.

Koulouri, T., Lauria, S. & Macredie, R. D. (2014). Teaching Introductory Programming: A
Quantitative Evaluation of Different Approaches. ACM Transactions on Computing Education
(TOCE), 14(4), Article 26 (28 pages).

Krathwohl, D.R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice,
41(4), 212–218.

Kunkle, W.M. & Allen, R.B. (2016). The impact of different teaching approaches and languages
on student learning of introductory programming concepts. ACM Transactions on Computing
Education (TOCE), 16(1), Article 3 (26 pages).

Kurland D. M., Pea, R. D., Clement, C. & Mawby, R. (1989). A study of the development of
programming ability and thinking skills in high school students. In E. Soloway & J. C. Spohrer,
eds, Studying the Novice Programmer (pp. 83–112). Hillsdale, NJ: Lawrence Erlbaum.

Kurland, D. M. & Pea, R. D. (1985). Children's mental models of recursive LOGO programs.
Journal of Educational Computing Research, 1(2), 235–243.

Lahtinen, E., Ala–Mutka, K. & Järvinen, H. M. (2005). A study of the difficulties of novice
programmers. ACM SIGCSE Bulletin, 37(3), 14–18).

Lau, W. W. & Yuen, A. H. (2011). Modelling programming performance: Beyond the influence of
learner characteristics. Computers & Education, 57(1), 1202–1213.

Lawson, C. (1962). A Survey of Computer Facility Management. Datamation, 8(7), 29–32.

Lewis, T. L., Rosson, M. B. & Pérez–Quiñones, M. A. (2004). What do the experts say?:
Teaching introductory design from an expert's perspective. ACM SIGCSE Bulletin, 36(1), 296–
300.

Linn, M. C. & Dalbey, J. (1989). Cognitive Consequences of Programming Instruction. In E.
Soloway & J. C. Spohrer, eds, Studying the Novice Programmer (pp. 57–81). Hillsdale, NJ:
Lawrence Erlbaum.

Linn, M. C. and Clancy, M. J. (1992). The Case for Case Studies of Programming Problems.
Communications of the ACM, 35(3):121–132.

Lister, R. (2000). On blooming first year programming, and its blooming assessment. In
Proceedings of the Australasian Conference on Computing Education (ACSE '00) (pp. 158–
162). Darlinghurst, Australia: Australian Computer Society.

Lister, R. (2010). Geek genes and bimodal grades. ACM Inroads, 1(3), 16–17.

Lister, R. (2011). Concrete and other neo–Piagetian forms of reasoning in the novice
programmer. In Proceedings of the Thirteenth Australasian Computing Education Conference
Volume 114 (pp. 9–18). Darlinghurst, Australia: Australian Computer Society.

Lister, R. & Leaney, J. (2003a). Introductory Programming, Criterion–Referencing, and Bloom.
ACM SIGCSE Bulletin, 35(1), 143–147.

Lister, R. & Leaney, J. (2003b). First year programming: Let all the flowers bloom. In
Proceedings of the Fifth Australasian Computing Education Conference (ACE 2003) Volume 20
(pp. 221–230). Darlinghurst, Australia: Australian Computer Society.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,
Moström, J.E., Sanders, K., Seppälä, O. & Simon, B. (2004). A multi–national study of reading
and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), 119–150.

Lister, R., Clear, T., Bouvier, D. J., Carter, P., Eckerdal, A., Jacková, J., Lopez, M., McCartney,
R., Robbins, P., Seppälä, O. & Thompson, E. (2010). Naturally occurring data as research
instrument: analyzing examination responses to study the novice programmer. ACM SIGCSE
Bulletin, 41(4), 156–173.

Lister, R., Simon, B., Thompson, E., Whalley, J. L. & Prasad, C. (2006). Not seeing the forest
for the trees: Novice programmers and the SOLO taxonomy. ACM SIGCSE Bulletin, 38(3), 118–
122.

Lopez, M., Whalley, J., Robbins, P. & Lister, R. (2008). Relationships between reading, tracing
and writing skills in introductory programming. In Proceedings of the fourth international
workshop on computing education research (pp. 101–112). New York, NY: ACM.

Luxton-Reilly, A. (2016). Learning to program is easy. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education (pp. 284–289). New
York, NY: ACM.

Ma, L., Ferguson, J., Roper, M. & Wood, M. (2007). Investigating the viability of mental models
held by novice programmers. ACM SIGCSE Bulletin, 39(1), 499–503.

Maloney, J., Resnick, M., Rusk, N., Silverman, B. & Eastmond, E. (2010). The scratch
programming language and environment. ACM Transactions on Computing Education (TOCE),
10(4), Article 16 (15 pages).

Mannila, L., Peltomäki, M. & Salakoski, T. (2006). What about a simple language? Analyzing the
difficulties in learning to program. Computer Science Education, 16(3), 211–227.

Margulieux, L. E., Catrambone, R. & Schaeffer, L. M. (2018). Varying effects of subgoal labeled
expository text in programming, chemistry, and statistics. Instructional Science,
10.1007/s11251-018-9451-7.

Mason, R. & Cooper, G. (2013). Distractions in programming environments. In Proceedings of
the Fifteenth Australasian Computing Education Conference Volume 136 (pp. 23–30).
Darlinghurst, Australia: Australian Computer Society,

Mayer R. E. (1989). The psychology of how novices learn computer programming. In E.
Soloway & J. C. Spohrer, eds, Studying the Novice Programmer (pp. 129–159). Hillsdale, NJ:
Lawrence Erlbaum.

Mayer, D.B. & Stalnaker, A.W. (1968). Selection and evaluation of computer personnel – the
research history of SIG/CPR. In The Proceedings of the 1968 ACM National Conference (23rd
ACM National Conference) (pp. 657–670). New York, NY: ACM.

Mayer, R. E. (1985). Learning in complex domains: A cognitive analysis of computer
programming. Psychology of learning and motivation, 19, 89–130.

Mayer, R. E. (1992). Teaching for transfer of problem–solving skills to computer programming.
In E. De Corte, M. C. Linn, H. Mandl & L. Verschaffel, eds., Computer–Based Learning
Environments and Problem Solving. NATO ASI Series (Series F: Computer and Systems
Sciences), Vol 84. Berlin: Springer, pp. 193–206.

McCall, D. & Kölling, M. (2014). Meaningful categorisation of novice programmer errors. In
Frontiers in Education Conference (FIE) (pp. 1–8). New York, NY: IEEE.

McCane, B., Ott, C., Meek, N. & Robins, A. (2017). Mastery Learning in Introductory
Programming. In Proceedings of the Nineteenth Australasian Computing Education Conference
(pp. 1–10). New York, NY: ACM.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., Laxer, C.,
Thomas, L., Utting, I. &, Wilusz, T. (2001). A Multi–national, Multi–institutional Study of
Assessment of Programming Skills of First–year CS Students. ACM SIGCSE Bulletin, 33, 125–
180.

McNamara, W.J. (1967). The Selection of Computer Personnel: Past, Present, Future. In
Proceedings of the Fifth SIGCPR Conference on Computer Personnel Research (SIGCPR ‘67)
(pp. 52–56). New York: ACM Press.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S. & Thomas, L. (2006). A
cognitive approach to identifying measurable milestones for programming skill acquisition. ACM
SIGCSE Bulletin, 38(4), 182–194.

Meerbaum–Salant, O., Armoni, M. & Ben-Ari, M. (2010). Learning Computer Science Concepts
with Scratch. In Proceedings of the Sixth International Workshop on Computing Education
Research (ICER ’10) (pp. 69–76). New York, NY: ACM.

Mendes, A. J., Paquete, L., Cardoso, A. & Gomes, A. (2012). Increasing student commitment in
introductory programming learning. In Frontiers in Education Conference (FIE) (pp. 1–6). New
York, NY: IEEE.

Meyer, J. H. & Land, R., eds. (2006). Overcoming barriers to student understanding: Threshold
concepts and troublesome knowledge, London: Routledge.

Meyer, J. H. F., Land, R. (2003). Threshold Concepts and Troublesome Knowledge: Linkages to
Ways of Thinking and Practising within the Disciplines (ETL Project: Occasional Report No. 4).
Edinburgh, Scotland: University of Edinburgh.

Mitchell, M. L. & Jolley, J. M. (2012). Research Design Explained, Eighth edition, Wadsworth,
CA: Cengage Learning.

Morra, S., Gobbo, C., Marini, Z. and Sheese, R. (2007) Cognitive Development: Neo–Piagetian
Perspectives, New York, NY: Psychology Press.

Morrison, B. B., Dorn, B. & Guzdial, M. (2014). Measuring cognitive load in introductory CS:
adaptation of an instrument. In Proceedings of the Tenth Annual Conference on International
Computing Education Research (pp. 131–138). New York, NY: ACM.

Newman, R., Gatward, R. & Poppleton, M. (1970). Paradigms for teaching computer
programming in higher education. WIT Transactions on Information and Communication
Technologies, 7, 299–305.

Newstead, P.R. (1975). Grade and ability predictions in an introductory programming course.
ACM SIGCSE Bulletin, 7, 87–91.

O’Donnell, R. (2009). Threshold concepts and their relevance to economics. In 14th Annual
Australasian Teaching Economics Conference (ATEC 2009) (pp. 190– 200). Brisbane: School
of Economics and Finance, Queensland University of Technology.

Oliver, D., Dobele, T., Greber, M. &Roberts, T. (2004). This Course has a Bloom Rating of 3.9.
In Proceedings of the Sixth Australasian Conference on Computing Education (ACE ’04) (pp.
227–231). Darlinghurst, Australia: Australian Computer Society.

Ormerod T. (1990). Human cognition and programming. In J. M. Hoc, T. R. G. Green, R.
Samurçay & D. J. Gillmore, eds., Psychology of Programming. London: Academic Press, pp.
63–82.

Paas, F., Renkl, A. & Sweller, J. (2003). Cognitive load theory and instructional design: Recent
developments. Educational psychologist, 38(1), 1–4.

Palumbo, D. (1990). Programming language/problem–solving research: A review of relevant
issues. Review of Educational Research, 60(1): 65–89.

Parsons, D. & Haden. P. (2006). Parson's programming puzzles: a fun and effective learning
tool for first programming courses. In Proceedings of the 8th Australasian Conference on
Computing Education (ACE '06) Volume 52 (pp. 157–163). Darlinghurst, Australia: Australian
Computer Society.

Patitsas, E., Berlin, J., Craig, M. & Easterbrook, S. (2016). Evidence that computer science
grades are not bimodal. In Proceedings of the 2016 ACM Conference on International
Computing Education Research (pp. 113-121). New York, NY: ACM.

Pea, R. D. (1986). Language–independent conceptual “bugs” in novice programming. Journal of
Educational Computing Research, 2(1), 25–36.

Pea, R.D. & Kurland, D.M. (1984). On the Cognitive Prerequisites of Learning Computer
Programming. Technical Report No.18. New York, NY: Bank Street College of Education.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M. &
Paterson, J. (2007). A survey of literature on the teaching of introductory programming. ACM
SIGCSE Bulletin, 39(4), 204–223.

Perkins, D. N. & Martin, F (1986). Fragile knowledge and neglected strategies in novice
programmers. In E. Soloway & S. Iyengar, eds., Empirical Studies of Programmers, First
Workshop (pp. 213–229). Norwood, NJ: Ablex.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F. & Simmons, R. (1989). Conditions of learning
in novice programmers. In E. Soloway & J. C. Spohrer, eds, Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum, pp. 261–279.

Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning.
Journal of Research in Science Teaching, 2(3), 176–186.

Piaget, J. (1971a). The theory of stages in cognitive development. In D.R. Green, M.P. Ford &
G.B. Flamer, eds., Measurement and Piaget. NY: McGraw–Hill, pp. 1–11.

Piaget, J. (1971b). Developmental stages and developmental processes. In D.R. Green, M.P.
Ford & G.B. Flamer, eds., Measurement and Piaget. NY: McGraw–Hill, pp. 172–188.

Plass, J. L., Moreno, R. & Brünken, R., Eds. (2010). Cognitive Load Theory. Cambridge:
Cambridge University Press.

Porter, L. & Zingaro, D. (2014). Importance of early performance in CS1: Two conflicting
assessment stories. In Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (pp. 295–300). New York, NY: ACM.

Porter, L., Zingaro, D. & Lister, R. (2014). Predicting student success using fine grain clicker
data. In Proceedings of yhe Tenth Annual Conference on International Computing Education
Research (pp. 51–58). New York, NY: ACM.

Price, T. W. & Barnes, T. (2015). Comparing textual and block interfaces in a novice
programming environment. In Proceedings of the Eleventh Annual International Conference on
International Computing Education Research (pp. 91–99). New York, NY: ACM.

Rist, R. S. (1995). Program Structure and Design. Cognitive Science, 19, 507–562.

Rist, R. S. (1986). Plans in Programming: Definition, Demonstration, and Development. In
Soloway, E. & Iyengar, S., eds., Empirical Studies of Programmers. Norwood, NJ: Ablex
Publishing, pp. 28–47.

Rist, R. S. (1989). Schema Creation in Programming. Cognitive Science, 13, 389–414.

Rist, R. S. (2004). Learning to Program: Schema Creation, Application, and Evaluation. In
Fincher, S. & Petre, M., eds., Computer Science Education Research. London, UK: Taylor &
Francis, pp. 175–195.

Robins, A. V. (2010). Learning Edge Momentum: A New Account of Outcomes in CS1.
Computer Science Education, 20, 37–71.

Robins, A. V. (2018). Outcomes in introductory programming. Computer Science Technical
Report, OUCS-2018-02, The University of Otago. Downloaded 7 May 2018 from:
https://www.otago.ac.nz/computer-science/otago685184.pdf

Robins, A. V., Haden, P. & Garner, S. (2006). Problem distributions in a CS1 course. In
Proceedings of the Eighth Australasian Computing Education Conference (ACE2006), CRPIT,
52 (pp. 165 – 173). Darlinghurst, Australia: Australian Computer Society.

Robins, A. V., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13(2), 137–172.

Rogalski J. & Samurçay R. (1990). Acquisition of programming knowledge and skills. In J. M.
Hoc, T. R. G. Green, R. Samurçay & D. J. Gillmore, eds., Psychology of Programming. London:
Academic Press, pp. 157–174.

Rountree, J., Robins, A. & Rountree, N. (2013). Elaborating on threshold concepts, Computer
Science Education, 23(3), 265–289.

Rountree, N., Rountree, J., Robins, A. & Hannah, R. (2004). Interacting factors that predict
success and failure in a CS1 course. ACM SIGCSE Bulletin, 36(4), 101–104.

Rowbottom, D. P. (2007). Demystifying threshold concepts. Journal of Philosophy of Education,
41, 263–270.

Sackman, H., Erickson, W. J. & Grant, E. E. (1968). Exploratory Experimental Studies
Comparing Online and Offline Programming Performance. Communications of the ACM, 11(1),
3–11.

Sarawagi, N. (2014). A flipped CS0 classroom: applying Bloom's taxonomy to algorithmic
thinking. Journal of Computing Sciences in Colleges, 29(6), 21–28.

Schneider, G. M. (1978). The introductory programming course in computer science: Ten
principles. ACM SIGCSE Bulletin, 10(1), 107–114.

Schulte, C. & Bennedsen, J. (2006). What do teachers teach in introductory programming?. In
Proceedings of The Second International Workshop on Computing Education Research (pp.
17–28). New York, NY: ACM.

Schwill A. (1997). Computer science education based on fundamental ideas. In D. Passey & B.
Samways, eds., Information Technology. IFIP Advances in Information and Communication
Technology. Boston, MA: Springer, pp. 285–291.

Schwill, A. (1994). Fundamental ideas of computer science. EATCS–Bulletin, 53, 274–295.

Scott, T. (2003). Bloom’s Taxonomy Applied to Testing in Computer Science Classes. Journal
of Computing in Small Colleges, 19(1), 267–274.

Sheard, J. & Hagan, D. (1998). Our failing students: a study of a repeat group. ACM SIGCSE
Bulletin, 30(3), 223–227.

Sheard, J., Carbone, A., Lister, R., Simon, B., Thompson, E. & Whalley, J. L. (2008). Going
SOLO to assess novice programmers. ACM SIGCSE Bulletin, 40(3), 209–213.

Sheil, B. A. (1981). The psychological study of programming. Computing Surveys, 13, 101–
120.

Shih, Y. F. & Alessi, S. M. (1993). Mental models and transfer of learning in computer
programming. Journal of Research on Computing in Education, 26(2), 154–175.

Shinners–Kennedy, D. & Fincher, S. A. (2013). Identifying threshold concepts: From dead end
to a new direction. In Proceedings of The Ninth Annual International ACM Conference on
International Computing Education Research (pp. 9–18). New York, NY: ACM.

Simon, Fincher, S., Robins, A., Baker, B., Box, I., Cutts, Q., de Raadt, M., Haden, P., Hamer, J.,
Hamilton, M., Lister, R., Petre, M., Sutton, K., Tolhurst, D. & Tutty, J. (2006). Predictors of
success in a first programming course. In Proceedings of the 8th Australasian Conference on
Computing Education Volume 52 (pp. 189–196). Darlinghurst, Australia: Australian Computer
Society,

Soloway, E. (1986). Learning to program= learning to construct mechanisms and explanations.
Communications of the ACM, 29(9), 850–858.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, 5, 595–609.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. (1983). What do novices know about
programming? In B. Shneiderman & A. Badre, eds., Directions in Human–Computer
Interactions. Norwood NJ: Ablex, pp. 27–54.

Soloway, E. & Spohrer, J. C., eds (1989). Studying the Novice Programmer, Hillsdale, NJ:
Lawrence Erlbaum.

Sorva, J. (2010). Reflections on threshold concepts in computer programming and beyond. In
Proceedings of the 10th Koli Calling International Conference on Computing Education
Research, Koli Calling ’10 (pp. 21–30). New York, NY: ACM.

Sorva, J. (2012). Visual program simulation in introductory programming education. Doctoral
Dissertations 61/2012. Finland: Aalto University.

Sorva, J. (2013). Notional machines and introductory programming education. ACM
Transactions on Computing Education (TOCE), 13(2), Article 8 (31 pages).

Spohrer, J. C. & Soloway, E. (1989). Novice mistakes: Are the folk wisdoms correct?. In E.
Soloway & J. C. Spohrer, eds, Studying the Novice Programmer. Hillsdale, NJ: Lawrence
Erlbaum, pp. 401–416.

Spohrer, J. C., Soloway, E. & Pope, E. (1989). A goal/plan analysis of buggy Pascal programs.
In E. Soloway & J. C. Spohrer, eds, Studying the Novice Programmer. Hillsdale, NJ: Lawrence
Erlbaum, pp. 355–399.

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R., Reynolds, L. & Czelusniak, V. (2013).
Managing Cognitive Load in Introductory Programming Courses: A Cognitive Aware Scaffolding
Tool. Journal of Integrated Design and Process Science, 17(1), 37–54.

Starr, C. W., Manaris, B., and Stalvey, R. H. (2008). Bloom’s Taxonomy Revisited: Specifying
Assessable Learning Objectives in Computer Science. ACM SIGCSE Bulletin, 40(1), 261–265.

Storey, M. A., Fracchia, F. D. & Müller, H. A. (1999). Cognitive design elements to support the
construction of a mental model during software exploration. Journal of Systems and Software,
44(3), 171–185.

Subramanian, A. & Joshi, K. (1996). Computer aptitude tests as predictors of novice computer
programmer performance. Journal of Information Technology Management, Volume VII, 1 & 2,
31–41.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12(2), 257–285.

Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction, 4(4), 295–312.

Teague, D. (2015) Neo–Piagetian Theory and the Novice Programmer. Doctoral Thesis.
Queensland, Australia: Queensland University of Technology.

Teague, M. M. (2011). Pedagogy of Introductory Computer Programming: A People–First
Approach. Masters Thesis. Queensland, Australia: Queensland University of Technology.

Thompson, E., Luxton–Reilly, A., Whalley, J. L., Hu, M. & Robbins, P. (2008). Bloom’s
Taxonomy for CS Assessment. In Proceedings of the Tenth Conference on Australasian
Computing Education (ACE ’08) (pp. 155–161). Darlinghurst, Australia: Australian Computer
Society.

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., Paterson, J.,
Caspersen, M., Kolikant, Y., Sorva, J. & Wilusz, T. (2013). A fresh look at novice programmers'
performance and their teachers' expectations. In Proceedings of the ITICSE Working Group
Reports Conference on Innovation and Technology in Computer Science Education (pp. 15–
32). New York, NY: ACM.

van Merriënboer, J. J. G. (1990). Strategies for Programming Instruction in High School:
Program Completion vs. Program Generation. Journal of Educational Computing Research,
6(3), 265–285.

van Merriënboer, J. J. G. & de Croock, M. B. M. (1992). Strategies for Computer–Based
Programming Instruction: Program Completion vs. Program Generation. Journal of Educational
Computing Research, 8(3), 365–394.

van Merriënboer, J. J. & Paas, F. G. (1990). Automation and schema acquisition in learning
elementary computer programming: Implications for the design of practice. Computers in
Human Behavior, 6(3), 273–289.

Venables, A., Tan, G. & Lister, R. (2009). A closer look at tracing, explaining and code writing
skills in the novice programmer. In Proceedings of the Fifth International Workshop on
Computing Education Research (pp. 117–128). New York, NY: ACM.

Ventura, P. (2005). Identifying predictors of success for an objects–first CS1. Computer Science
Education, 15(3), 223–243.

Vihavainen, A., Airaksinen, J. & Watson, C. (2014). A systematic review of approaches for
teaching introductory programming and their influence on success. In Proceedings of the Tenth
Annual Conference on International Computing Education Research (pp. 19–26). New York,
NY: ACM.

Watson, C. & Li, F. W. (2014). Failure rates in introductory programming revisited. In
Proceedings of the 2014 Conference on Innovation & Technology in Computer Science
Education (pp. 39–44). New York, NY: ACM.

Webster, B. F. (1996). The real software crisis: The shortage of top–notch programmers
threatens to become the limiting factor in software development. Byte Magazine, 21, pp. 218.

Weinberg, G. M. (1971). The Psychology of Computer Programming, New York: Van Nostrand
Reinhold.

Weintrop, D., Killen, H., & Franke, B. (2018). Blocks or Text? How Programming Language
Modality Makes a Difference in Assessing Underrepresented Populations. In Proceedings of the
13th International Conference of the Learning Sciences (ICLS2018)(pp. 328-335). London, UK:
International Society of the Learning Sciences.

Weintrop, D. & Wilensky, U. (2015). To block or not to block, that is the question: Students'
perceptions of blocks–based programming. In Proceedings of the 14th International Conference
on Interaction Design and Children (pp. 199–208). New York, NY: ACM.

Werth, L. H. (1986). Predicting student performance in a beginning computer science class.
ACM SIGCSE Bulletin, 18 (1), 138–143.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins, P., Ajith Kumar, P. K. & Prasad, C.
(2006). An Austalasian study of reading and comprehension skills in novice programmers, using
the Bloom and SOLO taxonomies. In Proceedings of the 8th Australian Conference on
Computing Education (ACE ’06) (pp. 243–252). Darlinghurst, Australia: Australian Computer
Society.

White, G. & Sivitanides, M. (2002). A theory of the relationships between cognitive
requirements of computer programming languages and programmers’ cognitive characteristics.
Journal of Information Systems Education, 13(1), 59–66.

Wick, M. R. (2005). Teaching design patterns in CS1: a closed laboratory sequence based on
the game of life. ACM SIGCSE Bulletin, 37(1), 487–491.

Widowski, D. & Eyferth, K. (1986). Comprehending and recalling computer programs of different
structural and semantic complexity by experts and novices. In H. P. Willumeit, ed., Human
Decision Making and Manual control. Amsterdam: North–Holland, Elsevier, pp. 267– 275.

Wiedenbeck, S., Fix, V. & Scholtz, J. (1993). Characteristics of the mental representations of
novice and expert programmers: an empirical study. International Journal of Man–Machine
Studies, 25, 697–709.

Wiedenbeck, S. & Ramalingam, V. (1999). Novice Comprehension of Small Programs Written in
the Procedural and Object–Oriented Styles. International Journal of Human–Computer Studies,
51(1), 71–87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore, C. L. (1999). A Comparison of
the Comprehension of Object–Oriented and Procedural Programs by Novice Programmers.
Interacting with Computers, 11(3), 255–282.

Wileman, S.A., Konvalina, J. & Stephens, L.J. (1981). Factors influencing success in beginning
computer science courses. Journal of Educational Research, 74, 223–226

Wilson, B.C. & Shrock, S. (2001). Contributing to success in an introductory computer science
course: a study of twelve factors. ACM SIGCSE Bulletin, 33 (1), 184–188.

Winslow L E (1996) Programming pedagogy – A psychological overview. ACM SIGCSE
Bulletin, 28(3), 17 – 22.

Woszczynski, A., Haddad, H. & Zgambo, A. (2005). Towards a model of student success in
programming courses. In Proceedings of the 43rd Annual Southeast Regional Conference –
Volume 1 (ACM–SE 43) (pp. 301–302). New York, NY: ACM.

Yadin, A. (2011). Reducing the dropout rate in an introductory programming course. ACM
Inroads, 2(4), 71–76.

Yadin, A. (2013). Using unique assignments for reducing the bimodal grade distribution. ACM
Inroads, 4(1), 38–42.

