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Abstract 

We compare the forecasting performance of small and large Bayesian vector-autoregressive 

(BVAR) models for the United States. We do the forecast evaluation of the competing models for 

the sample that ends before the pandemic and for the sample that contains the pandemic period. 

The findings document that these models can be used for structural analysis and generate credible 

impulse response functions. Furthermore, the results indicate that there are only small gains from 

the application of a large BVAR model compared to a small BVAR model. 
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1. Introduction 

Vector Autoregressions (VARs) are one of the most popular tool within central banks and 

academia to analyse and forecast economic developments. The VAR models provide a very general 

representation of a statistical model, often in linear form. VARs allow the capture of complex 

dynamic data relationships, because in contrast to other models, such as structural economic 

models, they do not impose economic restrictions on the parameters.1 Broadly speaking, the 

variables in the VAR model depend on their own lags and other model variables’ lags.  

The problem is that the high level of generality implies a large number of parameters to be 

estimated, whereas the typical sample size for macroeconomic applications is rather small. This 

entails a risk of overparameterization, resulting in parameter instability and a loss of precision for 

forecasting. On the other hand, reducing the number of parameters by cutting back on variables in 

a VAR may potentially lead to an omitted variable bias with adverse consequences both for 

structural analysis and forecasting. Furthermore, frequently too many lags are included in a VAR 

model to improve the in-sample fit, which results in a significant loss of degrees of freedom and 

poor out-of-sample forecast performance.2  

The recent literature has proposed a number of ways to overcome these problems. There 

are three main econometric recommendations. The first is to apply factor models, which are based 

on the assumption that interrelations within a large dataset can be explained by a few common 

factors. The second is to use high frequency data, which may be used to identify the shocks from 

outside the model. The third is to take the Bayesian point of view, because the supply of prior 

information limits the overparameterization issue.3 

The aim of this paper is to assess the performance of the Bayesian VAR (BVAR) for 

monetary models during the COVID-19 pandemic. The idea is to model the pandemic shocks and 

capture the adjustment process of the economy through the BVAR model parameters, without 

imposing a structural change in those parameters. Assuming in contrast a structural break would 

imply that the model parameters have changed due to the pandemic and that economic relationships 

are different after the start of the pandemic. A serious drawback of such conventional breaks is that 

they are treated as having zero probability of occurring again in the future and are thus ignored in 

forecasting (Hamilton, 2016). Instead, we use relatively flexible and not very restrictive 

formulations of the statistical distributions for the regression parameters and errors to capture the 

pandemic shocks, as well as the shocks due to the recent global financial crisis.  The statistical tool 

we use for that purpose is Bayesian modelling. 

This paper formulates and estimates small and large BVAR models for the U.S. economy 

before and during the pandemic. It contributes to the recent literature on BVARs that proposes 

ways to deal with the COVID-19 episode in macro-econometric VAR models. Schorfheide and 

Song (2021) drop observations during the early part of the pandemic (March – June 2020) in a 

                                                           
1 An advantage over so-called dynamic stochastic general equilibrium (DSGE) macroeconomic models is that VARs 

impose less economic theory. See Pagan and Wickens (2022) on the advantages and disadvantages of each type of 

modelling approach and on how VARs relate to DSGE models. 
2 See, for example, Hamilton (1994).  
3 See, for example, Kilian and Lütkepohl (2017) on the various approaches and their advantages and disadvantages. 
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mixed frequency BVAR with monthly and quarterly observations. Lenza and Primiceri (2022), 

Carriero et al. (2022), and Bobeica and Hartwig (2022) account in alternative ways for the excess 

variability of different macroeconomic series during the pandemic period. Lenza and Primiceri 

(2022) inversely weigh the observations during the pandemic period based on the innovation 

variances, using a standard homoskedastic VAR. On the other hand, Bobeica and Hartwig (2022) 

use a multivariate t-distribution for errors in a small-scale BVAR.  Carriero et al. (2022) use a mid-

sized BAVR with variable-specific outlier-adjusted stochastic volatility and t-distributed 

innovations. The idea behind using a distribution with fatter tails, i.e., the t-distribution, is to 

capture large shocks, such as those occurring during the recent pandemic. Instead, we use a recently 

proposed flexible Bayesian methodology for small- and large-scale VARs, developed and 

successfully applied in the pre-pandemic period to forecasting U.S. macroeconomic time series by 

Giannone et al. (2015).4 In other words, we explore whether a BVAR model used for forecasting 

with good results before the pandemic is able to forecast well once the pandemic period is included, 

without dropping observations, outlier adjustments, or assuming a t-distribution.   

Giannone et al. (2015) build on the approach in Bańbura et al. (2010) that formulates a 

BVAR based on the conjugate normal-inverse Wishart family for the variance-covariance matrix 

and the VAR coefficients. To estimate the model, our paper uses the BEAR toolbox of the 

European Central Bank (Dieppe et al. 2016, Dieppe and van Roye 2021). Our paper divides the 

variables into fast-moving financial variables and slow-moving real variables and prices, with the 

identifying assumption that the slow-moving variables do not respond contemporaneously to a 

monetary policy shock and the information set of the monetary policy contains only past values of 

the fast-moving variables. We consider a small and a large BVAR model. The small model includes 

industrial production, the consumer price index and a measure of the Federals Funds Rate. The 

large model includes employment, housing and other financial indicator data. Next, we conduct 

impulse response function and forecasting analyses with samples that include and exclude the 

pandemic. 

Section 2 presents a short review of related Bayesian research. Section 3 introduces the 

basic features of our BVAR model and the data employed. Section 4 discusses the results and 

Section 5 concludes.  

 

2. A brief review of recent related literature 

While BVAR models started out with small models, recent research has developed ways to 

deal with large BVAR models (Bańbura et al. 2010, Kapetanios et al. 2012, Bobeica and Jarociński 

2019, and Crump et al. 2021). Our econometric approach is based primarily on the work of Bańbura 

et al. (2010). They describe a large BVAR model with Bayesian shrinkage as an appropriate tool 

for forecasting and structural analysis. Their dataset covers the period 1959:01 to 2003:12 and 

hence does not include developments in regards to the pandemic. Also, new shrinkage methods, 

                                                           
4 See also Crump et al. (2021) for a recent use of this methodology, though not dealing with the pandemic. 
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such as the procedure of Giannone, Lenza and Primiceri that is developed in Giannone et al. (2015), 

were introduced after the publication of their article.  

A contemporary paper on large BVAR models is Crump et al. (2021). The paper is centred 

around the concept of conditional forecasting. The authors use quarterly data from 1973:Q1 to 

2018:Q3. It is worth noting that our paper considers unconditional forecasting instead and uses 

monthly data between 1990:01 and 2021:11. Crump et al. (2021) define the impulse response 

functions as the difference between conditional and unconditional forecasts. They compare their 

forecasts with those of professional forecasters and Greenbook forecasts. The authors conclude that 

a large-scale BVAR model produces reliable predictions of the joint distribution for a large set of 

macroeconomic and financial indicators monitored by the Federal Reserve staff and professional 

forecasters.  

We briefly describe a few papers closely related to our research. Carriero et al. (2011) 

compare the forecasting performance of numerous BVAR models. Their general finding is that 

there are only very small losses from the adoption of BVAR modelling choices that make forecast 

computation quick and easy. An approach that works well is to specify a normal-inverted Wishart 

prior along the lines of Sims and Zha (1998) for the VAR in levels, preferably optimizing its 

tightness and lag length. Also they argue that specifications in levels benefit substantially from the 

imposition of the sum-of-coefficients and dummy initial observation priors. 

Kapetanios et al. (2012) apply a large BVAR model (with 43 variables), as one of three 

different alternative models, to examine the effects of unconventional monetary policy in the UK.5 

The BVAR model is estimated over rolling windows to allow for structural change. Their work is 

based on the assumption that quantitative easing (QE) reduced medium- to long-term government 

bond yields by about 100 basis points in the UK. They estimate the effects of QE on real GDP and 

inflation using counterfactual scenarios. The results show that without QE real GDP and inflation 

would have fallen even more during 2009. 

Several recent papers deal with the COVID-19 pandemic in BVAR models, such as Lenza 

and Primiceri (2022) and Bobeica and Hartwig (2022). Lenza and Primiceri (2022) apply the 

BVAR model with observations weighed inversely proportional to their innovation variance. In 

other words, less weight is assigned to observations from the pandemic period.6 Their reasoning is 

that the COVID-19 pandemic caused unprecedented variation in many key macroeconomic 

variables. The U.S. unemployment rate, for instance, increased by approximately 10 percentage 

points from March to April 2020, which is two orders of magnitude more than its typical monthly 

change. Their VAR model includes six variables for the U.S. economy: unemployment, 

employment and four price indices. They come to the following two conclusions. The first is that 

the strategy of dropping the COVID-19 observations may be acceptable for the purpose of 

                                                           
5 They also use a change-point structural VAR (SVAR) model and a time-varying parameter SVAR model with sign 

restrictions. We prefer not to use sign restrictions for the impulse response functions and let instead the data speak 

for themselves. Sign restrictions require specifying periods affected by the restrictions, along with other assumptions 

(see, e.g., Fry and Pagan, 2011). 
6 Along similar lines, Carriero et al. (2022) down-weigh instead the variance of the residuals of outlier observations. 
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parameter estimation. The second is that the strategy of dropping the COVID-19 observations is 

inappropriate for forecasting the future evolution of the economy. 

An alternative possibility to deal with the COVID-19 pandemic is to relax the assumption 

of normal errors and allow them to follow a fat-tailed distribution as recommended by Bobeica and 

Hartwig (2022). They show that this strategy, assuming a multivariate t-distribution for the BVAR 

errors, ensures more stable parameters and forecasts for the model that includes the COVID-19 

pandemic. Moreover, they demonstrate that a large standard BVAR with normal errors, but more 

prior shrinkage than usual, ensures stable unconditional forecasts. They emphasize the necessity to 

check how the COVID-19 observations affect the parameter estimates and the implied forecasts. 

Additionally, they point out that as new observations on the variables become available, the 

distortion of traditionally estimated parameters diminishes. However, they find that a simple 

BVAR model with normal and homoskedastic errors cannot cope with the outlier observations in 

COVID-19 period. 

 

3. Research methodology  

In this section, we briefly outline our research methodology. First, we discuss BVAR 

models. Second, we describe the data used in the paper. Our monthly U.S. data cover the period 

from 1990:01 to 2021:11. The start date is chosen based on data availability. The end date is the 

most recent month available when this research was started.   

 

3.1 The Bayesian VAR model 

Bayesian VARs deal with the problem of overparameterization (the curse of 

dimensionality) of VAR models by incorporating in the estimation and forecasting process prior 

information. It is information beyond that contained in the data itself and takes the form of inexact 

prior restrictions. VAR coefficients are treated as being random variables around their prior means. 

The tightness of the distribution is controlled for with so-called hyper-parameters. Therefore, one 

must specify the form of the prior distribution and also the covariance matrix of the regression 

errors.7 Similarly, the degree of uncertainty about the long-run stochastic trends (unit roots) enters 

explicitly when model parameters are estimated.8 The Bayesian VAR literature has suggested 

various alternative priors over the years. Recent research has developed algorithms that do not 

require the VAR error covariance matrix to be fixed or diagonal (Robertson and Tallman 1999). In 

our approach we use a prior distributions that belong to the conjugate normal-inverse Wishart 

family and we apply the shrinkage methods of Giannone et al. (2015). They advocate using prior 

information that shrinks large BVAR models towards parsimonious representations.  

We apply the following baseline BVAR model with 𝑛 endogenous variables, 𝑝 lags, and 𝑚 

exogenous variables. 

                                                           
7 See, for example, Robertson and Tallman (1999) for a concise introduction to forecasting with BVARs. 
8 This means that exact unit roots are not imposed on the VAR (Robertson and Tallman 1999) 
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𝑦𝑡 = 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝐶𝑥𝑡 + 𝜀𝑡, 

𝜀𝑡~𝑁(0, Σ), 

where 𝑦𝑡 is a 𝑛 × 1 vector of endogenous variables, 𝐴1, … 𝐴𝑝 are 𝑝 𝑛 × 𝑛 matrices of parameters, 

𝐶 is a 𝑛 × 𝑚 matrix, 𝑥𝑡 is a 𝑚 × 1 vector of exogenous variables (it may contain constant terms), 

and 𝜀𝑡 is a 𝑛 × 1 vector of errors, following a multivariate normal distribution with zero mean and 

covariance matrix Σ.  

We define the vectors 𝛽 = 𝑣𝑒𝑐 ([𝐴1, 𝐴2, … , 𝐴𝑝, 𝐶]
′
) , 𝑦 = 𝑣𝑒𝑐([𝑦1, 𝑦2, … , 𝑦𝑇]

′),   and 𝜀 =

𝑣𝑒𝑐([𝜀1, 𝜀2, … , 𝜀𝑇]
′) for any sample size 𝑇. Further, 

 

𝑋 =

(

 
 

𝑦′0 𝑦′−1 ⋯ 𝑦′1−𝑝 𝑥′1
𝑦′1 𝑦′0 … 𝑦′2−𝑝 𝑥′2
⋮ ⋮ ⋱ ⋮ ⋮

𝑦′𝑇−1 𝑦′𝑇−2 ⋯ 𝑦′𝑇−𝑝 𝑥′𝑇)

 
 
, 

 

 

𝑋̅ = 𝐼𝑛⨂𝑋. 
 

Now, the previous equation (following Dieppe et al. 2016) can be reformulated as: 

𝑦 = 𝑋̅𝛽 + 𝜀, 
 

with 𝛽 a 𝑞 × 1 vector, where 𝑞 = 𝑛(𝑛𝑝 +𝑚) × 1. 𝐸(𝜀𝑡𝜀𝑡
′) = Σ, while 𝐸(𝜀𝑡𝜀𝑠

′) = 0 for 𝑡 ≠ 𝑠. Σ is 

a 𝑛 × 𝑛 symmetric positive definite covariance matrix. Taking the Bayesian perspective, one needs 

to specify the priors for 𝛽 and for the covariance matrix Σ. The procedure is based on a modified 

version of Litterman’s (1986) approach. The equations are centred around a random walk with drift 

(cf. equation (2) in Bańbura et al. 2010). The prior specification incorporates the belief that the 

more recent lags should provide more reliable information than the more distant ones. Also, own 

lags should explain more of the variation of the given variable than the lags of other variables in 

the equation. It is assumed that little is known about exogenous variables, so that the variance of 

these terms should be large. To account for correlation among the residuals of different variables, 

we use the inverse Wishart prior for Σ. Thus, in the baseline specification, we focus on prior 

distributions that belong to the conjugate normal-inverse Wishart family: 

 

Σ~IW(Ψ, d), 

𝛽~𝑁(𝑏, Σ⨂Ω). 

We want to compare the forecasting performance and impulse responses from small and 

large BVAR models. Technically a large model with about 40 endogenous variables is not possible 

to estimate using the proposed prior structure (Minnesota structure). Dieppe et al. (2016) calculate 

that in the case of a model with 40 endogenous variables, 5 exogenous variables and 15 lags, 𝑞 =

24200, which implies that each iteration of the Gibbs sampler requires the inversion of a 24200 ×
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24200 matrix.9 This makes the process very slow and practically intractable. To partly solve this 

problem we use the dummy observation prior with two extensions, the sum of coefficients prior 

and the dummy initial observations. If we write the VAR model in its error-correction form we get: 

 𝑦𝑡 = (𝐼𝑛 − 𝐴1 −⋯− 𝐴𝑝)𝑦𝑡−1 + 𝐵1∆𝑦𝑡−1 +⋯+ 𝐵𝑝−1∆𝑦𝑡−𝑝+1 + 𝐶𝑥𝑡 + 𝜀𝑡 

The sum of coefficient prior shrinks 𝐼𝑛 − 𝐴1 −⋯− 𝐴𝑝 to 0. The procedure is implemented by 

adding the specific dummy observations (Bańbura et al. 2010). 

We use for the majority of our calculations the European Central Bank’s (ECB’s) toolbox 

Bayesian Estimation, Analysis And Regression (BEAR) version 5.1.3.10 We apply variable specific 

priors for the autoregressive coefficients. We follow Giannone et al.’s (2015) approach for the 

construction of the prior. If λ controls the overall tightness of the prior distribution, then for 𝜆 = 0 

the posterior equals the prior and the data do not influence the estimates and for 𝜆 = ∞ the posterior 

coincides with ordinary least squares estimates. Bańbura et al. (2010) argue that the more variables 

we include in the VAR model, the more 𝜆 should shrink in order to avoid overfitting.  

 

3.2 Data 

Monthly data for the U.S. economy are used to set up a small and a large BVAR model. 

The list of the variables with their descriptions, sources and transformations is in the Appendix. 

We consider the following two VAR models: 

1) The small model that includes: Industrial Production: Total Index (INDPRO), Consumer 

Price Index for All Urban Consumers: All Items in U.S. City Average (CPIAUCSL), and 

the Wu-Xia Shadow Federal Funds Rate. 

2) The large model that extends the small model with the following variables:  

 All Employees, Total Nonfarm (LOG_PAYEMS),  

 Unemployment Rate (UNRATE),  

 Capacity Utilization: Manufacturing (MCUMFN),  

 New Privately-Owned Housing Units Started: Total Units (LOG_HOUST),  

 University of Michigan: Consumer Sentiment (UMCSENT),  

 Personal Consumption Expenditures Chain-Type Price Index (LOG_PCEPI),  

 Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in 

U.S. City Average (LOG_CPILFESL),  

 Personal Consumption Expenditures Excluding Food and Energy (LOG_PCEPILFE), 

 Compensation of Employees, Received: Wage and Salary Disbursements 

(LOG_COMPENSATION),  

 Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma (LOG_OIL),  

                                                           
9 The Gibbs sampling method draws randomly from the unconditional posterior distribution of the parameters. It is 

part of the class of so-called Markov Chain Monte Carlo Bayesian simulation methods. For an outline of the Gibbs 

procedure see Dieppe et al. (2016). 
10 Available at https://www.ecb.europa.eu/pub/research/working-papers/html/bear-toolbox.en.html, last accessed 20 

July 2022.  The methodology for BEAR is developed in Dieppe et al. (2016).   

https://www.ecb.europa.eu/pub/research/working-papers/html/bear-toolbox.en.html
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 Moody's Seasoned Aaa Corporate Bond Yield (DAAA),  

 Moody's Seasoned Baa Corporate Bond Yield (DBAA), 

 Market Yield on U.S. Treasury Securities at 2-Year Constant Maturity (DGS2), 

 Market Yield on U.S. Treasury Securities at 5-Year Constant Maturity (DGS5), 

 Market Yield on U.S. Treasury Securities at 10-Year Constant Maturity (DGS10), 

 Nominal narrow BIS effective exchange rate (NEER2), 

 S&P 500 index (SP_CLOSE).  

We choose the variables guided by previous large BVAR studies discussed in Section 2 and 

the availability of data. We note that when the Wu-Xia shadow interest rate is above 1/4 percent, 

it is exactly equal to the Wu-Xia model implied one-month interest rate by construction. Also, we 

decided to omit the real personal consumption expenditures series (PCEC96), because the series is 

available only from 2002:01. For the same reason we omit the real broad Bank for International 

Settlements (BIS) effective exchange rate and the nominal broad BIS effective exchange rate, 

which starts in 1994:01.  

We follow Bańbura et al. (2010) and divide the variables into slow and fast moving. This 

means that the former group contains real variables and prices, while the latter consists of financial 

variables. The assumption that is made here is that slow-moving variables do not respond 

contemporaneously to a monetary policy shock and that the information set of the monetary 

authority contains only past values of the fast-moving variables. 

 

 

4.  Results 

 

4.1 Unit root test results 

 We apply standard Augmented Dickey-Fuller unit root tests only to get an indication about 

the dynamic persistence (memory) of shocks to variables. This helps sorting variables into slow 

and fast moving processes. Table 1 reveals that most of the variables are nonstationary in levels, 

with covariance-stationary first differences, i.e., with unit roots in levels. There are only two series 

which appear to be covariance stationary in levels, namely these are the unemployment rate 

(UNRATE) and the University of Michigan consumer sentiment (UMCSENT). We set the 

autoregressive prior coefficient 𝛿𝑖 equal to 1 for nonstationary variables and equal to 0.8 for 

stationary variables. This is based on the assumption that each nonstationary variable follows an 

independent random walk process, potentially with drift. 

 

4.2 Impulse response functions 

First we estimate the small VAR model with only 3 variables (industrial production, the 

consumer price index, and the interest rate) and 13 lags. We test whether it is better to use a federal 

funds effective rate (Figure 1) or a shadow rate (Figure 2). One may observe that the positive 

shadow rate impulse causes a statistically significant decrease in inflation, whereas the positive 

federal funds rate impulse leads to statistically insignificant reactions of prices. Also, the positive 



8 
 

shadow rate impulse does not cause an increase in the level of industrial production as does the 

positive federal funds rate impulse.11 If we restrict the sample to end before the pandemic we end 

with the same conclusion that the impulse response functions are more reasonable for the shadow 

rate than for the federal funds effective rate. This initial experiment recommends using the shadow 

rate in further VAR models as the appropriate monetary policy tool.  

 

Next, we move to estimating BVAR models.12 In the first step we redo the experiment with 

the smaller model. We obtain Figures 3 and 4. The results show that an increase in the Wu-Xia 

shadow rate and federal funds rate lead to a decrease in the CPI, but the response of industrial 

production is positive, contrary to economic theory. In the second step we estimate the large BVAR 

model consisting of 20 variables (Figure 5). In this case a monetary policy impulse leads to a short 

lived increase in industrial production (2nd – 3rd month after the impact of the shock) and a decrease 

in the consumer price index (3rd – 11th month). It is worth emphasizing that the monetary policy 

impulse becomes statistically insignificant after 37 months for the large BVAR model, and that 

this is not the case for the small BVAR model. Thus, we find the impulse response functions for 

the large BVAR model are the most reliable.  

 

4.3 Forecasting 

We compare first the forecasting performance of the small and large models. Lenza and 

Primiceri (2022) show that the BVAR model with rescaled variables produces forecasts with higher 

degrees of uncertainty than the BVAR model with the latest pandemic data being excluded. Next, 

we continue our research by doing an out-of-sample competition among the two models. We apply 

recursive forecast evaluation schemes, so that forecasting models are estimated on expanding 

windows. We calculate forecasts for 1 month, 6 months and 1 year horizons. We report 7 forecast 

evaluation criteria: the root mean squared error (RMSE), the mean absolute error (MAE), the mean 

absolute percentage error (MAPE), Theil’s U coefficient, the continuous ranked probability score 

(CRPS), and two different versions of the log score.  

 

 

4.3.1 Assessing the forecasting performance 

 

The root mean squared error of the forecast for variable i in the VAR is defined as: 

 

𝑅𝑀𝑆𝐸𝑖 = √
1
ℎ⁄ ∑(𝑦𝑇+𝑖 − 𝑦̃𝑇+𝑖)2 ,

ℎ

𝑖=1

 

 

where 𝑦̃𝑇+𝑖 denotes the predicted value of 𝑦𝑇+𝑖. The mean absolute error of the forecast for variable 

i in the VAR is defined as: 

 

                                                           
11 The short-lived positive initial impulse is a case of borderline significance only. 
12 It appears that the impulse response functions significantly change for the small model when the sum-of 

coefficient prior and the dummy observation prior are applied. 
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  𝑀𝐴𝐸𝑖 =
1
ℎ⁄ ∑ |𝑦𝑇+𝑖 − 𝑦̃𝑇+𝑖|

ℎ
𝑖=1 . 

 

For these two measures, a lower value indicates a better fit.  

 

The mean absolute percentage error of the forecast for variable 𝑖 in the VAR is defined as: 

 

𝑀𝐴𝑃𝐸𝑖 =
100

ℎ⁄ ∑|
𝑦𝑇+𝑖 − 𝑦̃𝑇+𝑖

𝑦𝑇+𝑖
|

ℎ

𝑖=1

 

 

The MAPE describes the size of the error relative to the value of the variable. The Theil inequality 

coefficient or Theil U statistic of the forecast for variable 𝑖 in the VAR is defined as: 

 

𝑈𝑖 =
𝑅𝑀𝑆𝐸𝑖

√1 ℎ⁄ ∑ (𝑦𝑇+𝑖)2
ℎ
𝑖=1 +√1 ℎ⁄ ∑ (𝑦̃𝑇+𝑖)2

ℎ
𝑖=1

 

 

This coefficient ranges between 0 and 1, with a lower value indicating a better forecast. A value of 

0 indicates a perfect fit, while a value of 1 says that the forecast is no better than a naïve guess. 

 

A further alternative measure of forecasting performance is the continuous ranked 

probability score, defined as: 

 

𝐶𝑅𝑃𝑆(𝐹, 𝑦𝑇+ℎ
𝑜 ) = ∫ (𝐹(𝑥) − 𝕝(𝑥 > 𝑦𝑇+ℎ

𝑜 ))
2
𝑑𝑥,

∞

−∞

 

 

where 𝕝(∙) denotes the indicator function, 𝐹 is the cumulative distribution function corresponding 

to the marginal predictive density 𝑓 for the forecast at period 𝑇 + ℎ, along with the realized value 

𝑦𝑇+ℎ
𝑜  for this period. The CRPS can be conceived as a penalty function sanctioning the overall 

distance between the distribution points and the realized values. The larger the value of the CRPS, 

the poorer the performance of the predictive distribution for the forecast at period T + h.  

 

Last, we move to the family of log predictive scores for forecasts. The log scores compare 

the realised values with the whole posterior predictive density. The idea behind log scores is that 

the predictive distribution should be such that it takes a high density at the actual data value. The 

procedure of computing log predictive scores is described in the ECB’s online BEAR “technical 

guide”.13 Two base forecasting scenarios are considered. In the first case, what is evaluated is the 

performance of the forecasts produced by model A for variable i at respective periods T + 1, T + 

2, ..., T + h. In the second case, what is evaluated is the overall performance of the forecast produced 

by model B for variable i again from period T + 1 up to period T + h. If model A has a higher 

average log predictive score than model B, it means that values close to the actual realizations of a 

time series were a priori more likely according to model A relative to model B (Giannone et al. 

2015). In other words, a higher log predictive score indicates that the density forecasts produced 

by our proposed procedure are more accurate than those of the alternative models. 

                                                           
13 https://github.com/european-central-bank/BEAR-toolbox, last accessed 22 July 2022. 

https://github.com/european-central-bank/BEAR-toolbox
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4.3.2 Discussion of the forecasting results 

We compare the forecasting abilities of the two models before and during the pandemic. 

Tables 2 – 7 present forecast evaluations for the small model, which consists of 3 variables. Tables 

8 - 13 present forecast evaluations for the large model, which consists of 20 variables. We present 

forecast evaluations for 3 variables, namely industrial production, consumer price index, and 

shadow interest rate. Tables 2-4 and Tables 8-10 show the results for the time period before the 

pandemic, that is before 2020:02. Tables 5-7 and Tables 11-13 show the results for forecasting 

during the pandemic, which is in the period between 2020:05 and 2021:05. In order to assess 

whether these models could predict a pandemic, we decided to perform the forecasting experiment 

for after the outbreak of the pandemic. Also due to the short time that has elapsed since the outbreak 

of the pandemic, the assessment of forecasts applies only to the period up to 6 months. 

 

We test two sets of hyper-parameters, the first set is the standard values proposed in the 

literature (overall tightness equal to 0.1 and lag decay equal to 1), the second set is the values 

obtained using Giannone et al.’s (2015) procedure. For the large model, for the two samples, the 

one that includes the pandemic and the one that ends before the pandemic, much better results were 

obtained using Giannone et al.’s prior. However, for the small model for the sample that ends 

before the pandemic no strong evidence was found that their prior is better than the standard hyper-

parameter values, with results very similar for the two type of priors. Moreover, for the sample that 

includes the pandemic the model with standard hyper-parameter values generated better forecasts 

than the small model with Giannone et al.’s prior. 

 

 Based on our results so far, we are not able to conclusively confirm that the large model 

outperforms the small model. The forecasting performance of the two models seems to be similar. 

Thus, taking into account the time needed to calculate the large model, the small model might be 

preferable.  

 

The large model outperforms the small model for the forecasts for the shadow interest rate, 

according to all analysed measures. For the forecasts for industrial production the large model 

seems to outperform the small model when the horizons is larger than 1 month (except of now-

casting), according to the RMSE, MAE, MAPE, CRPS, and Log score 1 criteria. Theil’s U seems 

to show the same results for the two models, whereas Log score 2 suggests better results for the 

small model. For the forecasts for the consumer price index both the traditional point forecasting 

measures and the density-based scores point towards the small model producing better forecasts. 

However, the results differ little and in many cases the difference is only in third decimal place. In 

addition, if we compare the results for the pandemic period, the small model seems to outperform 

the large model in many cases. For the forecasts for the shadow rate all error statistics are better 

for the small model. For the consumer price index, only log predictive scores seem to show better 

performance of the large model in a few cases (see Table 6 and 12, log scores). Whereas for the 

forecasts for industrial production, all, except for the CRPS measure, indicate that the large model 

performs better. Thus, we conclude that in this specific time period the results are mixed.  
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 If we compare the forecasting performance of the models before the pandemic and during 

the pandemic, we observe that the forecasting performance of the models is somewhat better before 

the pandemic. The result holds for all three time series (i.e. industrial production, consumer price 

index, and shadow interest rate). All forecasting evaluation criteria show that forecasts produced 

before the pandemic (Tables 2-4 and 8-10) are more accurate than forecasts produced during the 

pandemic (Tables 5-7 and 11-13). 

 

5 Conclusion 

We estimate the BVAR models with Giannone et al.’s (2015) prior for the United States for 

the recent time period from 1990:01 to 2021:11. We do not apply any data modification for the 

pandemic data. The impulse response functions that we obtain are very similar to the impulse 

response functions obtained for the sample that ends before the pandemic, which is in 2020:01. We 

test the performance of the small BVAR model (with three variables) and the large BVAR model 

(with 20 variables). The models seem to produce credible impulse responses. We compare their 

forecasting performance using traditional point forecasting measures and density-based scores in 

two time periods, namely before and after the pandemic.  

 

Our results indicate that it is preferable to use the Wu-Xia shadow rate instead of the effective 

federal funds rate as the monetary policy tool in the VAR models. Also, our results indicate that 

the forecasting performance of the small BVAR model is quite similar to performance of the large 

VAR model. Therefore, it seems better to use small BVAR models than large BVAR models that 

are more difficult and time-consuming to estimate. We leave for future research a number of 

important issues: the application of conditional forecasts, optimizing for lag length, application of 

tests of forecast performance equality, as well as conducting a similar study for some other 

economies. 
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Table 1. Unit root tests 

Series p-value Lags   Maximum lags Observations 

LOG_INDPRO  0.2621  2  16  383 

LOG_PAYEMS  0.5945  0  16  384 

UNRATE  0.0178  0  16  384 

MCUMFN  0.1099  1  16  383 

LOG_PCEC96  0.8539  2  14  236 

LOG_HOUST  0.6283  2  16  383 

UMCSENT  0.0233  0  16  383 

LOG_CPIAUCSL  0.4433  2  16  384 

LOG_PCEPI  0.7102  1  16  383 

LOG_CPILFESL  0.9413  12  16  384 

LOG_PCEPILFE  0.7102  1  16  383 

LOG_COMPENSATION  0.8235  0  16  383 

LOG_OIL  0.2675  1  16  384 

WU_XIA_RATE  0.2627  2  16  381 

DFF  0.1579  3  16  384 

DAAA  0.7950  13  16  384 

DBAA  0.7319  12  16  384 

DGS2  0.3353  13  16  384 

DGS5  0.5544  13  16  384 

DGS10  0.6759  13  16  384 

REER  0.4910  2  16  332 

NEER  0.3822  2  16  332 

NEER2  0.2101  1  16  383 

SP_CLOSE  1.0000  0  16  384 
Note: We applied the standard augmented Dickey-Fuller (ADF) unit root test, with lags selected according to Akaike’s 

information criterion.  

 

Table 2. Forecast evaluation for industrial production (LOG_INDPRO), small model, time period 

before the pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.005 0.006 0.007 0.010 0.015 

MAE: 0.005 0.006 0.007 0.008 0.013 

MAPE: 0.100 0.121 0.140 0.180 0.280 

Theil's U: 0.000 0.001 0.001 0.001 0.002 

CRPS: 0.001 0.002 0.002 0.004 0.008 

Log score 1: 3.779 3.401 3.236 2.783 2.139 

Log score 2: 3.779 7.560 11.366 22.774 45.966 
Note: Forecasting models are estimated on rolling windows, the first set of forecasts is generated using the sample 

1990:01 – 2017:01 and the last set is generated using the sample 1992:01 – 2019:01. The optimal lambda parameters 

were found to be the following: 𝜆1 = 0.0645, 𝜆3 = 1.021, 𝜆6 = 0.02022, and 𝜆7 = 0.6763. 
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Table 3. Forecast evaluation for consumer price index (CPI), small model, time period before the 

pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.002 0.002 0.003 0.003 0.004 

MAE: 0.002 0.002 0.002 0.003 0.003 

MAPE: 0.030 0.038 0.045 0.051 0.060 

Theil's U: 0.000 0.000 0.000 0.000 0.000 

CRPS: 0.001 0.001 0.001 0.002 0.002 

Log score 1: 4.772 4.306 4.064 3.856 3.522 

Log score 2: 4.772 9.540 14.320 28.754 58.233 
Note: See Table 2. 

 

 

Table 4. Forecast evaluation for Wu-Xia shadow federal funds rate (WU_XIA_RATE), small 

model, time period before the pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.100 0.131 0.156 0.222 0.412 

MAE: 0.100 0.124 0.142 0.200 0.350 

MAPE: 7.983 9.463 10.378 12.935 19.733 

Theil's U: 0.044 0.057 0.065 0.083 0.133 

CRPS: 0.047 0.074 0.099 0.168 0.305 

Log score 1: 0.512 0.045 -0.221 -0.721 -1.365 

Log score 2: 0.512 1.065 1.633 3.360 6.656 
Note: See Table 2. 

 

 

Table 5. Forecast evaluation for industrial production (LOG_INDPRO), small model, during the 

pandemic (i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.033 0.046 0.051 0.054 

MAE: 0.033 0.043 0.047 0.050 

MAPE: 0.734 0.944 1.039 1.087 

Theil's U: 0.004 0.005 0.006 0.006 

CRPS: 0.004 0.007 0.008 0.009 

Log score 1: 0.621 -0.827 -1.283 0.455 

Log score 2: 0.621 1.240 3.033 9.749 
Note: Forecasting models are estimated on rolling windows, the first set of forecasts is generated using the sample 

1990:01 – 2020:05 and the last set is generated using the sample 1991:01 – 2021:05. The optimal lambda parameters 

were found to be the following: 𝜆1 = 0.05206, 𝜆3 = 1.068, 𝜆6 = 0.02024, and 𝜆7 = 0.5032. 
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Table 6. Forecast evaluation for consumer price index (CPI), small model, during the pandemic 

(i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.005 0.008 0.009 0.014 

MAE: 0.005 0.007 0.009 0.012 

MAPE: 0.083 0.127 0.153 0.216 

Theil's U: 0.000 0.001 0.001 0.001 

CRPS: 0.001 0.002 0.002 0.002 

Log score 1: 3.380 2.653 2.599 1.421 

Log score 2: 3.380 7.330 11.332 22.227 
Note: See Table 5. 

 

 

 

Table 7. Forecast evaluation for Wu-Xia Shadow federal funds rate (WU_XIA_RATE), small 

model, during the pandemic (i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.358 0.493 0.600 0.850 

MAE: 0.358 0.453 0.538 0.743 

MAPE: 142.812 144.517 156.593 153.820 

Theil's U: 0.486 0.507 0.533 0.573 

CRPS: 0.081 0.136 0.167 0.224 

Log score 1: -0.762 -1.149 -1.399 -1.710 

Log score 2: -0.762 -1.568 -2.164 -3.553 
Note: See Table 5. 

 

 

Table 8. Forecast evaluation for industrial production (LOG_INDPRO), large model, time period 

before the pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.005 0.006 0.007 0.009 0.014 

MAE: 0.005 0.005 0.006 0.008 0.012 

MAPE: 0.097 0.118 0.134 0.175 0.266 

Theil's U: 0.000 0.001 0.001 0.001 0.002 

CRPS: 0.001 0.002 0.002 0.004 0.007 

Log score 1: 3.757 3.448 3.286 2.822 2.253 

Log score 2: 3.757 7.546 11.344 22.716 42.049 
Note: Forecasting models are estimated on rolling windows, the first set of forecasts is generated using the sample 

1990:01 – 2017:01 and the last set is generated using the sample 1992:01 – 2019:01. The optimal lambda parameters 

were found to be the following: 𝜆1 = 0.02144, 𝜆3 = 1.088, 𝜆6 = 0.02096, and 𝜆7 = 0.5027. 
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Table 9. Forecast evaluation for consumer price index (CPI), large model, time period before the 

pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.002 0.002 0.003 0.004 0.005 

MAE: 0.002 0.002 0.003 0.003 0.004 

MAPE: 0.032 0.040 0.046 0.060 0.075 

Theil's U: 0.000 0.000 0.000 0.000 0.000 

CRPS: 0.000 0.001 0.001 0.002 0.002 

Log score 1: 4.708 4.271 4.054 3.814 3.486 

Log score 2: 4.708 9.422 14.163 28.501 53.016 
Note: See Table 8. 

 

 

 

Table 10. Forecast evaluation for Wu-Xia Shadow federal funds rate (WU_XIA_RATE), large 

model, time period before the pandemic 

  1 month 2 month 3 month 6 month 12 month 

RMSE: 0.073 0.101 0.126 0.195 0.328 

MAE: 0.073 0.095 0.116 0.173 0.282 

MAPE: 6.359 7.716 8.818 11.685 16.701 

Theil's U: 0.036 0.048 0.058 0.080 0.117 

CRPS: 0.042 0.064 0.084 0.142 0.236 

Log score 1: 0.644 0.168 -0.087 -0.565 -1.099 

Log score 2: 0.644 1.286 1.943 3.794 6.619 
Note: See Table 8. 

 

 

 

Table 11. Forecast evaluation for industrial production (LOG_INDPRO), large model, during the 

pandemic (i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.024 0.035 0.044 0.058 

MAE: 0.024 0.033 0.040 0.050 

MAPE: 0.519 0.713 0.864 1.083 

Theil's U: 0.003 0.004 0.005 0.006 

CRPS: 0.010 0.016 0.017 0.021 

Log score 1: 2.053 1.599 1.443 1.457 

Log score 2: 2.053 3.991 6.036 10.983 
Note: Forecasting models are estimated on rolling windows, the first set of forecasts is generated using the sample 

1990:01 – 2020:05 and the last set is generated using the sample 1991:01 – 2021:05. The optimal lambda parameters 

were found to be the following: 𝜆1 = 0.03509, 𝜆3 = 1.057, 𝜆6 = 0.03509, and 𝜆7 = 0.5033. 

  



17 
 

 

Table 12. Forecast evaluation for consumer price index (CPI), large model, during the pandemic 

(i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.006 0.009 0.011 0.017 

MAE: 0.006 0.008 0.010 0.015 

MAPE: 0.099 0.145 0.175 0.266 

Theil's U: 0.000 0.001 0.001 0.001 

CRPS: 0.002 0.004 0.005 0.005 

Log score 1: 3.463 2.779 2.543 1.748 

Log score 2: 3.463 7.009 10.571 20.122 
Note: See Table 11. 

 

 

 

Table 13. Forecast evaluation for Wu-Xia Shadow federal funds rate (WU_XIA_RATE), large 

model, during the pandemic (i.e., 2020:05 – 2021:05). 

  1 month 2 month 3 month 6 month 

RMSE: 0.787 1.199 1.569 1.903 

MAE: 0.787 1.126 1.443 1.734 

MAPE: 316.875 492.243 601.008 627.430 

Theil's U: 0.632 0.651 0.684 0.645 

CRPS: 0.225 0.357 0.412 0.498 

Log score 1: -1.290 -1.826 -2.134 -1.881 

Log score 2: -1.290 -2.451 -3.565 -7.397 
Note: See Table 11. 

 

 

Figure 1. Impulse response functions for the small VAR model for the whole sample when the 

effective federal funds rate is used 
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Figure 2. Impulse response functions for the small VAR model for the whole sample when the 

shadow interest rate is used 

   

-.005

.000

.005

.010

5 10 15 20 25 30 35 40 45

Response of LOG_INDPRO to WU_XIA_RATE Innovation

Response to Cholesky One S.D. (d.f. adjusted) Innovations 

± 2 analytic asymptotic S.E.s

 

-.001

.000

.001

.002

.003

5 10 15 20 25 30 35 40 45

Response of LOG_CPIAUCSL to WU_XIA_RATE Innovation

 
-.2

-.1

.0

.1

.2

.3

.4

.5

5 10 15 20 25 30 35 40 45

Response of WU_XIA_RATE to WU_XIA_RATE Innovation

 

 

Figure 3. Impulse response functions for the small BVAR model with the effective federal funds 

rate (whole sample) 

The response of 

LOG_INDPRO to a 

monetary policy shock 

The response of 

LOG_CPIAUCSL to a 

monetary policy shock 

Monetary policy shock, 

defined as an increase in the 

effective federal funds rate 

  
 

 

Figure 4. Impulse response functions for the small BVAR model with the shadow rate (whole 

sample) 

The response of 
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Figure 5. Impulse response functions for the large BVAR model 

The response of 
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monetary policy shock 
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Appendix  

Table. Data description 

 Series Describtion Source Units Transfor-

mation 

Indicators of the level of economic activity 

1 IND_PROD Industrial Production: Total Index 

(INDPRO) 

Federal Reserve 

Board 

SA, 2017=100 ln 

2 PAYEMS All Employees, Total Nonfarm 

(PAYEMS) 

BLS 

 

SA, Thousands 

of Persons 

ln 

3 UNEMP Unemployment Rate (UNRATE) BLS SA, % (of labor 

force) 

none 

4 CAPACITY Capacity Utilization: 

Manufacturing (NAICS) 

(MCUMFN) 

Federal Reserve 

Board 

SA, % (of 

capacity) 

none 

5 R_PCE Real Personal Consumption 

Expenditures (PCEC96) 

BEA Billions of 

Chained 2012 

Dollars, SA 

ln 

6 HOUSING_STAR-

TS 

New Privately-Owned Housing 

Units Started: Total Units 

(HOUST) 

Census Bureau SAAR, 

Thousands of 

Units 

ln 

Indicators of the level of prices 

7 CPI Consumer Price Index for All 

Urban Consumers: All Items in 

U.S. City Average (CPIAUCSL) 

BLS SA, 1982-84 = 

100 

ln 

8 PCE Personal Consumption 

Expenditures: Chain-type Price 

Index (PCEPI) 

BEA SA, 2012 = 100 ln 

9 CPI_LESS Consumer Price Index for All 

Urban Consumers: All Items Less 

Food and Energy in U.S. City 

Average (CPILFESL) 

BLS SA, 1982-84 = 

100 

ln 

10 PCE_LESS Personal Consumption 

Expenditures Excluding Food and 

Energy (Chain-Type Price Index) 

(PCEPILFE) 

BEA SA, 2012 = 100 ln 

11 COMPENSATION Compensation of Employees, 

Received: Wage and Salary 

Disbursements (A576RC1) 

BEA SA, Billions of 

Dollars 

ln 

12 OIL Crude Oil Prices: West Texas 

Intermediate (WTI) - Cushing, 

Oklahoma (DCOILWTICO) 

EIA / WSJ dollars ln 

Interest rates 

13 WU_XIA_RATE Wu-Xia Shadow Federal Funds 

Rate 

https://www.atlanta

fed.org/cqer/researc

h/wu-xia-shadow-

federal-funds-rate 

% p.a. none 

14 FF_EF_RATE Federal Funds Effective Rate 

(DFF) 

Federal Reserve 

Board 

% p.a. none 

15 Moody_AAA Moody's Seasoned Aaa Corporate 

Bond Yield (DAAA) 

Moody’s % p.a. none 

16 Moody_BAA Moody's Seasoned Baa Corporate 

Bond Yield (DBAA) 

Moody’s % p.a. none 
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17 2Y_yield Market Yield on U.S. Treasury 

Securities at 2-Year Constant 

Maturity (DGS2) 

Federal Reserve 

Board 

% p.a. none 

18 5Y_yield Market Yield on U.S. Treasury 

Securities at 5-Year Constant 

Maturity (DGS5) 

Federal Reserve 

Board 

% p.a. none 

19 10Y_yield Market Yield on U.S. Treasury 

Securities at 10-Year Constant 

Maturity (DGS10) 

Federal Reserve 

Board 

% p.a. none 

Exchange rate 

20 USD_EUR U.S. Dollars to Euro Spot 

Exchange Rate 

Federal Reserve 

Board 

U.S. Dollars to 

One Euro, Not 

Seasonally 

Adjusted 

ln 

22 REER Real broad BIS effective 

exchange rate,  Real (CPI-based), 

Broad Indices 

BIS Monthly 

averages; 

2010=100 

ln 

23 NEER Nominal broad BIS effective 

exchange rate 

BIS Monthly 

averages; 

2010=100 

ln 

24 NEER2 Nominal narrow BIS effective 

exchange rate 

BIS Monthly 

averages; 

2010=100 

ln 

Additional variables 

25 S&P 500 S&P 500 index, adjusted close 

price adjusted for splits and 

dividend and/or capital gain 

distributions. 

Yahoo! Finance dollars ln 

26 SENTIMENT University of Michigan: 

Consumer Sentiment 

(UMCSENT) 

consumer confidence levels in the 

United States, before 1978 we use 

University of Michigan: 

Consumer Sentiment 

(DISCONTINUED) 

(UMCSENT1) 

University of 

Michigan 

Index 

1966:Q1=100, 

Not Seasonally 

Adjusted 

none 

Note: BLS refers to the U.S. Bureau of Labor Statistics, BEA to the U.S. Bureau of Economic Analysis, WSJ to the 

Wall Street Journal, and BIS to the Bank for International Settlement. Also, “ln” refers to taking the natural 

logarithm.    
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