Quantifying the potential of ultraefficient houses to reduce seasonal electricity demand and enable greater renewable supply

Michael Jack¹, Anthony Mirfin¹ and Ben Anderson²

¹Physics Department, Otago

²Southampton University, UK

Can ultra-efficient houses keep us warm and healthy and solve the "dry-year problem"?

Low Energy & Passivhaus Retrofit

Energy efficiency + electrification = Decarbonization

Technology Path for California

Preferred pathway for New Zealand
Interim Climate Change Committee
(ICCC) *

"Three-step" plan

- 1. Reduce energy demand
- 2. Increase % of renewable electricity
- 3. Electrify heating and transport (e.g. EVs)

^{*}Accelerated Electrification report 2019

Renewable electricity: Variability challenges

- Most renewable resources are "non-dispatchable" resulting in a temporal mismatch between supply and demand
- Energy storage can be used to bridge short-duration (<2 weeks) mismatches
- Economic solutions for longer supply-demand mismatches currently do not exist

Seasonal supply-demand mismatch & the 'dry year problem'

- New Zealand has a significant winter peak in electricity demand
- In dry, calm years this results in a significant seasonal supplydemand mismatch
- Solar PV likely to make this worse
- Supply-side and storage solutions are very expensive
- Argument for *not* pursuing 100% renewable electricity - ICCC
- But... what causes this winter peak in demand?

Residential Heating Causes Winter Peak

Can energy-efficient buildings reduce the supply-demand mismatch?

- Energy-efficient housing has been demonstrated to have multiple benefits;
- Could energy-efficient housing also redue the seasonal supply-demand mismatch?
- Key Considerations:
 - Need long-term perspective houses often exist for 100 years
 - Future trends population, building technologies, house size, etc...
 - Current state of NZ's housing stock

Reduce Space heating energy use (by 80%) and associated Greenhouse Gas Emissions

Increase indoor temperatures and improve health

Reduce energy costs and energy poverty

We do not heat our houses enough

- Much has been written about the poor state of NZ housing
- NZ has lowest space heating intensity of selected OECD countries (IEA)
- True even when adjusted for different climates (divided by Heating Degree Day)

Future Residential Heating Scenarios

- Time period: 2020 to 2050 (align with Net Zero carbon aspirations)
- Focus on detached houses (>90% of dwellings by floor area)
- Range of space heating possibilities based on different building standards
- Assume all houses heated to 20 deg C as baseline
- Regional break down using climate data

Annual space heating energy demand

Floor area model

X

Space heating demand per m² (determined by each building standard scenario)

Future Detached-House Floor Area Model

Assumptions:

- Demolition of pre-existing houses at a rate of 0.7% per year(Coleman 2018)
- Population growth 2020:
 1.2%/year, 2050: 0.5%/ year
- 3. New builds increase at a linear rate based on recent consents then slow to 60% of this by 2050 (Stats NZ)
- 4. 30,000 energy efficient retrofits per year

Future energy heating scenarios

- NZ Building Code (BC)
 - New and Retrofits built to BC based on Building Performance Index
- Medium (M)
 - New and Retrofits built to Homestar 6 Standard
- High (H)
 - New and Retrofits built to Homestar 7 Standard
- Very High (VH)
 - New Builds and Retrofits built to Passive House Standard
- Progressive (P)
 - Progressively move to Passive House Standard from BC

Results - Specific Heat Demand (kWh/m²)

Zone	$ar{T}_{ m July}$	$ar{T}_{ m Jan}$	Territorial authority					
AK	11.3	19.2	Thames-Coromandel District,					
			Auckland					
WN	9.0	17.0	Porirua City, Lower Hutt City,					
			Wellington City					
CC	5.1	16.2	Hurunui District, Waimakariri					
			District, Christchurch City, Sel-					
			wyn District, Ashburton District,					
			Timaru District, Waimate District					
DN	7.0	14.2	Waitaki District, Dunedin City,					
			Clutha District					

Results - Annual Space Heating Demand

Note Progressive Scenario <50% reduction by 2050

Results - Monthly Space Heating Demand 2050

What does this mean for winter peak reduction?

- Impact on electricity demand depends on efficiency of electrical heating:
 - Measured Heating Performance Factor (MHPF)
- Current average MHPF ~ 1.5
 - c.f. Heat pump Coefficient of Performance ~2-3
- Building Code Scenario "area of peak" is greater than current for residential heating for MHPF<4
- For Very High Scenario "area of peak" in 2050 is ½ of current for MHPF = 1.5

Summary

- Currently-achievable best practice standards could red
 - annual electricity demand to 1/3 of BAU by 2050
 - difference between winter and summer demand to 1/1
- This will help decarbonisation of the New Zealand electrical and thus overall energy system.
- Slower implementation will significantly delay benefits
- Retrofits critical

 Need cross-sector policies that mandate energy efficient residential buildings based on their wide-ranging health, efficiency and energy affordability benefits and their role in decarbonisation.

In contrast recent MBIE report suggests staged implementation*.

Missing from MBIE report.

Some quick calculations

Value of Building to VH Standard

							NPV of	NPV of
							savings as	savings as
							percentage	percentage
	Savings per		NPV of		NPV of		of building	of building
Zone	year	(\$/m ²)	savi	ings (3%)	savir	ngs (6%)	costs (3%)	costs (6%)
AK	\$	3.07	\$	60.09	\$	42.20	2%	1%
WN	\$	7.80	\$	152.87	\$	107.36	5%	4%
CC	\$	15.12	\$	296.27	\$	208.06	10%	7%
DN	\$	15.37	\$	301.34	\$	211.63	10%	7%

Assumptions:

- 30 year lifetime
- Building cost \$3,000/m²
- Space heating energy cost \$0.15/kWh

Value to NZ of reducing peak

\$4.3 Bn/3 TWh = \$1.6 Bn/TWh