Physics

LCR Circuits

REACTANCE & IMPEDANCE

 $V_{\rm S}$ is an AC voltage with angular frequency $\omega = 2\pi f$

INDUCTIVE REACTANCE

$$X_L = \omega L$$

CAPACITIVE REACTANCE

$$X_C = \frac{1}{\omega C}$$

LCR CIRCUIT IMPEDANCE

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

SI unit for Resistance, Reactance, and Impedance is: Ohms $[\Omega]$.

RESONANCE

Conditions for resonance:

$$V_L = V_{C}, X_L = X_C$$

$$\omega_{RES} = \sqrt{\frac{1}{LC}}$$

Current → Maximum Impedance → Minimum

VOLTAGE PHASORS

Current (I) is same throughout all components in the circuit. V_R -phasor is parallel to the I-phasor.

SUPPLY VOLTAGE

Supply voltage phasor is given by the vector sum of V_R , V_L , and V_C .