
Full citation: Licorish, S. A., and MacDonell, S. G. 2017. Exploring the links between software
development task type, team attitudes and task completion performance: Insights from the Jazz
repository. Information and Software Technology, 97, pp. 10-25.
doi:10.1016/j.infsof.2017.12.005.

Exploring the Links between Software Development Task Type, Team Attitudes

and Task Completion Performance: Insights from the Jazz Repository

Sherlock A. Licorish and Stephen G. MacDonell
Department of Information Science

University of Otago
PO Box 56, Dunedin 9054

New Zealand
sherlock.licorish@otago.ac.nz, stephen.macdonell@otago.ac.nz

Abstract – Context: In seeking to better understand the
impact of various human factors involved in software
development, and how teams’ attitudes relate to their
performance, increasing attention is being given to the
study of team-related artefacts. In particular, researchers
have conducted numerous studies on a range of team
communication channels to explore links between
developers’ language use and the incidence of software
bugs in the products they delivered. Comparatively limited
attention has been paid, however, to the full range of
software tasks that are commonly performed during the
development and delivery of software systems, in spite of
compelling evidence pointing to the need to understand
teams’ attitudes more widely. Objective: We were therefore
motivated to study the relationships between task type and
team attitudes, and how attitudes expressed in teams’
communications might be related to their task completion
performance when undertaking a range of activities.
Method: Our investigation involved artefacts from 474
IBM Jazz practitioners assembled in 149 teams working on
around 30,000 software development tasks over a three-
year period. We applied linguistic analysis, standard
statistical techniques and directed content analysis to
address our research objective. Results: Our evidence
revealed that teams expressed different attitudes when
working on various forms of software tasks, and they were
particularly emotional when working to remedy defects.
That said, teams’ expression of attitudes was not found to
be a strong predictor of their task completion performance.
Conclusion: Efforts aimed at reducing bug incidence may
positively limit teams’ emotional disposition when
resolving bugs, thereby reducing the otherwise high
demand for emotionally stable members. In addition, in
environments where teams work closely together to
develop software such as in Agile contexts, attitudes are
likely to have a bearing on how they function as a group.

1 Software engineering management involves the
management of software development activities, including
the design, coding, testing and maintenance of software
products and services. Sometimes such activities may also

Keywords: Task type, Team attitudes, Task completion
performance, Software project management, Empirical
software engineering, Repository mining, Jazz repository

1. INTRODUCTION
Research addressing the management of software
engineering1 (SE) has recently cast a more focused lens on
team-based issues, with increased attention on people and
their work practices during software development and
deployment [1-3]. In supporting the intent and execution of
such work, repositories have played an increasingly
important role, providing artefacts to enable various forms
of team-focused explorations [4-7]. To date these works
have considered a range of communication metrics and
their linkages to software events and outcomes [6, 8, 9]. In
particular, there has been a wealth of studies that have
examined how teams’ communication processes relate to
the incidence of software bugs (see, for example, [10-13]).
While these studies have indeed provided insights into the
way software teams work, we argue that the body of
evidence on SE management would benefit from
explorations that address other software development
activities, beyond just the study of bugs.

The need for and value of such work has long been
recognized. In the 1980s the work of McGrath and
colleagues questioned the validity of outcomes derived
from studies examining groups’ and individuals’
interactions and performance without considering the
characteristics of the full range of tasks (defined in the next
paragraph) that are commonly undertaken [14, 15]. They
claimed that the nature of the work in which a team is
involved underpins the differences that are implicit in team
tasks. Similarly, other early works have established that
exploring teams’ instrumental and expressive concerns and
interpersonal needs provides a useful window for
understanding their performance on various team-based
endeavours [16].

extend to adapting and selling completed software
products.

https://doi.org/10.1016/j.infsof.2017.12.005

In the general sense, software development essentially
involves the writing of computer programs in response to
client requests [17]. This process may of course involve
several activities (or tasks), including those incorporated
within feasibility studies, planning and documenting,
coding, testing, bug fixing and deploying highly robust
software [18]. After deployment the software may also be
maintained for an extended period of time. Other tasks
associated with software development include research,
design, management, facilitation, and so on [19], and the
writing of software itself may be supported by a range of
tools, generators and the like. Tasks may be derived both
implicitly, given a specific need arising from the detailed-
level design or coding of a feature, and explicitly, in
response to clients’ requests [18]. Thus, there is a
distinction between documented tasks (e.g., a client
request) and those that are not documented but must be
performed all the same to complete meaningful software
development work (e.g., a programmer designing a
prototype to evaluate the feasibility of developing a client
feature). Tasks may also be aligned to multiple project
objectives, and intertwined (e.g., coding a feature may also
involve testing). Sometimes software tasks (other work)
may also be performed during the detailed-level design and
implementation of software projects that are not explicitly
connected to the activities mentioned above (e.g., arranging
software demonstration through site visits).

In this research we study those software engineering tasks
that are largely explicit, with each defined as a unit of work
associated with a particular project objective or feature
(e.g., an enhancement request or new feature requirement).
As with the range of software engineering tasks just
mentioned, such work may take several weeks to complete,
and require multiple practitioners (forming teams) to enable
their implementation, while others may be delivered much
more quickly and by a single practitioner.

While software engineering in general is accepted as being
a complex undertaking due (in part) to the nature of the
software product, which can be seen as conceptual and
intangible in orientation [20], all software engineering tasks
are not equal. For instance, coding a new feature or
implementing feature enhancements is likely to necessitate
relatively higher amounts of intellectual and cognitive
processes [21], and such tasks will present a different level
of difficulty, and will likely require different team
configurations and idea generation processes [22], when
compared to documentation, architectural design or
support-related tasks. In contrast, these latter activities are
likely to demand relatively higher levels of manipulative
and cooperative requirements2, where social processes may
feature more prominently, and particularly during
consultation [16]. The need for high levels of cooperation
when undertaking requirements gathering and software
architecture design has indeed been observed by those
examining the collaboration patterns of software
developers [23]. Additionally, increased consensus [24] is
likely to benefit those operating on documentation and
software support and architectural design tasks. Similarly,

2 Involving persuasion, negotiation and the need for
consensus.

teams resolving defects will likely require high degrees of
familiarity and specific problem-solving knowledge
(related to the previously developed feature), and so such
tasks may demand less cooperation, tending towards
smaller groups working with increased individual focus
and employing intellectual processes [25].

Such differences are also likely to extend to the specific
software development methods that are used. Agile
methods, for instance, stress an iterative and fluid software
development process, where software features are
designed, constructed, and deployed in parallel, with a
reduced emphasis on plans and processes [26, 27]. These
methods favour individuals and interactions, working
software, customer collaboration and responding to change
[28, 29], all facets that would benefit from an understanding
of teams attitudes. In contrast, more traditional software
development processes emphasize a planned process,
where typically the output of one phase of a project is used
as input for the subsequent phase in progressing the project
to completion using some variant of a waterfall process
[20]. Given the growing use of Agile methods [29, 30], and
the emphasis placed on individuals and interactions in this
context [31], it is necessary to understand how teams
perform across various tasks in that context.

In fact, given that some of the above propositions have been
established as plausible in the context of software
engineering more generally, empirical analyses may
generate tangible insights into the specific instrumental,
expressive and interpersonal configurations that are most
fitting for teams engaging in different forms of software
engineering activities. These results could usefully inform
software team composition strategies. Such insights could
also provide in-depth contextual information that may
enable researchers to further dissect how teams’ attitudes
relate to the incidence of software bugs. Our own prior
study into how practitioners work while undertaking a
range of software tasks indeed revealed that extrinsic
factors (e.g., number of developers, number of messages
practitioners communicated, the project phase in which the
task is performed, and the task priority) accounted for less
than 10% of the variance in task completion performance
[32], suggesting that there are other influential factors at
play in this context. Given our previous outcomes, we
concluded that teams’ attitudes and intrinsic issues may
interact with these (and other) extrinsic variables in
influencing software task completion performance. We
therefore consider this issue in the work reported here.

We define task completion performance to be the duration
taken to fulfil a software task obligation, measured by the
number of day(s) it takes for a software task to be
completed. However, in keeping with the generally fluid
nature of software development, what is termed “complete”
in software development is quite fuzzy. For instance, a task
may be deemed completed today, and the software feature
released, only for users to find bugs (or defects) months
later and so the feature is in need of maintenance or repair.
In some cases there would be no way to track the new work
done to the task that was previously labelled as completed.

This reality holds for all software projects. Thus, in this
work we measure the completion of tasks based on their
statuses as managed by software practitioners up to the time
of software release: when completed, the status of a
software task is set to resolved, closed or verified and the
corresponding date added.

Our contributions are twofold. We first explore whether
there is a link between the nature of the software tasks that
teams are undertaking and the attitudes they express. We
then examine how such attitudes are related to task
completion performance. In addition to establishing the
applicability of task differences, group work and
organisational behaviour theories for studying teams
engaged in software engineering tasks, we provide
suggestions for those responsible for forming and
managing software teams, and particularly those
practitioners assembled to address specific subsets of
software tasks. Furthermore, we assess the relevance of the
expression of various attitudes for assessing team
performance, in the process providing suggestions for
managing software teams’ instrumental, expressive and
interpersonal facets (as defined in the section that follows).

In the next section we present our background and we
survey related work. This leads to a statement of our
specific research questions. We then provide details of our
research setting and measures in Section 3, introducing our
research techniques and procedures in this section. In
Section 4 we present our results, and we discuss our
findings in Section 5. In Section 6 we consider the threats
to the validity of our study, and Section 7 outlines the
implications of our results.

2. BACKGROUND AND RESEARCH
QUESTIONS
In the general sense, attitude relates to an individual’s way
of thinking or the feelings they express about something
[33]. We define team attitudes in this work as the
aggregated sentiments expressed by the individuals that
form a team [34, 35]. Language use and the expression of
sentiments have been used in past research to predict
attitudes among small groups, and to explore how such
attitudes when expressed in communication affect group
dynamics [34]. We thus focus specifically on those
sentiment types that are discernible in teams’
communication [36, 37]; being social, positive, negative,
cognitive, work, and achievement. Social sentiments are
communications that express various forms of affection,
and positive sentiments are communications expressing joy
and happiness [37]. Negative sentiments express discontent
and unhappiness, while cognitive sentiments are
communications expressing cognition and knowledge [35].
Work and achievement sentiments are communications
focussed on task completion or accomplishment [38].
These sentiments are used collectively to study attitudes in
this work. We provide further details of how the occurrence
of these sentiments is measured in Section 3.2.

We provide our theoretical background in this section. The
teams studied in this work used Agile-like practices in a
distributed context. Thus, we first introduce Agile software
development in Section 2.1, and we then review the
literature on task differences and the ways in which these

differences are perceived to influence individuals’ and
teams’ attitudes in Section 2.2. We then consider the
literature focused on how individuals’ and teams’ attitudes
are related to their performance in Section 2.3, before
formulating our research questions in Section 2.4.

2.1. Agile Software Development

The Agile Manifesto [31] promotes a software
development philosophy that emphasizes a context in
which the software development process is fluid and
human-centred. Given the many voices that have lent their
support to Agile methods these approaches have become
widely adopted and studied [30]. Agile development is
implemented by several methods, and according to Dybå et
al. [39], of the many flavours of agile, Extreme
Programming (XP) [26] and Scrum [40] are two of the most
studied agile methods. Equally, these two approaches are
also considered to be the most frequently adopted in the
software development industry [41]. We thus briefly
review these approaches in this section to contextualise our
work.

The XP method is seen to implement the agile manifesto’s
[31] recommendations primarily through 12 practices,
which are applied throughout a software development
project. Concepts such as precise goals and a range of
activities are central to this method (e.g., coding and
testing). A major focus of the XP method is responding to
changing customer requirements. This is facilitated through
the development of software in small increments, and close
customer collaboration. The on-site customer practice calls
for the customer of the software development project to be
always available. This practice is said to shorten feedback
time, as developers can query the customer’s opinion, and
resolve issues rapidly, resulting in fewer costly
readjustments [26].

Scrum’s iterative and incremental framework stresses self-
organisation around closely collaborating teams led by a
Scrum Master. The Scrum approach is evidence-driven,
where experiences and outcomes from earlier phases
inform developers’ plans and actions in subsequent phases.
Scrum processes or ceremonies include sprint planning,
daily Scrum (or stand-up), sprint reviews and
retrospectives, whereas its artefacts include the product
backlog, sprint backlog and burn down chart [40]. In the
context of Scrum, customer feedback (as mentioned for
XP) is largely implemented in the Sprint Review process,
where the Product Owner sometimes serves as a customer
representative and provides feedback [40].

2.2. Task Differences and Attitudes

A long-established body of work has considered task
differences, and teams’ attitudes when undertaking
different forms of tasks. For instance, Carter, Haythorn, and
Howell [21] classified team tasks into six types: clerical,
discussion, intellectual construction, mechanical assembly,
motor coordination and reasoning. The authors’ position
[21] was that each of these tasks has different performance
processes, and so, their conduct demands different forms of
team arrangement. McGrath and Altman’s [15] subsequent
review of small group research provided a similar
classification to that of Carter, Haythorn, and Howell [21],
and emphasized the necessity of particular team

orientations for the execution of specific tasks. Subsequent
work by Shaw [16] extracted six dimensions of group tasks
when examining previous work: (1) intellective versus
manipulative requirements, (2) task difficulty, (3) intrinsic
interest, (4) population familiarity, (5) solution multiplicity
versus specificity, and (6) cooperation requirement. While
the first of Shaw’s dimensions [16] refers to the property of
a particular task, others consider the relation between the
task and those performing the task (i.e., dimensions 2, 3 and
4 respectively), how the task is evaluated (dimension 5) and
how individuals must act while working together to achieve
the task outcome (dimension 6). Beyond Shaw’s broad
classification, Hackman [25] and Hackman, Morris, and
Leonard [42] created a task model focused on the
intellectual tasks that led to written products. Their research
revealed three forms of task: production tasks (tasks
requiring idea generation or creativity), discussion tasks
(requiring dialog), and problem solving tasks (involving the
execution of a plan). These studies and their models all lend
credence to the general necessity to understand task
differences when evaluating teams’ performance.

Of more specific relevance to this work are the variances in
attitudes that arise when teams undertake various forms of
task. Such attitudes are likely to be influenced by the
demeanours of the team’s individual members. The
members’ conduct in turn is linked to their individual
properties (traits, characteristics, beliefs and habits) [14].
Thus, enquiries considering team attitudes are often
encouraged to also take individual members’ dispositions,
as well as group structure, into account. More importantly,
given that group work is performed in specific contexts,
and is focused on particular tasks, this additional variable
(i.e., the task itself) is likely to be related to the attitudes
that are expressed by teams [14]. Furthermore, as noted
above, the task itself may involve particular complexities,
and so these details might also need to be taken into account
when studying teams’ attitudes. It has been noted that group
member properties as granular as age, gender, disposition,
belief, moods, state of mind and motives, along with
aspects of the group’s physical environment (e.g., noise,
heating, lighting) may affect both the attitudes expressed by
teams and their performance [14]. In fact, this list
represents only a modest subset of those variables that
might be of influence, which may in fact be infinite in
number. However, there is little prior theoretical support
for consideration of the majority of these variables.

Notwithstanding the vast array of potentially important
variables, there is theoretical support for the position that
specific task demands impact team interactions and the way
teams perform in particular situations [43]. Beyond the
expression of sentiments above, attitudes here may also be
granularly defined in terms of rates of interaction, the
distribution of participation and members’ involvement,
the flow of information and the flow of interpersonal effect.
Such attitudes would be especially noteworthy in Agile
software development environments, where individuals
and interactions are central to teams’ ways of working.
Hence, studies aimed at examining the attitudes of Agile
teams would likely provide useful insights for this
community.

2.3. Attitudes and Task Completion Performance

The attitudes expressed by individuals working together are
believed to impact their team’s ability to successfully
complete assigned tasks. While all activities conducted by
teams result in instrumental (work and task focus) and
expressive (social-emotional and interpersonal focus)
attitudes, increased task difficulty is also said to exert more
strain on teams, throwing out the social-emotional balance
that is necessary for positive task performance during group
work. Accordingly, sometimes teams must neglect
instrumental concerns to commit exclusively to expressive
concerns in order to reduce tension and support team
morale [14]. This may lead to undue delays (or reduced
effort on tasks), but is often necessary for the long-term
functioning of the team. Bale [44] notes that positive team
attitudes must exceed negative team attitudes if teams are
to complete tasks successfully. Negative team attitudes
lower team motivation, and so there is often a need for
higher levels of positive team attitudes if teams are to
maintain the average level of satisfaction necessary to
complete assigned tasks. In other words, if negative and
positive team attitudes are equivalent during team problem-
solving the team’s level of motivation is not likely to lead
to successful task completion [14]. Bale [44] indeed found
that groups with higher levels of positive-negative attitude
ratios have higher levels of satisfaction. Dittes and Kelly
[45] also found that rejected members reduced their
communication, while Pepinsky et al. [46] observed that
the opposite conduct was exhibited by members who were
positively supported.

Others have provided slightly different models to explain
this phenomenon; however, these models can all be
interpreted under Bale’s two-process schema. For instance,
Thelen [47] used group theory to provide a model
encompassing a similar distinction of work and emotion to
that of Bale. However, he classified work under four sub-
dimensions and emotion under three. Additionally,
Thelen’s model outlined that both work and emotion are
expressed in one communication act. Hare’s model [48]
considers four group functions that may also be classified
under Bale’s two-process model relating to task execution
and interpersonal relations. Others have considered this
issue from a group development perspective. For example,
the work of Schutz [49] uncovered three sequential
interpersonal needs: inclusion, control and affection.
Schutz asserted that cycles of interpersonal action reoccur
throughout the early phases of group work, but then reverse
(i.e., team members break ties of affection, release control
and then stop interacting to release group identity) towards
task completion. Tuckman’s seminal work [50] on various
forms of groups uncovered that they traverse four major
stages, with each stage of development comprising group
structure and task aspects. Stage one (forming) normally
involves testing the group structure and the task and
attitudinal aspects of the team, while intra-group conflicts
around tasks emerge in stage two (storming). Groups
generally tend to be more cohesive and open in stage three
(norming), and the team becomes more functional and
insightful in stage four (performing). Others have
uncovered similar patterns to those promoted by Tuckman
during the study of group development, for example, Mills
[51] and Slater [52]. These works have all confirmed that
there is a relationship between a team’s expression of

attitudes and their group processes and performance, which
warrants the consideration of this issue in an Agile software
engineering setting.

2.4. Research Questions

While previous work in software engineering has provided
a wealth of insights into how software teams work [5, 53],
particularly when engaged with bug issues [12], less
attention has been given to the other forms of software
engineering tasks. On the backdrop of evidence that
multiple properties of team tasks affect team performance
[14, 15, 25], it seems reasonable to explore if teams express
different attitudes when undertaking different forms of
software task. If this insight is established, it would provide
a platform for future work to explore if teams are likely to
benefit from particular pre-set configurations and team
arrangements. In fact, exploring the way developers work
and their motivations across the range of software tasks that
are commonly performed, and particularly those initial
actions that lead to the development of software features in
the first place, and then subsequent bugs, could provide
added value for the software engineering community.

Along these lines, the wider body of evidence around
software team attitudes and affective factors in software
engineering has provided a range of explanations for the
way teams conduct their activities [54], on the basis that
developers express emotion that are captured in their
artefacts [55]. In particular, previous works have paid
particular attention to developers’ communications [56,
57]. For instance, Pletea et al. [58] gauged atmosphere
surrounding security-related discussions on GitHub as
mined from discussions around commits and pull requests,
finding a higher incidence of negative emotions in security-
related discussions than in other discussions. Developers’
language use was also shown to be related to the priorities
assigned to issues [59]. Furthermore, attention was also
specifically given to negative affect given perceptions that
negative team processes may lead to undesirable outcomes
[60]. For instance, anger has been considered by
Gachechiladze et al. [61], who focussed on hostility and
resentment towards self, others and objects. Their evidence
shows that developers’ anger was expressed predominantly
towards tools and programming languages. It is assumed
that such understandings could lead to improved team
management and the provision of support to overcome
challenges related to team conflicts and behavioural
differences. In fact, efforts have also been made towards
developing tools to aid with visualisation of team moods
and sentiments in order to monitor team climate [62, 63].

The previous body of work focussed on human factors in
software engineering has provided a range of circumstantial
evidence around how software teams behave. However,
less attention has been given to the range of software
engineering tasks that are commonly performed. We thus
propose to answer our first research question in examining
artefacts from Agile teams:

RQ1. What attitudes do team members express when
undertaking different forms of software task?

Previous studies have observed that many factors influence
software teams’ delivery performance (e.g., the number of
developers, feature size and response time) [6, 64].

However, we did not find significant relationships between
these variables and teams’ task completion performance in
an earlier study [32]. As a result, and in line with our review
of the related literature reported above [14, 45, 48], we
anticipate that teams’ instrumental and expressive concerns
and interpersonal needs may interact with extrinsic task
variables in influencing software tasks’ completion
performance [44]. Although previous work has examined
practitioners’ and teams’ attitudes [65, 66], and has related
such attitudes to their involvement in development
activities [67-69] and project governance [65, 70] (e.g.,
how many messages they communicate), limited attention
has been given to studying the way software teams’
attitudes covary with their tasks’ completion performance,
considering their full range of tasks.

That said, there is adequate evidence to suggest that such
understandings would be valuable for the software
engineering community, and particularly for instances
where negative attitudes may be evident. For instance,
Graziotin et al. [71] explored the consequences of
unhappiness among software developers, finding 49
consequences of unhappiness while undertaking software
development, with impacts on productivity and
performance being particularly pronounced. Others have
linked unhappiness to negative effects both for developers
personally (e.g., their well-being) and on development
outcomes (e.g., product quality), with being stuck in
problem solving and time pressure being the two most
frequent causes of unhappiness [72]. In contrast, developers
expressing higher levels of positive emotion and politeness
were shown to take less time to address issues, which in
turn resulted in happiness [73].

With Agile teams working closely to deliver software tasks
in highly collaborative environments, the balancing of
attitudes would seem to be necessary. Thus, evidence for
the way attitudes covary with task completion performance
would be enlightening, in terms of providing support for
Agile team composition strategies. In fact, as noted in
Section 2.2 above, a range of other factors related to group
structure [74], situation-related [6], and interaction-related
aspects [75, 76] may also affect task completion
performance, and so, such factors should be controlled
when examining how teams’ attitudes covary with software
task completion performance. We thus outline our second
research question to direct this enquiry:

RQ2. How do the attitudes expressed by the team covary
with software task completion performance?

3. RESEARCH SETTING
To answer our research questions we used linguistic and
directed content analysis techniques to examine artefacts
produced during three years of development of Jazz 1.0.1

(based on the IBMR RationalR Team ConcertTM (RTC)3).
Jazz is a fully functional environment for developing
software and for managing the entire software development
process [77]. The software includes features for work
planning and traceability, software builds, code analysis,
bug tracking and version control in one system [78].
Changes to source code in the Jazz environment are
permitted only as a consequence of work items (WIs) being
created beforehand, such as a defect, a [support] task or an
enhancement request. Defects represent work related to bug
fixing, whereas design documents, documentation or
support for the RTC online community are labelled as tasks
(although we refer to them here as ‘support tasks’ in order
to differentiate with our general use of ‘task’ in the paper).
Enhancements relate to the provision of new functionality
or the extension of system features. These are all explicit
software development tasks (refer to Section 1 for details).
Team members’ communication and interaction around
WIs are captured by Jazz’s comment or message
functionality. During development at IBM, project
communication, the content explored in this study, was
enforced and captured through the use of Jazz itself [6].

The Jazz repository thus comprised a large amount of
process data collected from distributed software
development and management activities across the USA,
Canada and Europe. Teams were resident in each location,
and worked jointly as a wider group to develop Jazz and
RTC related products. It was entirely possible, of course,
that communication and interaction also occurred through
other means outside Jazz, in cases where developers felt
constrained by the system; however, we do not have access
to these communications. Thus, we primarily study the
communication as captured in Jazz (refer to Section 6
where we address this limitation).

In Jazz each team is made up of multiple individual roles,
with a project leader responsible for the management and
coordination of the activities undertaken by the team [79].
All Jazz teams use the Eclipse-way methodology for
guiding the software development process [77]. This
methodology is similar to the Open Unified Process
(OpenUP4), and outlines iteration cycles that are six to
eight weeks in duration, comprising planning, development
and stabilizing phases, and generally conforming to the
agile principles. Development (in iterations) is driven by
work items, which are the most granular unit of work.
Teams collaborate around these work items by sharing
understandings and balancing competing priorities, where
an early focus on the software architecture is typical before
the project evolves with continuous feedback. Builds are
executed after project iterations. All information related to
the software process is stored in a server repository, which
is accessible through a web-based or Eclipse-based (RTC)
client interface [80]. This consolidated data storage,
coupled with high levels of project control, mean that the
data in Jazz is much more complete and representative of
the software process than that in many OSS repositories.

3 IBM, the IBM logo, ibm.com, and Rational are
trademarks or registered trademarks of International

Thus, replicating the work that is performed here for OSS
projects would not necessarily lead to comparable
outcomes, given the differences in quality control for Jazz
and other OSS projects. For example, whereas in Jazz each
work item is labelled, addressed a particular unit of work,
and specific identifiable team members are assigned to
solve work items, features are often not as clearly classified
in OSS projects and it is also quite challenging to identify
the members that developed specific features.

We extracted the Jazz data and applied linguistic analysis,
standard statistical techniques and directed content analysis
to answer the two research questions introduced in Section
2.4. We provide details of our data extraction process and
metrics definitions in the following two subsections.

3.1. Data Extraction

We briefly report here the aspects of data mining that
supported the activities involved in this project in terms of
extracting, preparing and exploring the data under
observation [81]. Data cleaning, integration and
transformation techniques were utilized to maximize the
representativeness of the data under consideration and to
help with the assurance of data quality, while exploratory
data analysis (EDA) techniques were employed to
investigate data properties and to facilitate anomaly
detection [82]. Through these latter activities we were able
to identify all records with inconsistent formats and data
types, for example: an integer column with an empty cell.
We wrote scripts to search for these inconsistent records
and tagged those for deletion. This exercise allowed us to
identify and delete 122 records that were of inconsistent
format. We also wrote scripts that removed all HTML tags
and foreign characters (as these would have confounded
our analysis).

We leveraged the IBM Rational Jazz Client API to extract
team information and development and communication
artefacts from the Jazz repository. In total we extracted
30,646 resolved WIs (labelled as one of the three types
described above) developed by a total of 474 contributors
working on these tasks between June 2005 and June 2008.
These contributors belonged to five different roles: Team
leads (or component leads) are responsible for planning and
executing the architectural integration of components;
Admins are responsible for the configuration and
integration of artefacts; Project managers (PMC) are
responsible for project governance; those occupying the
Programmer (contributor) role contribute code to features;
and finally, those who occupied more than one of these
roles were labelled Multiple. The features were divided
among 149 functional teams, and 117,101 messages
(comments) were exchanged in relation to these WIs. Some
teams in our particular snapshot worked on as little as one
WI, while the maximum number of WIs assigned to one
team was 4,851. These WIs were developed across 30
iterations, where iteration cycles were six to eight weeks in
duration.

Business Machines Corporation in the United States, other
countries, or both.
4 https://eclipse.org/epf/general/OpenUP.pdf

As noted above, the Jazz project teams were employed
across locations in North America and Europe; however,
we did not consider the specific team location as a relevant
unit of analysis in this work. We are aware that cultural
differences and distance (geographical and temporal) may
affect software development teams’ performance [83], and
these conditions may also have an impact on team
members’ attitudes - which in turn may lead to performance
issues [4]. However, previous research examining the
effects of cultural differences in global software teams has
found few cultural gaps and differences in attitudes among
software teams operating in Western cultures (the setting
for the teams studied in this work). The largest negative
effects between global teams were observed between Asian
and Western cultures [83]. Accordingly, in this study we
focus on a number of other control factors as derived from
the literature around task differences, organizational
behaviour and group work in general [75]. These factors,
along with the other study measures used are described
next.

3.2. Description of Measures

We applied linguistic and statistical analysis methods to a
range of metrics computed from the extracted Jazz data to
answer our questions. The software task was our unit of
analysis in this work, and practitioners collaborating
around a particular software task comprised a team. Tasks
were already categorized in the repository, and we explain
how these were analysed below. Team members’ attitudes
and task completion performance formed our dependent
variables, and a number of control factors were also
included in our analysis so that we might more fully
understand task completion performance. We now examine
each of these variables and how they were operationalized
in turn.

(1) Measuring task type: As noted above, each software
task is categorized as a defect, an enhancement or a support
task in the Jazz repository. Although these tasks are broadly
classified, quite specific work is captured under each
category. During Jazz development, tasks that were
categorized as defects were focused on bug fixes, while
WIs that were labelled as support tasks captured work on
design documents, documentation or support for the RTC
online community [79]. Tasks that were classified as
enhancements related to the provision of new software
functionality or the extension of established system
features. It was therefore straightforward to use the task
classification scheme from the repository to group and
examine the Jazz software teams’ undertakings.

(2) Measuring attitudes: We used linguistic and directed
content analyses to measure and study teams’ attitudes. We
introduced the operationalisation of attitudes in Section 2,
but here extend these discussions by considering the use of
our linguistic and directed content analysis techniques in
the following two subsections.

(i) Linguistic Analysis: Language use has been studied
extensively across a range of social contexts [36, 37, 84-
86], and so was considered suitable for studying attitudes
in this research. These works have all provided evidence in
support of the contention that there are unique variations in
individuals’ (and teams’) linguistic styles from situation to

situation, and that linguistic analysis of textual
communication can reveal the attitudes that are expressed
by those who are communicating. In following the lead of
previous work [87, 88], we employed the Linguistic Inquiry
and Word Count (LIWC) software tool in our analysis of
practitioners’ and teams’ attitudes. The LIWC tool was
created after four decades of research using data collected
across the USA, Canada and New Zealand [37]. This tool
captures over 86% of the words used during conversations.
Written text is submitted as input in a file that is then
processed and summarized based on the LIWC tool’s
dictionary. Each word in the file is searched for in the
dictionary, and specific type counts are incremented based
on the associated word category (if found), after which a
percentage value is calculated by aggregating the number
of words in each linguistic category over all words in the
messages. For example, if there were 10 instances of words
belonging to the social dimension (as defined below) in a
message with a length of 200 words then the percentage
value for the social dimension would be (10/200=)5.0%.
The dimensions in the LIWC output summary are said to
capture the attitudes of those communicating as reflected in
the words they use [37, 88]. In assessing team attitudes we
selected six classes of attitudes that can be readily detected
in language use to assess interpersonal processes: social,
positive, negative, cognitive, work, and achievement
attitudes. The social, positive, and negative dimensions
were used to study teams’ interpersonal focus and positive-
negative attitudes ratios (considered in Section 2.3).
Teams’ instrumental concerns were examined using the
cognitive, work and achievement linguistic dimensions. To
briefly illustrate, a social attitude is indicated through the
use of words such as “give”, “buddy” and “love”, while
words including “think”, “consider” and “determine”
reflect a cognitive attitude [37].

(ii) Directed Content Analysis (CA): We triangulate our
LIWC findings through an in depth examination of 1,261
messages that were contributed in relation to 250 randomly
selected software tasks using a directed content analysis
approach. We employed a hybrid classification scheme
adapted from prior works that had examined the details of
teams’ interactions. The classification schemes of Henri
[89] and Zhu [90] are particularly applicable to the work
undertaken in this research because of their treatment of
interaction – the study of which is said to reveal if teams
express different attitudes when undertaking different
forms of software task.

Use of a directed CA approach is appropriate when there is
scope to extend or complement existing theories around a
phenomenon [91], and so suited our further explorations of
Jazz teams’ expression of attitudes when undertaking
different forms of task. The directed content analyst
approaches the data analysis process using existing theories
to identify key concepts and definitions as coding
categories. In our case, we used theories examining
knowledge-sharing expressions in textual interaction [89,
90]. Relevant categories with appropriate examples are
included in Table 1. Henri [89] and Zhu [90] used Bretz’s
[92] three-stage theory of interactivity and the group
interaction theory of Hatano and Inagaki [93] and Graesser
and Person [94] respectively to study teams’ interactions.
Henri’s [89] coding instrument was created to observe five

dimensions of interactivity: participative, social,
interactive, cognitive and meta-cognitive communication,
while Zhu’s [90] social interaction protocol looked to
classify vertical or horizontal interaction. Vertical
interaction is characterized by communication where group
members seek answers or solutions to problems from
(more) capable members, while horizontal interaction
involves the strong assertion of ideas, answers,
information, discussions, judgement exchanges, reflections
and scaffolding. Given the focus of this research we were
particularly interested in comments that were related to
work and achievement, as well as those that were negative
or judgmental, cognitive, and social and positive in nature
(refer to Table 1).

In evaluating the categorization in Table 1, the authors and
two other experienced coders first classified a random
sample of 5% of the 1,261 comments and found that

members in Jazz communicated multiple ideas in their
messages, and so some utterances demonstrated more than
one form of interaction. We thus segmented the
communications using the sentence (or utterance) as the
unit of analysis, after which the first author and the two
experienced coders coded the 1,261 messages that were
communicated based on the protocol in Table 1. Multiple
codes were assigned to utterances that demonstrated more
than one form of interaction, and all coding differences
were discussed and resolved by consensus. In addition, we
were only focused on codes that matched the categories in
Table 1, and thus, while others were aggregated (refer to
Section 4), their specific details are not reported in our
findings. We achieved 81% inter-rater agreement between
the three coders as measured using Holsti’s coefficient of
reliability measurement (C.R.) [95]. This represents
excellent agreement between coders and suggests that a
consistent and reliable approach was taken.

Table 1. Coding categories for exploring teams’ interactions
Category Characteristics and Example
Work and Achievement
Comments

Share information – “Just for your information, we successfully integrated change
305 last evening.”
Provide guidance and suggestions to others – “Let’s document the procedures that
were involved in solving this problem 305, it may be quite useful.”

Negative Comments Judgmental – “I disagree that refactoring may be considered the ultimate test of code
quality.”

Cognitive Comments Elaborate, exchange, and express ideas or thoughts – “What is most intriguing in re-
integrating this feature is how refactoring reveals issues even when no functional
changes are made.”

Social and Positive
Comments

Thankful or offering commendation – “Thanks for your suggestions, your advice
actually worked.”
Communication not related to solving the task under consideration – “How was your
weekend?”

(3) Measuring task completion performance: Various
approaches have been used over many years to measure
team- and individual-level performance while undertaking
software development tasks. Productivity-related measures
such as lines of code per unit of effort [96] and the number
of task changes completed [97] are among those that have
been used previously to measure performance. Cataldo and
Herbsleb [97] argued that measures based on lines of code
may not be reliable in instances where there is variability in
developers’ coding styles (e.g., some developers are more
verbose than others). Additionally, although task changes
may be useful for studying performance at the individual
practitioner level [7], this metric is not suitable for studying
task completion performance by teams.

Therefore, given the use of the task as the unit of analysis
in this work, performance was most appropriately
measured at the task level [98], for tasks that had been
completed. We therefore computed the task completion
performance of each task by calculating the number of
day(s) it took for the task to be completed. A task was
assessed as completed if the status was set to resolved,
closed or verified and the corresponding date added. Such
an approach has also been used extensively by others to
measure performance [79, 99]. We also considered a

number of control variables, including those related to
group structure, situation-related factors and interaction-
related factors, to examine the way teams’ expressions of
attitudes covary with task completion performance, as
introduced next.

(4) Control factors/variables: Of the intervening variables
that are measurable, properties of group structure, situation-
related and interaction-related factors are considered to be
potentially important when assessing the outcomes of
collective action [15, 21, 25, 42, 79, 100]. Thus, we
organize our control variables along these three dimensions
when studying software task completion performance.

(i) Group structure: Jazz developers were assigned to one
of four distinct roles noted above (while those occupying
multiple roles were assigned to the fifth role Multiple in this
study). Given that such roles were assigned by upper level
management and that specific intrinsic responsibilities may
be assigned to these roles [79], coupled with previous
evidence that has established that members’ status may
impact task outcomes [74], we considered the distribution
of roles as potentially related to task completion
performance. We aggregated the number of developers, the

number of unique roles, and the number of individual roles,
respectively, to measure group structure.

(ii) Situation-related factors: Tasks with higher priority
should be completed sooner than those that are considered
as less critical [6]. Similarly, tasks developed in certain
phases may be completed with greater urgency than those
that are less urgently needed (e.g., those features that are
worked on closer to a delivery date are likely to be done
with greater urgency than those developed at the start of the
iteration). We therefore considered the priority of the task
and the iteration in which the task was created as situation-
related control factors during our assessment of task
completion performance.

(iii) Interaction-related factors: In line with previous work
[64], we categorized a number of communication-related
control factors that are associated with team engagement
and participation, and particularly, those related to
communication structures which may impact task
completion performance. For instance, information
diversity has been shown to help with task innovativeness

[75, 76], and diversity also enhances competitiveness
[101]. However, the need to manage a very large volume
of information also results in information overload and task
delays [102, 103]. Under both circumstances task
completion performance may be affected. We therefore
considered the number of comments and the volume of
words communicated in messages around software tasks as
potentially impacting on task completion performance.
These metrics were accommodated under interaction-
related control factors.

Our variables are summarised in Table 2, and Figure 1
provides a pictorial representation of our conceptual model.
We first consider whether teams expressed different
attitudes when undertaking different forms of software task
in answering RQ1. Taking a range of control variables into
consideration, we then address RQ2, in examining whether
the attitudes expressed by the team covary with software
task completion performance (described above). We
present our results in the next section.

Table 2. Summary of measures

Variable or grouping Description or sub-categories Category of
Variable(s)

Research
Question(s)

Software task (type) support, enhancement and defect Independent RQ1

Attitudes* social, positive, negative, cognitive, work,
achievement

Dependent,
Independent

RQ1, RQ2

Task completion performance number of days (time taken) Dependent RQ2

Group structure number of developers, number of roles,
individual roles

Control RQ2

Situation-related factors task priority, iteration Control RQ2

Interaction-related factors Number of comments, message length
(number of words)

Control RQ2

*Attitudes are categorized as dependent variables for RQ1 and independent variables for RQ2.

Figure 1. Study model depicting relationships between software tasks, teams’ expressions of attitudes, classes of control

factors, and task completion performance

4. RESULTS
Of the more than 30,000 software tasks that we extracted
from the Jazz repository the largest single group consisted
of 23,331 tasks (76.1%) classified as defects. A further

12.2% (3,748 of the 30,646 tasks) were classified as
support tasks, and the remaining 11.6% (3,567 tasks) were
classified as enhancements (providing new functionality or
the extension of system features). While there was an
overlap in team members undertaking each form of task,

overall, defects attracted the largest cohort of members
(411 practitioners or 86.7% of the 474 total members),
enhancements attracted the second highest number of team
members (226 practitioners or 47.7%), and support tasks
involved the fewest members (212 practitioners or 44.7%).
We provide summary descriptive statistics for the Jazz
dataset in Table 3. Here it is evident that on average there
were around two team members working on each task,
regardless of the type (mean, enhance features = 2.0, defect
= 2.0 and support tasks = 1.8). Of the 117,101 messages
that were exchanged around the 30,646 tasks, 88,874
messages (or 75.9%) were exchanged by teams working on
defects, 14,512 messages (12.4%) were exchanged by
teams working on enhancement features, and 13,715
messages (11.7%) were exchanged by teams working on

support tasks. Table 3 shows that teams exchanged most
messages when they were working on enhancement
features (number of messages exchanged, mean = 4.1,
median = 3.0, std dev = 4.8), with slightly fewer messages
communicated around defects (mean = 3.8, median = 2.0,
std dev = 4.5), while the fewest messages were exchanged
around support tasks (mean = 3.7, median = 2.0, std dev =
4.5).We also observe in Table 3 that the distributions for
the three forms of task were skewed, with both skewness
and kurtosis values positively oriented. We analysed this
comprehensive snapshot of rich data using linguistic,
statistical and content analysis techniques to answer the two
questions outlined in Section 2; our results for each are
provided in the following two subsections.

Table 3. Descriptive statistics for the extracted Jazz dataset

 Task Mean Median Std Dev Min Max SE (Mean) SK KS SE (SK) SE (KS)

Members
Support 1.8 1 1.2 1 13 0.02 2.5 10.5 0.04 0.08
Enhance 2 2 1.2 1 10 0.02 1.9 5.6 0.04 0.08
Defect 2 2 1.2 1 19 0.01 2.0 8.8 0.02 0.03

Exchanges
Support 3.7 2.2 4.5 1 74 0.03 4.4 33.5 0.04 0.08
Enhance 4.1 3.0 4.8 1 57 0.08 3.9 23.2 0.04 0.08
Defect 3.8 2.0 4.5 1 266 0.07 11.5 50.0 0.02 0.03

Note: Std Dev = Standard Deviation, SE = Standard Error, SK = Skewness, KS = Kurtosis

RQ1. What attitudes do team members express when
undertaking different forms of software task?

We first analysed the messages that were shared among
teams working on the three forms of tasks according to the
linguistic dimensions (social, positive, negative, cognitive,
work, and achievement) outlined in Section 3.2, then
computed descriptive statistics to explore any variations
across these dimensions. A summary of these statistics and
mean ranks is provided in Tables 4 and 5; this shows that
there were indeed variations in linguistic usage for the
different teams undertaking the three forms of software
tasks. Most notable in Tables 4 and 5 are the differences for
the negative, work and achievement dimensions. We
employed formal statistical techniques to assess the
differences in teams’ linguistic usage across the three forms
of tasks. Given the large sample size noted above, we first
used a series of Kolmogorov-Smirnov tests to check the
normality of teams’ linguistic usage. The results of these
tests confirmed that the data distributions for all six
linguistic categories (social, positive, negative, cognitive,
work, and achievement), for each of the three task types
(support tasks, enhancements, defects), significantly
deviated from a normal distribution (p < 0.05). The
standardized coefficients for skewness and kurtosis (i.e.,
the skewness and kurtosis values divided by their
respective standard errors) were also outside the boundaries
of normally distributed data (i.e., -3 to +3) [104]. Thus, a
series of six nonparametric Kruskal-Wallis tests was used
to test for differences in teams’ linguistic usage (for social,
positive, negative, cognitive, work, and achievement), when
working to complete the three forms of tasks (support tasks,
enhancements, defects). These tests revealed statistically

significant differences in the way teams expressed
themselves while undertaking support, enhancement and
defect tasks, for all six linguistic dimensions (p < 0.01 for
all observations). Measures returned for the Kruskal-Wallis
tests for mean ranks and Chi-Square values are provided in
Table 5, showing that teams were particularly social and
cognitive when working to complete enhancements (higher
scores correspond with higher means in Table 4). Table 5
also shows that teams were most negative when resolving
defects, and they expressed more work and achievement
focus while working to complete both support and
enhancement tasks.

Given the findings reported in Tables 4 and 5, a series of
Mann-Whitney pair-wise follow-up tests at the Bonferroni
adjusted level of 0.016 (i.e., 0.05 divided by 3 analyses –
representing the three forms of tasks) were performed to
test for pair-wise differences in usage of the six linguistic
dimensions (social, positive, negative, cognitive, work, and
achievement) across the three forms of tasks (support tasks,
enhancements, defects). These results indicated that teams
were significantly more social when completing support
and enhancement tasks than when working on defects (p <
0.016 for each comparison), and a statistically significant
finding was also revealed when a pair-wise comparison was
conducted for support and enhancement tasks (p < 0.016).
Pair-wise comparisons also revealed that teams were
significantly more positive when addressing enhancement
and defect tasks than when completing support tasks (p <
0.016 for each comparison). Teams expressed significantly
more negative language when fixing defects than when
they were occupied on the other forms of tasks (p < 0.016
for each comparison), and team members expressed more

negative language when completing enhancements than
when they were undertaking support tasks (p < 0.016).
Teams were also significantly more cognitive when
working towards enhancements than when conducting
support and defect tasks (p < 0.016 for each comparison),

whereas work and achievement focus were significantly
higher among teams working to complete support and
enhancement tasks than defects (p < 0.016 for each
comparison).

Table 4. Descriptive statistics for attitudes for different forms of software task

Linguistic Dimension
Mean Median Std Dev

Sup. Enh. Def. Sup. Enh. Def. Sup. Enh. Def.
Social 3.5 3.8 3.1 2.4 3.1 2.3 4.4 3.9 3.7
Positive 4.0 4.2 4.5 1.5 2.1 2.1 7.4 7.1 7.1
Negative 0.7 0.7 1.2 0.0 0.0 0.0 2.0 1.7 2.7
Cognitive 12.0 12.4 11.6 12.0 12.8 11.8 9.2 8.7 8.1
Work-focused 5.7 4.8 4.0 3.7 3.3 2.6 6.7 5.3 4.9
Achievement-focused 5.3 4.5 3.6 3.2 3.0 2.3 6.5 5.2 4.7
Note: Sup. = Support, Enh. = Enhance, Def. = Defect

Table 5. Mean ranks and Chi-Square values for attitudes for different forms of software task

Linguistic Dimension
Mean Rank

Chi-Square
Support Enhance Defect

Social 15503.0 16755.8 15075.7 118.4
Positive 14200.8 15398.5 15492.4 71.8
Negative 13462.2 14122.2 15806.2 368.9
Cognitive 15386.1 16067.8 15199.7 30.2
Work-focused 16823.1 16390.7 14919.4 212.5
Achievement-focused 16773.8 16518.8 14907.8 222.6

We normalized our data and performed another round of
analysis to triangulate these results. We first selected
linguistic measures for individual team members who
worked on and communicated in relation to all three forms
of task in their teams, to examine differences in their
attitudes. Of the 474 total members, 152 met this criteria
(i.e., they worked on all three forms of task at some time
and submitted messages about their tasks). We replicated
the Kruskal-Wallis tests noted above for the six linguistic
dimensions (social, positive, negative, cognitive, work, and
achievement) across the three forms of tasks (support tasks,
enhancements, defects). Results from the six tests revealed

that, with the exception of social expression, these
members expressed significantly different attitudes when
they were working to complete the three different forms of
task (p < 0.01 for the five comparisons – the exception
being for social linguistic utterances). Mean ranks for the
usage of the six linguistic dimensions are provided in
Figure 2, and follow up Mann-Whitney pair-wise tests for
linguistic usage for the five dimensions where there were
statistically significant differences (positive, negative,
cognitive, work, and achievement) across the three forms of
tasks also confirmed the pattern of results just noted.

Figure 2. Mean ranks for teams’ linguistic usage

Our directed content analysis results are next examined. Of
the 250 work items selected, 150 were defects, 50 were
enhancements and 50 were support tasks. As noted above,
teams communicated 1,261 messages around these three
forms of tasks: 738 messages relating to defects, 294
messages for the support tasks, and 229 messages around
enhancements. From these 1,261 messages, 3,630 codes
were recorded to the categories in Table 1 (support = 800,
enhancement = 745 and defect = 2085). Table 6 provides
summary counts of these codes. Given the differences in
the number of messages that were coded for the three
respective tasks we normalize the outcomes in Table 6 to
compare our outcomes with those from the LIWC tool
above. Figure 3 depicts these normalized scores, which
shows a similar pattern to the results in Table 4 for social
and positive (support = 4.9%, enhancement = 4.8% and
defect = 5.3%) and cognitive utterances (support = 27.5%,
enhancement = 21.9% and defect = 18.9%). Negative
utterances remain prominent for defects (8.7%), but we see
in Figure 3 that there was also some degree of negative
utterances expressed around enhancements (9.4%). This
form of utterance remained consistent with the linguistic
outcomes in Table 4 for support tasks (8.1%). However, in

Figure 3 the outcomes for work and achievement utterances
are somewhat divergent to the linguistic outcomes in Table
4 (support = 59.5%, enhancement = 63.9% and defect =
67.1%). Notwithstanding that we only coded 1,261 of the
total 117,101 messages (comments), our directed content
analysis outcomes largely converge with those obtained
from our analysis of the LIWC tool output.

Table 6. Interaction categories and number of occurrences
for support, enhancement and defect tasks

Category Support Enhance Defect
Work and
Achievement
Comments

476 476 1399

Negative
Comments

65 70 182

Cognitive
Comments

220 163 394

Social and
Positive
Comments

39 36 110

∑ 800 745 2085

Figure 3. Percentages of attitudes expressed for support, enhancement and defect tasks

RQ2. How do the attitudes expressed by the team covary
with software task completion performance?

Statistical modelling was used to build a model to explain
how teams’ expressions of attitudes (social, positive,
negative, cognitive, work, and achievement), and the other
variables considered (to accommodate group structure,
situation-related and interaction-related factors), were
related to task completion performance. Given that the
distributions for the six linguistic dimensions were all
skewed (as noted above), we first performed Kendall Tau-
b correlation tests to examine whether the different
variables considered in Section 3.2 were correlated with the
linguistic dimensions. These results are presented in Table
7. Of the correlations computed, the most notable
relationships are: negative expression increased when
larger teams were undertaking software tasks, and teams
expressed more social and negative expression when they

communicated more (and longer) messages. These latter
results are all medium-strength, statistically significant
positive correlations (refer to Table 7 for details). (Note that
Cohen’s classification is interpreted as indicating a low
correlation when 0 < r ≤ 0.29, medium when 0.30 ≤ r ≤ 0.49
and high when r ≥ 0.50 [105].) In addition, of note is that
the dimensions for work and achievement, where there was
divergence in the two sets of results for the linguistic
analysis and directed content analysis (refer to the previous
section), did not have any noteworthy association with our
other variables.

Given the skewness of our distributions we next performed
a natural log transformation on the variables and executed
Pearson product-moment correlation tests in order to create
our model. Results from this round of correlation analysis
were, unsurprisingly, very similar to those in Table 7.
However, these tests were also used to inform the selection

of relevant variables for our regression model, in order to
ensure that influential variables were included while at the
same time avoiding multicollinearity. The only variable
removed was message length, as this variable strongly
correlated with number of comments and number of
developers (r=0.83). That said, when the message length
variable was included there was no change in model
performance.

Although a statistically significant model did emerge
(F9,30636 = 220.9, p < 0.01), the Adjusted R-squared value
revealed that our model accounted for just 6% of the
variance in task completion performance (Adjusted R-
squared=0.061). The Beta Coefficients for the significant
variables (p < 0.01) in the order of importance are: work =
-0.097, cognitive = 0.096, comment count = 0.095, negative
= -0.071, achievement = 0.051, positive = -0.048, social =
0.041, number of roles = 0.040 (refer to Table 8 for further
details).

Here we see in Table 8 that when teams expressed more
work, negative and positive utterances software tasks were
developed slightly faster (variances for the three
dimensions being 9.7%, 7.1% and 4.8% respectively). On
the other hand, more cognitive utterances, comments,
achievement and social utterances, and roles, resulted in
slightly delayed task completion performance (variances
from the five dimensions being 9.6%, 9.5%, 5.1%, 4.1%
and 4% respectively). In terms of the control variables,
Table 8 shows that of those related to group structure, only
number of roles was a significant predictor. For the
interaction factors considered, number of comments was
the only significant variable. Overall, these two variables
improve model performance by 2% (i.e., the Adjusted R-
squared for our base model considering only attitudes was
0.041). These results, along with those above, suggest that,
although teams expressed different attitudes when
undertaking different forms of software task, their
expression of attitudes and the other variables considered
were not sufficiently significant predictors of software task
completion performance. We discuss these results in
relation to theory next.

5. DISCUSSION
This work explores the possible relations between task
differences and team attitudes, and how the attitudes
expressed by software teams covary with software task
completion performance. We used linguistic and directed
content analysis techniques to examine development
artefacts from Agile distributed teams. Although our results
allow us to make conjectures only, given that they are
drawn from one particular software development context,
the evidence provided shows that the teams studied
expressed different attitudes when working to complete
different forms of software task. On the other hand, teams’
expressions of attitudes did not bear a major relationship
with their task completion performance. We examine these
issues in detail in the following discussions.

RQ1. What attitudes do team members express when
undertaking different forms of software task?

Our evidence somewhat supports earlier assessments [15,
21], that teams express different attitudes when working on
different forms of (software) task. We observed that teams
expressed elevated levels of both positive (using words
such as “beautiful”, “relax”, “perfect” and “proud”) and
negative (using words such as “hate”, “suck”, “dislike” and
“stupid”) attitudes when working to resolve defects,
compared to their engagements when undertaking support
tasks and enhancements. Previous evidence has found that
during software project execution, developers often
consider defects to be team obstacles [106], and so, the
elevated level of negative attitudes that was expressed
among teams completing such tasks may be as a
consequence. Additionally, given that defects are
frequently discovered after features (both new features and
enhancements) are coded, and primarily during testing,
specific teams working on these defects may already have
a sound understanding of the necessary workings to address
such issues. Accordingly, teams addressing defects may not
necessarily need to express large amounts of cognitive (and
other) attitudes.

Table 7. Kendall Tau-b Correlation (τ) results for dependent, independent and control variables

Other Variables
Attitudes

Social Positive Negative Cognitive Work Achievement
Task completion performance
Time taken 0.12* 0.03* 0.04* 0.12* -0.03* 0

Group structure
No. of developers 0.28** 0.26** 0.29** 0.17* 0.04* 0.07*
Number of roles 0.23** 0.23** 0.24** 0.14** 0.02** 0.05*
 Team lead 0.15* 0.09* 0.14* 0.08* 0.05* 0.06*
 Admin 0.01* 0.05* 0 0 0 0
 Project manager 0.10* 0.06* 0.08* 0.06* -0.02* 0.02*
 Programmer 0.10** 0.15** 0.15** 0.07* 0.01* 0.02*
 Multiple 0.08** 0.07** 0.10** 0.07** -0.01 0
Situation-related factors
Iteration 0.03* 0.04* 0.03* 0.03** 0.02** 0
Priority 0.05* 0.02* 0.06* 0.05* 0.01* -0.01*
Interaction-related factors
No. of comments 0.30** 0.25** 0.33** 0.20* 0.07* 0.10*
Message length 0.35** 0.16** 0.33** 0.28** 0.04* 0.07*
Note: bold values = medium +ve correlation, ** = p < 0.01, * = p < 0.05

Table 8. Results from regression analysis

Variables
Unstandardized Coefficients Standardized Coefficients

t Sig. (p)
B Std. Error Beta

 (Constant) 0.59 0.02

29.52 0.00

Attitudes

Social 0.09 0.02 0.041 6.10 0.00
Positive -0.09 0.01 -0.048 -8.07 0.00
Negative -0.22 0.02 -0.071 -12.16 0.00
Cognitive 0.17 0.01 0.096 13.54 0.00
Work -0.20 0.02 -0.097 -12.71 0.00
Achievement 0.11 0.02 0.051 6.77 0.00

Group structure Number of roles 0.20 0.04 0.040 5.46 0.00

Interaction-
related factors

No. of
comments

0.23 0.03 0.095 8.21 0.00

Furthermore, we suspected that more effort would be
expended identifying bugs than in applying the fix itself.
Thus, there would be less need for a large amount of
knowledge exchange, and the expression of emotions more
generally, when fixing bugs. In slight contradiction of this
assessment, however, in addition to negative expressions,
we also observed elevated levels of positive attitudes being
expressed when teams were resolving defects. High levels
of positive expression are indicators of positive team
climate [107], whereas negative emotion is linked to anger
and a more cynical team outlook [37]. Both forms of
expression are linked to a more emotional state or
demeanour. While the relatively high levels of expression
of positive language by those working on defects is
encouraging for team morale and satisfaction [14, 25], this
could also reflect teams’ efforts to offset their frustration
and the higher degree of undesirable negative attitudes
while working on these tasks.

An alternative reasoning could also be that the elevated use
of negative language when teams were resolving defects
was intrinsically part of a defect resolution ‘culture’.
Previous work has found that software teams working on
Mozilla, Eclipse and JBoss used words such as “crash”,
“critic”, “broken”, “major”, “failure”, “error”, “trivial”,
“invalid” and “null” to tag or describe bugs [13]. We
therefore manually inspected the negative category in the
LIWC dictionary for these words and found that “fail” (not
“failure”) was the closest word in this list that is considered
under the negative emotion category. Words in the negative
emotion category include words such as “bored”, “hate”,
“distress”, “suck”, “dislike”, “angry”, “fear”, “mess”,
“stress”, “nag”, “tense”, “problem”, “unhappy”, and
“stupid”. We draw from this that the negative emotion
evident here could be more than just reflecting specific
terms commonly used around bug fixing, especially given
that messages analysed around the different tasks were

contributed by the same individuals. In fact, previous
evidence shows that developers also expressed negative
sentiments around security-related issues [58], suggesting
that developers are less pleased working to remedy certain
issues. This phenomenon requires further investigation.

Of note is that our small-scale directed content analysis
confirms this higher level of negative attitude for teams
working around defects. That said, those working to resolve
enhancement requests (new software functionality or the
extension of established system features) expressed similar
levels of this form of attitude. While similar concerns may
be expressed in relation to this finding, we note that only
11.6% of teams’ time was dedicated to providing software
enhancements, compared to 76.1% for defects.

We articulated in Section 1 that teams addressing defects
would likely require higher degrees of familiarity and
specific problem-solving knowledge (of the previously
developed feature), and so, work on such features may
require less cooperation, tending towards smaller groups
working with increased intellectual processes [25]. Our
results are relevant to this assessment, as we indeed
observed a reversed pattern for cognitive attitudes, which
appeared most pronounced when teams were completing
support tasks (design documents and documentation) and
enhancements (new functionalities and feature extensions).

We anticipated that coding a new feature or effort spent on
feature enhancements would necessitate high amounts of
intellectual and cognitive processes [21], and such tasks
would present a greater level of difficulty and would
require superior levels of idea generation processes [22]
than other tasks, an assessment somewhat supported by our
evidence. Therefore, confirmation of higher levels of
cognitive attitude among teams when they were
undertaking enhancements is fitting given the general need
for elevated levels of brainstorming when software teams
are delineating new or additional requirements. Teams’
dialogue around such tasks would comprise words such as
“think”, “consider”, “determined”, “idea” “definitely”,
“always”, “extremely” and “certain”; potential indicators of
scaffolding and idea generation among individual
members, and all captured under the cognitive category in
the LIWC tool [35, 37]. Teams working to resolve support
tasks also engaged in higher levels of these processes.
Perhaps, competent members that are inclined to share their
ideas would make ideal teammates for addressing support
tasks and building new features and extending those
features that are already developed? Such questions offer
fruitful avenues for further research, aimed at assessing the
causal linkages between the sentiments expressed by
software teams and their actions during development.

In fact, our linguistic analysis shows that teams used the
highest levels of work- and achievement-
utterances/concerns when working to address support tasks
(e.g., design documents and documentation). Such
processes reflected use of words such as “feedback”,
“goal”, “delegate”, “accomplish”, “attain” “resolve” and
“finalize”. We anticipated that activities related to
documentation, design or software support would demand
higher levels of manipulative and cooperative requirements
[16]. Such a need for higher levels of cooperation when
undertaking requirements gathering and software design

has indeed been observed by others examining the
collaboration patterns of software developers [23].
Additionally, increased persuasion and consensus [24] may
benefit those operating on documentation and software
support and design tasks. The higher level of work- and
achievement-focused expression observed, along with
relatively high levels of social processes that were seen
when teams were working to complete such tasks in this
work, support our early proposition. However, our directed
content analysis outcomes for work- and achievement-
focus have diverged somewhat from those that were
returned from our linguistic analysis. This divergence was
also observed for teams resolving defects, where our
directed content analysis outcomes differed from the
linguistic analysis outcomes for work- and achievement-
focus. Given the smaller sample of messages that were
analysed using the directed content analysis approach
(1,261 of the total 117,101), we are not able to draw further
definitive inferences from these outcomes.

In an iterative and Agile development context the cycles of
design, code and test are repeated frequently, and so
naturally, teams’ various expressions (and by extension,
their motivations) would almost certainly change over time.
Software design work is generally completed prior to
coding new features or feature enhancements, whereas
defects are typically detected during software testing.
Perhaps these Jazz teams were eager to start coding
software features, and then subsequently eager for their
release in order to undertake other work. Role theories
indeed show that individuals and teams who are most
motivated to complete their tasks are most task-focused
[107]. Such individuals may also be most driven and
cognitive. That said, our aim in this work was focussed on
investigating the relationship between task differences and
team attitudes. We believe that our evidence could
encourage future work aimed at understanding further why
the patterns noted existed, and their potential consequences
for software development teams and their realization of
project goals. This is particularly relevant for the software
development community in light of recent evidence
showing that software developers’ performance tended to
reduce under conditions where they were unsatisfied [71].
Furthermore, in environments where teams work closely
together to develop software, such as in Agile contexts, it
would seem crucial to understand the reasons for
dissatisfaction in order to maintain team morale.

RQ2. How do the attitudes expressed by the team covary
with software task completion performance?

Our findings did not reveal a strong link between teams’
expression of attitudes and their task completion
performance. However, we did observe that when teams
expressed more work, negative and positive utterances
software tasks were resolved slightly faster. In addition, we
observed that larger teams working to execute software
tasks expressed slightly more negative attitudes.
Furthermore, coinciding with this result, we noticed that
teams expressed more social and negative attitudes when
they communicated more messages. Although we did not
initially establish theoretical support for a relationship
between larger teams and heightened emotions, it is
plausible that larger teams may indeed experience some

form of information transmission and propagation delay
[108]. This could in turn result in team members being
more emotional. A larger team may also promote
information diversity, which may necessitate the need for
team members to manage higher volumes of information,
thus resulting in heightened emotions [102, 103].

Another explanation for our result here may be that in larger
teams the need to express emotional content is greater to
maintain team balance (a position also noted above). For
example, to ensure that group harmony is preserved,
individuals may put in a little extra effort on positive
sentiment in their communication. Social desirability may
also be greater in larger groups, as in small groups it is
easier to gauge how the members will perceive a message,
whereas in large groups it may be “safer” to exaggerate a
bit.

In fact, higher prevalence of negative (and positive to a
lesser extent) attitudes had a small positive relationship
with task completion performance (and as our outcomes for
work and achievement linguistic dimensions diverged with
those from our directed content analysis, so we restrict our
inferences for these dimensions). Thus, in terms of the
evidence considered in this study, such attitudes may seem
useful for teamwork, although, there is need for further
work to confirm this pattern of results. On the other hand,
negative language (e.g., hate, suck, dislike, stupid) may be
an indicator of frustration, which may sometimes lead to
conflicts. While some conflicts are in fact useful for
maintaining critical evaluation [109], too much of this form
of attitude may be disruptive and has the potential to
detrimentally affect team performance [110]. For instance,
weaker members may become hesitant to solicit help from
more capable and aware colleagues if such members’
expressed attitudes that are deemed to be negative (or
unfriendly). Previous work has indeed established that team
members reduce their communication in team
environments that are less friendly [45], and unhappiness
has been linked to negativity [72]. On the other hand,
groups with higher levels of positive-negative attitude
ratios have also been shown to operate with a high level of
satisfaction [44] and motivation [14]. Positivity was also
linked to enhanced software development teams’
performance and overall team happiness [73]. Such an
arrangement is particularly useful for Agile teams such as
those studied in this work, and especially those working in
a distributed development context, where there are limited
opportunities for group bonding through face to face
contact.

In fact, the cohort of teams studied here is no doubt highly
skilful (given the global success of the products emanating
from the Jazz projects), and so their expressions of negative
attitudes did not seem to adversely affect their performance,
and particularly given that they completed tasks faster
when this form of attitude was higher. That said, it would
be undesirable for such attitudes to prevail in software
development team environments where overall
performance is highly dependent on members’ camaraderie
and more social and friendly team norms [50]; for instance,
during requirements gathering or when members are jointly
working on specific system components.

We observed that when teams communicated more
cognitive utterances, comments, and social utterances, and
there was a wider spread of roles involved, task completion
performance was delayed slightly. We are not sure,
however, if the outcomes here are influenced by other
factors not measured in this work (e.g., task completion
performance and the incidence of the aforementioned
sentiments in the communication may be affected by task
difficulty). While the outcomes for social utterances and
the higher spread of roles were negligible, cognitive
utterances and comments had a larger effect. Cognitive
messages can be influenced by more exchanges or a more
pronounced cooperation requirement [16], and thus, may
result in more team effort being spent on communication
[22]. This said, it would be undesirable to trade-off
exchanges of ideas that may lead to innovativeness [75, 76]
for marginal levels of task delays, given the benefits that
are derived from innovative thinking (e.g., exploring
potential new or better ways of doing things).

6. THREATS TO VALIDITY
While we have provided a number of insights in this work
we acknowledge that there are a number of shortcomings
that may potentially affect the validity and generalizability
of our study outcomes, and we consider these in turn:

(1) The LIWC language constructs used to measure
attitudes in this study have been utilized previously to
investigate language use and how the expression of
sentiments correlated with various forms of psychological
processes (refer to Section 2 and Section 3.2 for discussion
around language use and its relation to attitudes). In
addition, the LIWC tool’s dimensions were extensively
assessed for validity and reliability [35, 37, 88]. However,
although the LIWC dictionary was able to capture 66% of
the overall words used by Jazz teams, the adequacy of these
constructs in the specific context of software development
warrants further investigation. To that end, we checked a
small sample of the messages to see what might account for
the remaining words being ignored by the LIWC tool and
found that there were large amounts of cross-referencing to
other WIs in the messages, along with large amounts of
highly specialized, technology-related language (e.g.,
J2EE, LDAP, HTTP, Servlet, WIKI, HTML) evident in
Jazz members’ exchanges. Their non-consideration here is
therefore not a problem, as such terms are linguistically
neutral with respect to attitudes. In addition, we
triangulated our LIWC outcomes using directed content
analysis, and classification schemes that were developed
for studying interactions [89, 90]. In fact, our reliability
assessment measure revealed excellent agreement between
coders, suggesting that our findings benefitted from
accuracy, precision and objectivity [95].

(2) We computed performance by calculating the number
of day(s) it took for a task to be completed. A task was
assessed as completed if the status was set to resolved,
closed or verified and a corresponding date added. This
measurement has been used previously to assess delivery
performance [79, 99]. However, we cannot be certain that
team members updated each record in an accurate and
timely manner. In addition, there is a possibility that
inherent differences in task complexity and size may have
influenced our performance outcomes. All software tasks

are not equal, and especially given the intangible nature of
software development [29, 30, 32]. For instance, fixing a
bug may simply require correcting a syntax error in one
instance, whereas in another instance re-engineering a class
or method may be required. In addition, a software tasks
may be deemed completed today, and the software feature
released, only for users to find bugs months later and the
feature to need maintenance or repair. Such tasks would be
incorrectly labelled as completed given the need for new
work. That said, others have assessed the Jazz data as
generally representative of the project’s realities [6], and so
it offered us an opportunity to explore a useful area of
software engineering human factors.

(3) Communication and teams’ interactions were
assessed based on messages sent around explicit software
tasks. These messages were extracted from Jazz, and so,
may not represent all of the project teams’ communications.
In fact, while some members were collocated, others were
not. Collocated members are likely to engage outside of the
Jazz environment, and these engagements are not easily
captured for analysis. Offsetting this concern is the fact
that, as Jazz was developed as a globally distributed project,
teams were required to use messages so that all other
contributors (irrespective of their physical location) were
aware of product and process decisions regarding each WI
[9]. To this end, we anticipated that a significant amount of
the teams’ communications was captured in our analysis.

(4) A single organization employing particular Agile
development practices was examined in this study. Work
processes and work culture at IBM are likely to be specific
to that organization and may not be representative of
organization dynamics elsewhere, and particularly for
environments that employ conventional waterfall
processes. Such environments may employ more rigid
project management practices, with much clearer
hierarchical structures, development boundaries and other
defined roles [17]. In fact, we have not examined actual
team meetings and discussions in this work, which affects
the richness of the evidence we provided above. That said,
Costa, Cataldo, and de Souza [111] confirmed that teams in
the Jazz project exhibited similar coordination needs to
those of four projects operating in two distinct companies.
Thus, we believe that our results may be applicable to
similar large-scale distributed projects.

7. IMPLICATIONS
Although we did not observe a strong link between teams’
expressions of attitudes and their task completion
performance, we contend that multiple patterns noted in our
results have implications for researchers studying the
attitudes of software teams and for those governing
software projects. We consider these issues in the following
two subsections.

7.1. Implications for Theory

While a wealth of research has examined the feasibility of
predicting the incidence and resolution of bugs given the
way software developers describe such tasks [10-13], less
effort has been dedicated to understanding how software
teams express attitudes across the full range of software
tasks that are commonly performed. Notwithstanding the
volume – and therefore the importance – of defects that are

incurred and commonly detected in proportion to the other
software tasks that are undertaken, considering how teams
perform across all software tasks would help us to more
comprehensively understand software teams’ attitudes.
This is particularly necessary for environments that stress
the value of team collaboration, such as Agile development.
Theories from other disciplines have indeed provided a
wealth of evidence in support of the requirement for
understanding teams’ and individuals’ interactions and
performance across the full range of tasks that are
commonly undertaken, in order to achieve a broader
understanding of both task differences and team
performance [14, 15].

Insights from such broader coverage are useful for
advancing theory, in a domain where there is a shortage of
theoretical understandings [112]. For instance, previous
work has noted that software developers perceive defects to
be obstacles [106]. We have observed in this work that the
Jazz teams expressed heightened emotion when resolving
defects, in a way supporting this prior assessment.
However, questions around the specific properties of
defects that make teams emotional, and/or whether specific
interventions (e.g., employing more rigorous testing
procedures or code reviews) may reduce defects, and thus,
members’ emotional dispositions, remain. In fact, we are
not sure if it is the incidence of defects that resulted in the
heightened level of emotion, and so we encourage future
work to further explore this phenomenon. Such work may
build on our findings by modelling negative attitudes
against bug fixing and team frustration, on the basis that
some software features generate less optimism [58].
Negative emotions were also linked to programming tools
and languages [61], thus, more granular theoretical models
may be proposed in forming the basis of future work that
may lead to solid theories (e.g., fixing defects that involve
specific third-party APIs increases negative attitudes and
frustration which in turn increases delays). This proposition
somewhat supports our own outcomes in this work, where
we observed that teams expressed significantly lower levels
of cognitive attitudes and work and achievement focus
when resolving defects compared to when they were
working on the other forms of task. While we anticipated
that more effort would be expended identifying bugs than
in applying the fixes themselves, and so there would be less
need for a large amount of knowledge exchange when
fixing bugs, this finding is also somewhat supportive of
those uncovered previously about developers’ limited
motivation when resolving defects, and our theoretical
proposition above. Furthermore, we are not entirely certain
about what specific elements of design documents,
documentation, and coding tasks intensified teams’
cognitive focus and their drive to complete such tasks.
Further enquiries into these issues would provide thought-
provoking insights for the knowledge base on software
engineering human factors. There is sufficient evidence in
this work to propose that teams express different attitudes
when working to address various forms of software tasks,
and these attitudes are likely to have a bearing on how they
function as a group.

Our findings relating to the way in which larger teams
expressed more negative attitudes, and how elevated levels
of both social and negative attitudes were evident for teams

that communicated more messages, are also insightful, and
could have implications for future work. While we believe
this evidence could be linked to the challenges that arise
with information propagation overhead and information
diversity [101-103] (or a deliberate drive to comment using
such utterances), our findings may also be related to
multiple additional factors (e.g., the effects of the specific
mix of personality traits [113]). Additionally, while we did
not observe a strong link between teams’ expressions of
attitudes and their task completion performance, this
outcome may have been affected by the skill-sets of the
team members that we observed (and we were unable to
consider this variable in our study due to the unavailability
of the relevant data). Similarly, the adequacy of the LIWC
constructs may also be questioned. In particular, we would
encourage follow-up work to focus on further exploring the
way the expression of negative attitudes impacts team
synergies and norms during various forms of development
activities, taking developers’ expertise into consideration
(perhaps through the use of inductive analysis techniques).
Research may also use other forms of sentiment analysis
techniques for triangulation. We hope to peruse such
directions, and also consider how understandings from
actual team meetings may triangulate our outcomes.
Insights from such investigations would likely be useful for
further understanding the effects of negative attitudes on
teamwork, for different forms of teams. These insights
would extend the software engineering knowledge base
around teams’ behavioural processes, and provide useful
support for aiding with software project governance. We
examine this latter context next.

7.2. Implications for Practice

Software development, and especially when conducted
using Agile approaches, remains a predominantly human-
centric activity, undertaken by individuals and in teams.
Thus, efforts aimed at providing insights into the way teams
work to deliver software are noteworthy for enlightening
those in charge of software project governance.
Understandings of team processes are particularly useful
for teams that place a high level of emphasis on individuals
and interactions over processes and tools (as those studied
here, [31]), where issues related to team dynamics may
drive or derail team success. In fact, there is value in
understanding how software development teams work
more generally, and the contexts under which they are most
likely to perform, regardless of the software development
method(s) that are utilised. The resulting insights would
help team leaders to understand the complexities in team
attitudes that could better inform team composition
strategies [114, 115]. Outcomes in this study provide
contributions to this cause.

For instance, given the large number of defects addressed
relative to the lesser volumes of other tasks that were
resolved in the Jazz projects, it is reasonable to infer that
reducing the incidence of defects would free up substantial
additional time for developing and delivering new features
or work items. Thus, team leaders observing such patterns
may leverage approaches that seek to reduce the effort
expended on defect resolution. Mechanisms for finding
duplicate bug reports in repositories [116], or those that
eliminate or lessen the need to resolve defects in the first

instance, such as test-driven development (TDD) or the
practice of continuous integration (CI), could go some way
to aiding this cause [117]. The latter two interventions are
often used in Agile environments, albeit with varying level
of strictness [29]. Software development project managers
may use these finding to encourage the adoption of such
practices more widely during the execution of their
software projects (e.g., for projects taking on a hybrid tone).

In fact, our findings suggest that interventions aimed at
reducing the incidence of defects could also indirectly
affect software teams’ attitudes and team synergies. On the
premise that an emotional state may not be beneficial for
teamwork, managers and team leaders may look to
implement activities that encourage a relaxed team
atmosphere (e.g., social activities). That said, other
strategies may also be directly implemented to improve
teams’ climate. For example, the heightened emotion that
was expressed when teams were resolving defects suggests
that a team strategy aimed at rotating those assigned to bug-
fixing could reduce frustration. Another direct strategy that
may maintain desirable levels of positive-negative attitude
ratios, and so potentially enhance confidence among teams,
is to assign bugs to more confident, prudent and
constructive teams [70]. We note, however, that Agile
methods do not recommend specific teams for development
and specific teams for debugging, but rather, all teams are
meant to take responsibility for the whole development
cycle. This does not necessarily limit the option to identify
and encourage project champions for major milestones,
including testing and those aspects that may introduce team
frustration. For instance, while all teams may participate in
requirements capture, design, development and testing,
specific highly skilled and prudent members may take
oversight of those issues that are recurrent, where less
skilled members become stuck and time pressure is
beckoning. Such a move is likely to generally increase team
satisfaction and improve collaboration processes. Given
that software teams spend perhaps the majority of their
work time resolving defects, this increased satisfaction
could likely translate into more desirable team norms and a
friendlier team atmosphere, which may have a positive
effect on team morale.

Also of note, however, is that, overall, we did not find that
negative attitudes were linked to delays in software task
completion. In fact, we found that tasks took less time when
the expressions of both negative and positive attitudes were
higher among teams. Thus, while negative attitudes may
threaten team togetherness, there is also evidence that such
attitudes, in conjunction with those that are positive in
nature, could be constructive for teamwork. Similarly, there
may also be trade-offs between teams engaging in more
cognitive processes and higher levels of communication
and low levels of task delays. Thus, managers should accept
that teams may take longer to deliver on task outcomes
when there is more cognitive load and more frequent
communications to peruse. The benefit to this off course
could be realised at a later stage in terms of the delivery of
innovation. These are insights to consider when a project
manager is observing group dynamics.

Finally, notwithstanding the single case that is considered
in this work, our findings also suggest that maintaining

smaller teams and encouraging communication brokers to
assist with knowledge dissemination may go some way
towards improving team synergies. Project managers and
team leaders are thus encouraged to consider these
strategies in their management of software teams.

REFERENCES
1. Licorish, S.A. and S.G. MacDonell, Communication
and personality profiles of global software developers.
Information and Software Technology, 2015. 64: p. 113-
131.

2. Ehrlich, K. and M. Cataldo, The communication
patterns of technical leaders: impact on product
development team performance, in Proceedings of the 17th
ACM Conference on Computer Supported Cooperative
Work. 2014, ACM: Baltimore, Maryland, USA. p. 733-744.

3. Melo, C.D.O., et al., Interpretative case studies on
agile team productivity and management. Information and
Software Technology, 2013. 55(2): p. 412-427.

4. Jaanu, T., M. Paasivaara, and C. Lassenius, Effects of
four distances on communication processes in global
software projects, in Proceedings of the ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement. 2012, ACM: Lund,
Sweden. p. 231-234.

5. Abreu, R. and R. Premraj, How developer
communication frequency relates to bug introducing
changes, in Joint International and Annual ERCIM
Workshops on Principles of Software Evolution (IWPSE)
and Software Evolution (Evol) Workshops IWPSEE vol 9
2009, ACM: Amsterdam, The Netherlands. p. 153-158.

6. Nguyen, T., T. Wolf, and D. Damian, Global Software
Development and Delay: Does Distance Still Matter?, in
IEEE International Conference on Global Software
Engineering (ICGSE 2008). 2008, IEEE Computer
Society: Bangalore, India. p. 45-54.

7. Licorish, S.A. and S.G. MacDonell, The true role of
active communicators: an empirical study of Jazz core
developers, in 17th International Conference on
Evaluation and Assessment in Software Engineering (EASE
2013). 2013, ACM: Porto de Galinhas, Brazil. p. 228-239.

8. Mockus, A., R.T. Fielding, and J.D. Herbsleb, Two
case studies of open source software development: Apache
and Mozilla. ACM Transactions on Software Engineering
and Methodology, 2002. 11(3): p. 309-346.

9. Cataldo, M. and K. Ehrlich, The impact of
communication structure on new product development
outcomes, in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2012, ACM:
Austin, Texas, USA. p. 3081-3090.

10. Alipour, A., A. Hindle, and E. Stroulia, A contextual
approach towards more accurate duplicate bug report
detection, in Proceedings of the 10th Working Conference
on Mining Software Repositories. 2013, IEEE Press: San
Francisco, CA, USA. p. 183-192.

11. Hindle, A., et al., Automated topic naming to support
cross-project analysis of software maintenance activities,

in Proceedings of the 8th Working Conference on Mining
Software Repositories. 2011, ACM: Waikiki, Honolulu,
HI, USA. p. 163-172.

12. Bacchelli, A., M. Lanza, and R. Robbes, Linking e-
mails and source code artifacts, in Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 1. 2010, ACM: Cape Town, South
Africa. p. 375 - 384.

13. Antoniol, G., et al., Is it a bug or an enhancement?: a
text-based approach to classify change requests, in
Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of
Minds. 2008, ACM: Ontario, Canada. p. 304-318.

14. McGrath, J.E., Groups: Interaction And Performance.
1984, Englewood Cliffs, NJ: Prentice-Hall Inc.

15. McGrath, J.E. and I. Altman, Small group research: A
synthesis and critique of the field. 1966, New York: Holt,
Rinehart and Winston.

16. Shaw, M.E., Scaling group tasks: A method for
dimensional analysis. 1973, Defense Technical
Information Center: JSAS Catalog of Selected Documents
in Psychology.

17. Nerur, S., R. Mahapatra, and G. Mangalaraj,
Challenges of migrating to agile methodologies.
Communications of the ACM. , 2005. 48(5): p. 72 - 78.

18. Sommerville, I., Software Engineering. 1997,
Reading, MA: Addison-Wesley.

19. Chin, G., Agile Project Management: How to Succeed
in the Face of Changing Project Requirements. 2004, New
York: American Management Association.

20. Coram, M. and S. Bohner. The impact of agile
methods on software project management. in Engineering
of Computer-Based Systems, 2005. ECBS '05. 2005. USA.

21. Carter, L., W. Haythorn, and M. Howell, A further
investigation of the criteria of leadership. The Journal of
Abnormal & Social Psychology, 1950. 45(2): p. 350-358.

22. Grisé, M.-L. and R.B. Gallupe, Information Overload:
Addressing the Productivity Paradox in Face-to-Face
Electronic Meetings. Journal of Management Information
Systems, 1999. 16(3): p. 157-185.

23. Herbsleb, J.D., et al., Object-oriented analysis and
design in software project teams. Humman-Computer
Interaction, 1995. 10(2): p. 249-292.

24. Olaniran, B.A., A model of group satisfaction in
computer-mediated communication and face-to-face
meetings. Behaviour & Information Technology, 1996.
15(1): p. 24-36.

25. Hackman, J.R., Effects of task characteristics on
group products. Journal of Experimental Social
Psychology, 1968. 4(2): p. 162-187.

26. Beck, K., Extreme Programming Explained: Embrace
Change. 2000, Reading, MA: Addison-Wesley Longman,
Inc.

27. Hazzan, O. and Y. Dubinsky, Agile Software
Engineering. Undergraduate Topics in Computer Science.
2008, London: Springer London.

28. Abrahamsson, P., et al., New directions on agile
methods: a comparative analysis, in Proceedings of the
25th International Conference on Software Engineering.
2003, IEEE Computer Society: Portland, Oregon. p. 244 -
254.

29. Licorish, S.A., et al. Adoption and Suitability of
Software Development Methods and Practices. in 2016
23rd Asia-Pacific Software Engineering Conference
(APSEC). 2016.

30. Dingsøyr, T., et al., A decade of agile methodologies:
Towards explaining agile software development. Journal of
Systems and Software, 2012. 85(6): p. 1213-1221.

31. Beedle, M., et al. Manifesto for Agile Software
Development. 2001 [cited 2017 August, 20]; Available
from: http://agilemanifesto.org/.
32. Licorish, S.A. and S.G. MacDonell, Exploring
software developers’ work practices: Task differences,
participation, engagement, and speed of task resolution.
Information & Management, 2016.

33. OED-Online. Oxford English Dictionary Online.
[cited 2013 February 1]; Available from:
http://www.oed.com/.
34. Gonzales, A.L., J.T. Hancock, and J.W. Pennebaker,
Language Style Matching as a Predictor of Social
Dynamics in Small Groups. Communication Research,
2010. 37(1): p. 3-19.

35. Pennebaker, J.W., M.R. Mehl, and K.G. Niederhoffer,
Psychological Aspects of Natural Language Use: Our
Words, Our Selves. Annual Review of Psychology, 2003.
54(1): p. 547-577.

36. Giles, H. and J.M. Wiemann, Social Psychological
Studies of Language: Current Trends and Prospects.
American Behavioral Scientist, 1993. 36(3): p. 262-270.

37. Pennebaker, J.W. and L.A. King, Linguistic Styles:
Language Use as an Individual Difference. Journal of
Personality & Social Psychology, 1999. 77(6): p. 1296-
1312.

38. Pennebaker, J.W., et al. Linguistic inquiry and word
count. 2007 [cited 2011 October 11]; Available from:
http://liwc.net/index.php.

39. Dybå, T. and T. Dingsøyr, Empirical studies of agile
software development: A systematic review. Information
and Software Technology, 2008. 50(9): p. 833-859.

40. Schwaber, K. and M. Beedle, Agile software
development with Scrum. 2002, Upper Saddle River, New
Jersey: Prentice-Hall.

41. Kurapati, N., V. Manyam, and K. Petersen, Agile
Software Development Practice Adoption Survey, in Agile
Processes in Software Engineering and Extreme
Programming, C. Wohlin, Editor. 2012, Springer Berlin
Heidelberg. p. 16-30.

42. Hackman, J.R., C.G. Morris, and B. Leonard, Group
Tasks, Group Interaction Process, and Group Performance
Effectiveness: A Review and Proposed Integration, in
Advances in Experimental Social Psychology. 1975,
Academic Press. p. 45-99.

43. Lewin, K., Studies in group decision., in Group
dynamics: Research and theory, D. Cartwright and A.
Zander, Editors. 1953, Row, Peterson and Company:
Evanston, IL. p. 287-301.

44. Bales, R.F., The equilibrium problem in small groups,
in Working Papers in the Theory of Action, T. Parsons, R.F.
Bales, and E.A. Shils, Editors. 1953, Free Press. p. 111-61.

45. Dittes, J.E. and H.H. Kelley, Effects of different
conditions of acceptance upon conformity to group norms.
Journal of Abnormal and Social Psychology, 1956. 53(1):
p. 100-107.

46. Pepinsky, P.N., J.K. Hemphill, and R.N. Shevitz,
Attempts to lead, group productivity, and morale under
conditions of acceptance and rejection. The Journal of
Abnormal and Social Psychology, 1958. 57(1): p. 47-54.

47. Thelen, H.A., Emotionality of work in groups., in The
state of the social sciences., L.D. White, Editor. 1956,
University of Chicago Press: Chicago.

48. Hare, A.P., Theories of Group Development and
Categories for Interaction Analysis. Small Group
Research, 2010. 41(1): p. 106-140.

49. Schutz, W.C., FIRO, A Three-Dimensional Theory of
Interpersonal Behavior. 1958, New Your: Holt, Rinehart &
Winston.

50. Tuckman, B.W., Developmental sequence in small
groups. Psychological Bulletin, 1965. 63(6): p. 384 - 399.

51. Mills, T.M., Group transformation. 1964, Ebglewood
Cliffs, NJ: Prentice-Hall.

52. Slater, P.E., Microcosm: Structural, psychological
and religious evaluation in groups. 1966, New York:
Wiley.

53. Howison, J., K. Inoue, and K. Crowston, Social
dynamics of free and open source team communications, in
Open Source Systems. 2006, Springer Boston. p. 319-330.

54. Storey, M.-A., The evolution of the social
programmer, in Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories. 2012, IEEE
Press: Zurich, Switzerland. p. 140-140.

55. Murgia, A., et al., Do developers feel emotions? an
exploratory analysis of emotions in software artifacts, in
Proceedings of the 11th Working Conference on Mining
Software Repositories. 2014, ACM: Hyderabad, India. p.
262-271.

56. Storey, M.-A., et al., How Social and Communication
Channels Shape and Challenge a Participatory Culture in
Software Development. IEEE Trans. Softw. Eng., 2017.
43(2): p. 185-204.

57. Mäntylä, M., et al., Mining valence, arousal, and
dominance: possibilities for detecting burnout and
productivity?, in Proceedings of the 13th International

http://agilemanifesto.org/
http://www.oed.com/
http://liwc.net/index.php

Conference on Mining Software Repositories. 2016, ACM:
Austin, Texas. p. 247-258.

58. Pletea, D., B. Vasilescu, and A. Serebrenik, Security
and emotion: sentiment analysis of security discussions on
GitHub, in Proceedings of the 11th Working Conference on
Mining Software Repositories. 2014, ACM: Hyderabad,
India. p. 348-351.

59. Mäntylä, M.V., et al., Bootstrapping a lexicon for
emotional arousal in software engineering, in Proceedings
of the 14th International Conference on Mining Software
Repositories. 2017, IEEE Press: Buenos Aires, Argentina.
p. 198-202.

60. Ford, D. and C. Parnin. Exploring Causes of
Frustration for Software Developers. in 2015 IEEE/ACM
8th International Workshop on Cooperative and Human
Aspects of Software Engineering. 2015.

61. Gachechiladze, D., et al., Anger and its direction in
collaborative software development, in Proceedings of the
39th International Conference on Software Engineering:
New Ideas and Emerging Results Track. 2017, IEEE Press:
Buenos Aires, Argentina. p. 11-14.

62. Guzman, E. and B. Bruegge, Towards emotional
awareness in software development teams, in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering. 2013, ACM: Saint Petersburg, Russia. p. 671-
674.

63. Jurado, F. and P. Rodriguez, Sentiment Analysis in
monitoring software development processes. J. Syst.
Softw., 2015. 104(C): p. 82-89.

64. Herbsleb, J.D. and A. Mockus, An Empirical Study of
Speed and Communication in Globally Distributed
Software Development. IEEE Transactions on Software
Engineering, 2003. 29(6): p. 481-494.

65. Wang, Y., Building the linkage between project
managers' personality and success of software projects, in
Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement. 2009,
IEEE Computer Society.

66. Trimmer, K.J., M.A. Domino, and J. Ellis Blanton,
The impact of personality diversity on conflict in ISD
teams. The Journal of Computer Information Systems,
2002. 42(4): p. 7.

67. Gorla, N. and Y.W. Lam, Who should work with
whom?: building effective software project teams.
Commun. ACM, 2004. 47(6): p. 79-82.

68. Licorish, S.A. and S.G. MacDonell, Self-organising
Roles in Agile Globally Distributed Teams, in 24th
Australasian Conference on Information Systems (ACIS
2014). 2013, ACIS: Melbourne, Australia.

69. Licorish, S.A. and S.G. MacDonell, Understanding
the attitudes, knowledge sharing behaviors and task
performance of core developers: A longitudinal study.
Information and Software Technology, 2014. 56(12): p.
1578-1596.

70. Andre, M., M.G. Baldoquin, and S.T. Acuna, Formal
model for assigning human resources to teams in software

projects. Information and Software Technology, 2011.
53(3): p. 259-275.

71. Graziotin, D., et al., Consequences of unhappiness
while developing software, in Proceedings of the 2nd
International Workshop on Emotion Awareness in Software
Engineering. 2017, IEEE Press: Buenos Aires, Argentina.
p. 42-47.

72. Graziotin, D., et al., On the Unhappiness of Software
Developers, in Proceedings of the 21st International
Conference on Evaluation and Assessment in Software
Engineering. 2017, ACM: Karlskrona, Sweden. p. 324-
333.

73. Ortu, M., et al., Are bullies more productive?:
empirical study of affectiveness vs. issue fixing time, in
Proceedings of the 12th Working Conference on Mining
Software Repositories. 2015, IEEE Press: Florence, Italy.
p. 303-313.

74. Kirchler, E. and J.H. Davis, The Influence of Member
Status Differences and Task Type on Group Consensus and
Member Position Change. Journal of Personality and
Social Psychology, 1986. 51(1): p. 83-91.

75. Liang, T.-P., et al., The impact of value diversity on
information system development projects. International
Journal of Project Management, 2012. 30(6): p. 731-739.

76. Black, N.J. and D. Prudente, Diversifying your credit
staff. Business Credit, 1998. 100(8): p. 41.

77. Frost, R., Jazz and the Eclipse Way of Collaboration.
IEEE Software, 2007. 24(6): p. 114-117.

78. Rich, S., IBM's jazz integration architecture: building
a tools integration architecture and community inspired by
the web, in Proceedings of the 19th International
Conference on World Wide Web. 2010, ACM: Raleigh,
North Carolina, USA. p. 1379-1382.

79. Ehrlich, K. and M. Cataldo, All-for-one and one-for-
all?: a multi-level analysis of communication patterns and
individual performance in geographically distributed
software development, in Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work.
2012, ACM: Seattle, Washington, USA. p. 945-954.

80. Wolf, T., et al., Mining Task-Based Social Networks
to Explore Collaboration in Software Teams. IEEE
Software, 2009. 26(1): p. 58-66.

81. Tan, P.-N., M. Steinbach, and V. Kumar, Introduction
to Data Mining. 2006, Boston, USA: Addison-Wesley.

82. Larose, D.T., Discovering Knowledge in Data: An
introduction to Data Mining. Discovering Knowledge in
Data. 2005, Hoboken, NJ: John Wiley & Sons, Inc.

83. Espinosa, J.A., W. DeLone, and G. Lee, Global
boundaries, task processes and IS project success: a field
study. Information Technology & People, 2006. 19(4): p.
345 - 370.

84. Taylor, M.A., R. Reed, and S. Berenbaum, Patterns of
Speech Disorders in Schizophrenia and Mania. The Journal
of Nervous and Mental Disease, 1994. 182(6): p. 319-326.

85. Spence, D.P., H.S. Scarborough, and E. Hoff
Ginsberg, Lexical correlates of cervical cancer. Social
Science & Medicine. Part A: Medical Psychology &
Medical Sociology, 1978. 12(0): p. 141-145.

86. Schnurr, P.P., S.D. Rosenberg, and T.E. Oxman,
Comparison of TAT and Free Speech Techniques for
Eliciting Source Material in Computerized Content
Analysis. Journal of Personality Assessment, 1992. 58(2):
p. 311-325.

87. Rigby, P. and A.E. Hassan, What Can OSS Mailing
Lists Tell Us? A Preliminary Psychometric Text Analysis of
the Apache Developer Mailing List, in Proceedings of the
Fourth International Workshop on Mining Software
Repositories. 2007, IEEE Computer Society: Minneapolis,
MN. p. 23-32.

88. Mairesse, F., et al., Using linguistic cues for the
automatic recognition of personality in conversation and
text. Journal of Artificial Intelligence Research, 2007.
30(1): p. 457-500.

89. Henri, F., Computer conferencing and content
analysis, in Collaborative learning through computer
conferencing: The Najaden papers. 1992, Springer-Verlag:
New York. p. 117-136.

90. Zhu, E. Meaning Negotiation, Knowledge
Construction, and Mentoring in a Distance Learning
Course. . in Selected Research and Development
Presentations at the 1996 National Convention of the
Association for Educational Communications and
Technology. 1996. Indianapolis, USA: Education Research
Information Center.

91. Hsieh, H.-F. and S.E. Shannon, Three Approaches to
Qualitative Content Analysis. Qualitative Health Research,
2005. 15(9): p. 1277-1288.

92. Bretz, R., Media for interactive communication. 1983,
London: Sage Publication.

93. Hatano, G. and K. Inagaki, Sharing cognition through
collective comprehension activity, in In L.B. Resnick, J.M
Levine, & S.D. Teasley (Eds.), Perspectives on socially
shared cognition. 1991: Washington DC: American
Psychological Association. p. 331-348.

94. Graesser, A.C. and N.K. Person, Question Asking
During Tutoring. American Educational Research Journal,
1994. 31(1): p. 104-137.

95. Holsti, O.R., Content Analysis for the Social Sciences
and Humanities. 1969, Reading, MA: Addison Wesley.

96. Curtis, B., Human factors in software development.
1981, Piscataway, N.J.: IEEE Computer Society.

97. Cataldo, M. and J.D. Herbsleb, Communication
networks in geographically distributed software
development, in Proceedings of the 2008 ACM Conference
on Computer Supported Cooperative Work. 2008, ACM:
San Diego, CA, USA. p. 579-588.

98. Espinosa, J.A., et al., Familiarity, Complexity, and
Team Performance in Geographically Distributed
Software Development. Organization Science, 2007. 18(4):
p. 613-630.

99. Herbsleb, J.D., et al., An empirical study of global
software development: distance and speed, in 23rd
International Conference on Software Engineering. 2001,
IEEE Computer Society: Toronto, Ontario, Canada. p. 81 -
90.

100. Davis, J.H., P.R. Laughlin, and S.S. Komorita, The
Social Psychology of Small Groups: Cooperative and
Mixed-Motive Interaction. Annual Review of Psychology,
1976. 27(1): p. 501-541.

101. Welbourne, T.M. and H. De Cieri, How new venture
initial public offerings benefit from international
operations: a study of human resource value. The
International Journal of Human Resource Management,
2001. 12(4): p. 652-668.

102. Damian, D., et al., Awareness in the Wild: Why
Communication Breakdowns Occur, in Proceedings of the
International Conference on Global Software Engineering.
2007, IEEE Computer Society: Munich, Germany. p. 81 -
90.

103. Sethi, R., D.C. Smith, and C.W. Park, Cross-
Functional Product Development Teams, Creativity, and
the Innovativeness of New Consumer Products. Journal of
Marketing Research, 2001. 38(1): p. 73-85.

104. Onwuegbuzie, A.J. and L.G. Danlel, Uses and misuses
of correlation coefficient. Research in the Schools, 2002.
9(1): p. 73-90.

105. Cohen, J., Statistical Power Analysis for the
Behavioral Sciences. 2nd ed. 1988, Hillsdale, NJ:
Lawrence Erlbaum Associates.

106. Sach, R., H. Sharp, and M. Petre, Software Engineers'
Perceptions of Factors in Motivation, in 5th International
Symposium on Empirical Software Engineering and
Measurement 2011: Banff, Alberta, Canada.

107. Benne, K.D. and P. Sheats, Functional Roles of Group
Members. Journal of Social Issues, 1948. 4(2): p. 41-49.

108. Brooks, F.P., No Silver Bullet: Essence and Accidents
of Software Engineering. Computer, 1987. 20(4): p. 10-19.

109. Tjosvold, D., The conflict-positive organization: it
depends upon us. Journal of Organizational Behavior,
2008. 29(1): p. 19-28.

110. De Dreu, C.K.W. and L.R. Weingart, Task Versus
Relationship Conflict, Team Performance, and Team
Member Satisfaction: A Meta-Analysis. Journal of Applied
Psychology, 2003. 88(4): p. 741-749.

111. Costa, J.M., M. Cataldo, and C.R.d. Souza, The scale
and evolution of coordination needs in large-scale
distributed projects: implications for the future generation
of collaborative tools, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
2011, ACM: Vancouver, BC, Canada. p. 3151-3160.

112. Hannay, J.E., D.I.K. Sjoberg, and T. Dyba, A
Systematic Review of Theory Use in Software Engineering
Experiments. IEEE Transaction Software Engineering,
2007. 33(2): p. 87-107.

113. Licorish, S.A. and S.G. MacDonell, Personality
Profiles of Global Software Developers, in 18th

International Conference on Evaluation and Assessment in
Software Engineering (EASE 2014). 2014, ACM: London,
UK. p. Article 45.

114. Sfetsos, P., et al., Investigating the Impact of
Personality Types on Communication and Collaboration-
Viability in Pair Programming – An Empirical Study, in
Extreme Programming and Agile Processes in Software
Engineering. 2006, Springer Berlin / Heidelberg. p. 43-52.

115. Acuna, S., T, M. Gomez, and N. Juristo, How do
personality, team processes and task characteristics relate

to job satisfaction and software quality? Information and
Software Technology, 2009. 51(3): p. 627-639.

116. Song, Y., et al., JDF: detecting duplicate bug reports
in Jazz, in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 2. 2010, ACM: Cape Town, South Africa.

117. Tort, A., A. Olivé, and M.-R. Sancho, An approach to
test-driven development of conceptual schemas. Data and
Knowledge Engineering, 2011. 70(12): p. 1088-1111.

	1. Introduction
	2. Background and Research Questions
	3. Research Setting
	3.1. Data Extraction

	4. Results
	5. Discussion
	6. Threats to Validity
	7. Implications
	References

