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and methods

Misclassification of the mediator matters when

estimating indirect effects

Tony Blakely, Sarah McKenzie, Kristie Carter

ABSTRACT

Background Confounding of mediator—outcome
associations resulting in collider biases causes systematic
error when estimating direct and indirect effects.
However, until recently little attention has been given to
the impact of misclassification bias.

Objective To quantify the impact of non-differential
and independent misclassification of a dichotomous
exposure and a dichotomous mediator on three target
parameters: the total effect of exposure on outcome; the
direct effect (by conditioning on the mediator); and the
indirect effect (identified by the percentage reduction in
the excess OR on adjusting for the mediator).

Methods Simulations were conducted for varying
strength of associations between exposure, mediator and
outcome, varying ratios of exposed to unexposed and
mediator present to mediator absent, and varying
sensitivity and specificity of exposure and mediator
classification.

Results ORs before (total effect) and after adjustment
(direct effect) for the mediator are both biased towards
the null by non-differential misclassification of the
exposure, but the percentage reduction in the excess OR
is little affected by misclassification of exposure.
Conversely, misclassification of the mediator rapidly
biases the percentage reduction of the excess OR
(indirect effect) downwards.

Conclusions If the research objective is to quantify the
proportion of the total association that is due to
mediation (ie, indirect effect), then minimising non-
differential misclassification bias of the mediator is more
important than that for the exposure. Misclassification
bias is an important source of error when estimating
direct and indirect effects.

INTRODUCTION

The aim of much epidemiological research is to iden-
tify cause and effect associations. Having identified a
causal association, or perhaps to strengthen the case
for a causal association, researchers often seek to
determine what mediates the association between the
exposure and outcome. For example, mediation of
the association of socioeconomic position with mor-
tality is a common focus of research.'™ Such an ana-
lytical approach is known as process analysis,®
pathway or intermediary analysis,” hierarchical ana-
lysis,® and more recently as determining direct and
indirect effects.”!" A standard approach is to quan-
tify the exposure—outcome (X-Y) measure of associ-
ation (eg, OR) before and after adjusting for (or
conditioning on) the mediating variable (Z).'* The
association before adjustment is the total effect, and
the X-Y association after adjustment is the ‘direct’
effect that is #not mediated by Z. By extension, the
‘indirect’ effect is the effect of X on Y which is

mediated though Z. There are a number of methods
that are used to quantify the magnitude of the medi-
ating pathway'® '*; in this paper we focus on the pro-
portion or percentage of the X-Y association
‘explained’ by adjustment for the mediator as is
common practice in social epidemiology.'® ° 1

Systematic error may bias the quantification of
direct and indirect effects. The main methodological
focus to date has been on sources of error arising
from confounding (labelled C in figure 1) of the
mediator (Z) to outcome (Y) association, such that
when one conditions on the mediator Z, a collider
bias occurs opening a backdoor pathway from X to Y
through C as shown in figure 1B.” 1772 While such a
collider bias is plausible,” '° for it to be of substantive
impact all of the X-Z, C-Z and C-Y associations
shown in figure 1 have to be strong and the con-
founding variable C needs to be neither rare nor ubi-
quitous in the source population.”’ ?*> We have
previously argued a decade ago that measurement
error, as opposed to backdoor confounding induced
by conditioning on a mediator that also happens to
be a collider, is likely to be at least as important as a
source of error in practice.”! Our argument was
based on the mathematical parallel with confounder
adjustment whereby non-differential measurement
error of confounders rapidly attenuates adjustment,
resulting in residual confounding®~°; we reasoned
the same logic would apply to measurement error of
the mediator. However, it is only recently that meth-
odological work has more closely looked at this
issue.?’2° This work confirms our previous suspi-
cions: non-differential measurement error of the
mediator causes an overestimate of the direct effect
(eg, the OR after adjusting for the mediator), and
therefore an underestimate of the ‘percentage
explained’ that is often used in social epidemiology.

In this paper, we present simulations about
misclassification of a dichotomous mediator and
exposure. (We use the term (mis)classification’
for categorical variables, and the term ‘(mis)
measurement’ more generally for both continu-
ous and categorical variables.) While not pre-
senting mathematical formulae for correction
factors, our simulations examine the combined
effects of misclassification of the exposure and
mediator that (to our knowledge) has not previ-
ously been reported. We also emphasise the ‘per-
centage explained’ metric commonly used by
applied epidemiologists such as those publishing
in this journal. Recent methodological literature
focuses on the impact of misclassification on the
direct effect per se. Finally, we hope by present-
ing relatively simple simulations that our paper
is accessible to a wider range of epidemiologists
and public health researchers.
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Theory and methods

Figure 1 Directed acyclic graph of the associations between exposure
(X), mediator (Z), outcome (Y) and confounder of the Z-Y association,
demonstrating collider bias when conditioning on Z. (A) Before
conditioning on Z. (B) After conditioning on Z.

MOTIVATING EXAMPLE, OBJECTIVE AND GENERAL
METHOD
We have recently used cross-sectional data to analyse the associ-
ation of childhood socioeconomic position (main exposure)
with adult psychological distress (outcome), and attempted to
determine the proportion of this association mediated by adult
socioeconomic position.>! In this example, we had only one
crude measure of childhood socioeconomic position (created
from subjects’ recall of parental occupation), but multiple
(potentially better) measures of adult socioeconomic position
(ie, highest education, household income, labour market activity
and area deprivation). The question then arises as to the relative
impacts of misclassification of the exposure and mediator on the
assessment of mediation in the analysis.

Figure 2 shows the causal structure with misclassification
determinants Ux and Uy, as well as true values of X and Z,

Figure 2 Directed acyclic graph of the casual associations in figure 1,
additionally representing measurement error of exposure (X) and
mediator (Z).

determining the observed but misclassified exposure and medi-
ator values, X* and Z*, respectively (and using the framework
of Hernan and Cole,*? and as subsequently elaborated?). Using
the example above, Uz would be the process of measuring adult
socioeconomic position, such as using a single census question
with bin categories for total household income as opposed to an
ideal set of accurate income records. In this paper we use simu-
lated data to assess the impact of non-differential and independ-
ent misclassification of a dichotomous exposure X and a
dichotomous mediator Z, separately and simultaneously, when
quantifying direct and indirect effects.

We focus on three ‘target parameters’: the OR of the expos-
ure—outcome association before adjustment for the mediator
(ORxy: the total effect); this OR after adjustment for the medi-
ator (ORxy)z: the direct effect); and the percentage reduction in
this  association after adjustment for the mediator
(100% x (ORxy—ORxy|z) / (ORxy—1): the indirect effect). With
misclassification, these three parameters become: ORxsy;
ORx=v|z=; and (100% X (ORxy—ORx=y|z+) / (ORx+y—1)). Space
constraints in this paper mean we do not simulate misclassifica-
tion of the outcome Y, differential misclassification between X
and Z, nor dependent misclassification between X and Z.

We use bias analysis methods®* 3° to estimate the observed
joint distribution of exposure, mediator and outcome in the pres-
ence of varying sensitivity and specificity of exposure and medi-
ator (mis)classification. The ratio of exposed to unexposed (ie,
X1:X0), and mediator present to mediator absent (ie, Z1:Z0),
also impacts on the final amount of bias. For example, for a fixed
specificity of the exposure the number of false positives becomes
large relative to true positives as the true prevalence of those
exposed decreases, that is, the positive predictive value decreases
with decreasing true prevalence. We use Mantel-Haenszel
pooling across strata of Z to calculate ORx+y|z- (ie, the direct
effect with misclassification).>® Workings and calculations were
undertaken in Excel (a copy of the spreadsheet is available at
http:/www.uow.otago.ac.nz/sofiehealth-info.html).

We present our simulations in the following three sections:
misclassification of mediator Z only; misclassification of expos-
ure X only; and misclassification of both exposure and mediator.
All simulated misclassification is assumed to be non-differential
and independent.

MISCLASSIFICATION OF MEDIATOR Z

We let ORxy|z, ORxz|yand ORyz x have two possible values,
2 or 5, to approximate moderate and strong associations.
(Selecting even stronger OR values (eg, 10) does not alter the
general findings of this paper.) For example, in the case of
ORxy|z=2, and ORxzy=ORyz|x=35, this equates to a moder-
ately strong association of X with Y having adjusted for medi-
ator Z (ie, the ‘direct’ effect), and strong independent
associations of the mediator Z with both X and Y. Given these
parameters, the total effect of X on Y, ORxy also depends on
the ratio of Z1:Z0. In the case of ORxy|z=2, and ORxz,
y=ORyz|x=5, the maximum value of ORxy is 3.6 (using the
formula (R+1)%4R times ORxy|z (1.8X2), where R=0ORx,
Y=ORYZ|X),22 and occurs when the ratio of Z1:Z0 among the
non-cases (ie, Y=0) is about 1:4.

To generate data for the simulations, in addition to setting the
three ORs and the Z1:Z0 ratio, we also set three of the cells in
the two by two table of X and Y given Z=1 at 100, as shown in
table 1. The remaining cells can be solved given the above speci-
fications. Thus, the ‘true’ data has ORxy=3.08, and both
ORxyjz=0 and ORxy;z-1=2.00 (as set), meaning that
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Table 1 Simulated expected data for ORxyz=2, ORxzy=ORyzx=5, when the ratio of Z=1|Y=0 to Z=0|Y=0 equals 1

Table 2 True ORyy, and true and observed percentage mediation of X—Y association by Z, for selected combinations of ORxyjz, ORxzy, ORyzx,
varying ratio of Z1 to Z0 among non-cases (Y=0), and sensitivity (Se) and specificity (Sp) of Z measurement

tThe ‘Apparent mediation by Z, given misclassification of Z' is 100%x(ORxy—ORxyjz=)/(ORxy—1), where Z* refers to misclassified value of Z.
Web annex table 1 includes output for all possible combinations of ORxyjz, ORxzy: ORyzjx.
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Figure 3  Effect of mediator Z
misclassification scenarios on: total
and direct ORs; percentage of total
effect explained by conditioning on
mediator Z (Z1: Z0 ratio among
non-cases=1.0).

100%x(3.08—-2.00)/ (3.08—1)=52% of the X—Z association is
mediated by Z.

Table 1 shows the data as observed (or ‘expected’) if the sensitiv-
ity and specificity of Z is 70%. No other misclassification bias is
allowed, and thus counts are redistributed only between cells: a—e,
b—f, c-g and d-h. For example, cell a in table 1 is given by the fol-
lowing maths using cells in table 1: Sexa+(1-Sp)xe=70%x 100
+30%x5.5=72. The observed crude ORxy accordingly remains
unchanged, but the Z-stratum specific ORs are 2.60 and 3.52, or
2.89 pooled using Mantel-Haenszel pooling. (Misclassification
bias is well known to spuriously generate heterogeneity of stratum
specific measures of association®® (ie, 2.60 vs 3.52), but for this
paper we focus on ORs pooled across strata.) Accordingly, with
misclassification of Z the percentage mediation by Z is
1009%x(3.08—2.89)/(3.08—1)=9%, considerably less than 52% in
the absence of misclassification of Z.

Table 1 shows the simulated findings for just one combin-
ation of parameter values. Table 2 shows the true ORxy and
true and observed percentage mediation by Z, for varying sen-
sitivity (95% or 70%) and specificity (95% or 70%) of Z
measurement, and varying ratios of Z1-Z0 among the controls
(0.1, 1.0 and 10). The output for the example in table 1 is
shaded grey in table 2. To simplify, we only present the results
where ORxy|z, ORxz|y, ORyz|x are all 2 or 5, and when
ORxz|y, ORyz x are both stronger or both weaker than
ORxy|z. (The full 96 possible simulations can be found in web
annex table 1.) We also do not present ORxy|z» but rather
present the observed percentage mediation; the reader can
back calculate ORxy|z+ from the true/observed ORxy and per-
centage mediation (ie, ORxy|z»=1+((ORxy—1)X(100%—(%
med by Z))) or read them off figure 3 for selected scenarios
(see below). Note that the observed ORxy does not differ from
the true ORxy when only Z is misclassified, as there is as yet
no conditioning on Z. The specific example outlined in table 1
of a true ORxy of 3.08, true mediation of 52% and observed
mediation of 9%, is highlighted in the middle panel (where
Z1:720=1.0) of table 2 for the combination of 70% sensitivity
and 70% specificity of Z.

Across all simulations of misclassification of Z shown in
table 2, there is substantive underestimation of the percentage
mediation. For the best combination of sensitivity and specificity
(both 95%) where Z1:Z0=0.1, the observed percentage medi-
ation was underestimated by about a third across the various
combinations of ORxy|z, ORxz|y and ORyz|x. For example,
when all OR are 5 and Z1:720=0.1 (ie, top right of table 2),
the 32% observed mediation is nearly a third less than 46%
even when the sensitivity and specificity are both 95%. When
Z1:70=1.0, the underestimate was approximately a fifth for

both sensitivity and specificity of Z equal to 95%. When Z1:
Z0=10, the ORxy was very similar to the set ORxy|z across all
scenarios, and thus the true percentage mediation was always
low. That said, the observed percentage mediation was underes-
timated by approximately half for the best combination of sensi-
tivity and specificity (eg, 4% observed compared to 8% true for
all OR=35, and sensitivity and specificity both 95%). When
either or both the sensitivity and specificity of Z reduced to
70%, the percentage mediation was often underestimated by as
much as 90%.

Figure 3 graphically shows the total and direct ORs (ie, after
conditioning on Z) when Z1:Z0=1 (ie, the middle panel of
scenarios in table 2). The true total and direct effect ORs are
shown as the black and white bars in each of the four groupings,
with true percentage mediated being 19%, 52%, 12% and 38%
from left to right. The remaining patterned bars are the direct
effects (ORxy|z=) for various combinations of sensitivity and
specificity misclassification of Z. One can see that for worsening
misclassification of Z, the ORxy|z- gets progressively larger and
closer to the total effect ORxy meaning that the percentage
mediation is progressively underestimated.

(Simulations for weaker associations (ie, ORs of 1.2 and 1.5)
are shown in web annex table 4, and demonstrate qualitatively
similar patterns to those shown above.)

MISCLASSIFICATION OF EXPOSURE X

Consider the case of misclassification of X, but not Z. While the
X1:XO0 ratio among the non-cases does not alter the true ORxy
it does have a substantial impact on ORx»+y and some additional
impact on ORx~y|z. Therefore, we vary ratios of X1 : X0 in our
simulations. Table 3 shows an example of the calculations used
in simulations, following a similar framework for the above Z
misclassification analyses. Three cells in the ‘true’ data are set to
100, but one of the cells (¢) must be among the Z=0 stratum to
operationalise the X1 : X0 specification. Otherwise the calcula-
tion of solutions for other cell counts proceeds in a similar
manner to table 1. For the example in table 3, ORx+y=1.48
(compared to the true ORxy=2.89) and ORx»y|z=1.27 (com-
pared to the true ORxy|z=2.0), results in 45% of the X-Y
association being due to mediation by Z. Despite the misclassifi-
cation of X and the resulting biases in ORx+y and ORxxy|z,
there is little difference from the true percentage mediated of
47%. This is consistent with non-differential independent mis-
classification of X not being as important as misclassification of
Z if the target parameter is the percentage of the excess OR due
to mediation by Z.Table 4 presents summary output for multiple
simulations for varying combinations of ORs, sensitivity and
specificity (95% or 70%) of X (mis)classification, and the ratio
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Table 3 Simulated expected data for ORxy;z=2, ORxzy=ORyzx=5, when the ratio of X=1|Y=0 to X=0|Y=0 equals 1

of X1:X0 among the non-cases (1.0, 0.1 and 0.01). The
output for the example in table 3 is shaded grey in table 4.
Whereas it made little sense to consider very low or very high
prevalence of Z above, exposures are often uncommon—hence
the X1:X0=0.01 (ie, a prevalence of exposure among non-
cases of just under 19). A fuller tabulation of simulations is pre-
sented in web annex table 2, including a higher specificity of
99% for X, as in the context of an uncommon exposure (ie,
X1:X0=0.01) one would probably select/set a higher specifi-
city to prevent the true exposed being overwhelmed by the false
positive exposed.

To aid interpretation, the target parameter of ‘percentage
mediation’ in table 4 is underlined when it is more than five per-
centage points less than the true percentage mediation. Using
this threshold, no errors of greater than five percentage points
occurred for any simulations when the X1 : X0 ratio was 1.0,
and only for some simulations when the X1 : X0 ratio was 0.1
(only when specificity of X was 70%). When the X1 : X0 ratio
dropped to 0.01 (ie, an uncommon exposure with 1% preva-
lence), many more simulations had greater than a five percent-
age point error. However, it should be noted that when more
than a five percentage point error in the percentage mediated
occurred, it occurred in concert with large downward bias in
the ORx+y that may render the study ‘unacceptable’ even before
undertaking an analysis of direct and indirect effects. Thus,
ensuring a high specificity for the classification of an uncommon
exposure is important to prevent bias in both overall and medi-
ation analyses. That said, in most instances when ORx»y was
underestimated, so too was ORx-y|z in a commensurate
manner such that little or no bias resulted in the percentage
mediation explained. (Simulations of exposure misclassification
for weaker associations (see web annex table 5) also demonstrate
little impact on the percentage mediation.)

Figure 4 graphically shows the total and direct ORs for the
same exposure misclassification scenario as the top panel of

results in table 4. One can see that worsening misclassification
of X biases both the total and direct effects (ie, ORx»y
and ORx-v|z) towards the null to a commensurate degree, such
that no or little bias results in the estimated percentage
mediation.

To summarise thus far, misclassification bias of the mediator
alone results in substantial underestimation of the percentage
mediated. Misclassification bias of the exposure alone (as is well
known) causes substantial underestimation of ORx+y and in par-
allel a substantial underestimation of ORx-y|z. However, the
observed percentage mediated (in expectation at least) is only
modestly underestimated when the X1 : X0 ratio is 1.0 or 0.1,
but becomes more notably biased when the X1 : X0=0.01.

MISCLASSIFICATION OF BOTH EXPOSURE X AND

MEDIATOR Z

Table 5 presents selected results for misclassification bias of both
X and Z. Only options where the sensitivity and specificity of X
or Z are equivalent are presented (ie, both 70% or both 95%).
Scenarios about the X1 :XO0 ratio are specified, but not about
Z. A fuller range of simulations are included in web annex
table 3, including those with a 99% specificity of X.

All instances in table 5 where sensitivity and specificity of Z
are 70% result in severe underestimation of the percentage
mediation. When both the sensitivity and specificity of Z are
95%, the underestimation of the percentage mediation by Z is
more severe than with just misclassification of Z (table 2) or just
misclassification of X (table 4). For example, when all ORs
were 5, and the ratio of X1:X0 among the controls was 1.0, the
true percentage mediation by Z was 36%, and the observed
mediation was 25% and 22% for sensitivity/specificity of X of
95%/95% and 70%/70%. Comparing these observed percentage
mediation estimates with the comparable ones from table 4 for
misclassification of X (36% and 32%, respectively), they are
further underestimated by over a third. This underestimate by
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Table 4 True ORyy and observed ORy+y, and true and observed percentage mediation of X—Y association by Z, for selected combinations of
ORxyjz: ORxzv ORyz)x, varying ratio of X1 to X0 among non-cases (Y=0), and sensitivity (Se) and specificity (Sp) of X measurement

Underlined percentage mediation results that are >5 percentage points less than true percentage mediation.
tThe ‘Apparent mediat. by Z, given misclass. of X" is 100%x(ORx-y—ORx=yjz)/(ORx=y—1), where X* refers to misclassified value of X.

+The true ORxy does not vary with variation in the ratio of X1 to X0 among controls (Y=0).

over a third is comparable to that occurring in table 2 for the
same combination of ORs, both sensitivity and specificity of Z
of 95%, and Z1:Z0 ratio of 0.1 (actually=0.11 for scenario in
table 5), namely an observed percentage mediation of 32%

Figure 4 Effect of exposure X
misclassification scenarios on: total
and direct ORs; percentage of total
effect explained by conditioning on
mediator Z (Ony|cz =2, ORXZ|CY =
ORyzjcx =5, (X1:X0[Y =0) =1.0).

compared to a true percentage mediation of 46%. That is, the
underestimation bias of the parameter ‘percentage explained by
7’ for both misclassification of X and Z is roughly the sum of
the separate impacts of misclassification of X and Z.

6 Blakely T, et al. J Epidemiol Community Health 2013;67:1-9. doi:10.1136/jech-2012-201813
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Table 5 True ORxy and observed ORx~y, and true and observed percentage mediation of X—Y association by Z, for selected combinations of
ORxyjz: ORxzv ORyz)x, varying ratio of X1:X0 among non-cases (Y=0), and sensitivity (Se) and specificity (Sp) of both X and Z

1The ‘Apparent mediat. by Z, given misclass of X&Z" is 100%x(ORx~y—ORx+yjz*}/(ORx+y—1), where X* and Z* refers to misclassified value of X and Z.

DISCUSSION

Assuming non-differential and independent errors of the expos-
ure and mediator, these simulations suggest that the indirect
effect or estimated percentage of the total exposure—outcome
association that is due to mediation by Z will be systematically
and substantially underestimated by misclassification of Z (con-
sistent with other recent methodological work?®), but less so by
misclassification of the exposure. The magnitude of the bias
depends on the ratios of exposed to unexposed, and the ratio of
mediator present to mediator absent. Misclassification of both
exposure and mediator causes an underestimation of the ‘per-
centage explained’ parameter that is, roughly, equivalent to the
sum of the separate biases.

The majority of the methodological examination of systematic
error in the estimation of direct and indirect effects within epi-
demiology has focused on collider bias when conditioning on
Z, due to uncontrolled confounding of the Z—Y association.
This is shown by ‘C’ in figure 1. Using formulae derived by
Greenland,?? if each of the independent ORs for X—Z, C—Z
and C—Y were 2.0, the maximum (given ‘worst’ possible com-
bination of prevalences of Z and C) downward bias in the direct
effect (ie, ORxy|z as compared to the true ORxy|cz) is only
29%. This maximum downward bias increases to 20% if each of
the independent ORs were 5.0 (or about 17% if the prevalence

of Z and C were both 50%). If we apply this collider bias to
our scenarios, assuming the ratio of Z1:Z0 is 1 (ie, equivalent
to a 50% prevalence of Z; middle panel of table 2) and a preva-
lence of C of 50%, then the apparent percentage mediation will
be overestimated as shown in table 6. It is only when there is
strong confounding by C of the ZY association (eg, both ORCZi
xy=ORcy|xz=35) that the collider bias becomes substantive,?! 2

and of an equivalent magnitude to that for misclassification bias
in our simulations. However: (1) collider bias may not be pre-
dictable in its direction of bias (whereas non-differential and
independent misclassification bias may be more predictable in its
direction); and (2) the total impact of collider bias will increase
if there are many collider pathways opened by conditioning on
Z (ie, Cq, Cy, Cs, ... could be added to figure 1, and if they are
all on separate back door or confounding paths then the cumu-
lative effect of opening all these collider paths may be substan-
tive). Thus, both collider bias and misclassification of the
mediator are important potential sources of error in mediation
analysis.

The existing body of work on measurement error of confoun-
ders and its impact on observed exposure—outcome associa-
tions** > 37 3% is directly applicable from a mathematical
viewpoint—one just shifts from conceptualising Z as a confoun-
der to conceptualising Z as a mediator. The methods presented

Blakely T, et al. J Epidemiol Community Health 2013;67:1-9. doi:10.1136/jech-2012-201813 7



Theory and methods

Table 6 Observed direct effect and percentage mediation in the presence of collider bias by C (as shown in figure 1) but no misclassification
bias, for ratio of Z1 to Z0 among controls (Y=0) equal to 1 and prevalence of U=50%

The collider bias ratios (1/1.02 and 1/1.21) are as per calculations in Greenland® assuming the prevalence of Z and U are both 50%. These bias ratios are for the observed direct effect
(ORxy|z) compared to the true direct effect (ORxy|cz) due to inability to block the backdoor path through C ‘opened’ by conditioning on Z (ie, collider bias), and apply to moderate (ie,
ORczxy=ORcy|xz=2) and strong (ie, ORczxy=ORcyjxz=5) confounding of the Z—Y association by C, as shown in figure 1.

here facilitate an intuitive shift in interpretation from confound-
ing to mediation of direct and indirect effects: residual (or
unmeasured) confounding now equates to residual (or unmeas-
ured) mediation; the crude (confounded) measure of association
now equates to the total effect; the adjusted measure of associ-
ation now equates to the direct effect; and the percentage reduc-
tion from the crude to adjusted measure of association now
equates to the percentage mediation.

An example of the applicability of the methodological work on
measurement error of confounders to measurement error of med-
iators is one finding of Fewell et al.>” They found that ‘residual
confounding’ by multiple mismeasured or unmeasured confoun-
ders is less problematic when the confounders are all correlated—
adjusting for two of four such correlated confounders ‘captured’
most of the confounding. Going back to our motivating example
(ie, adult socioeconomic position as a potential mediator of the
association of childhood socioeconomic position with adult psy-
chological distress®!), we know that varying measures of adult
socioeconomic position (such as income, education and asset
wealth) are all correlated. Therefore, including a couple of such
measures of socioeconomic position that are well measured, or a
handful of such socioeconomic factors that are moderately mis-
measured, should ‘capture’ most of the percentage mediation
(again, assuming independent and non-differential measurement
errors). Including multiple measures of the mediating variable or
construct, ceteris paribus, will be a better strategy for fully captur-
ing percentage mediation than including only one mismeasured
proxy of the mediator.

In this paper we focus on the percentage of the excess OR
explained by adjusting for the mediator, a common practice in
social epidemiological studies where the goal is to explain causal
pathways from social position to health outcomes. Hafeman and
Schwartz'" have connected this ‘explanation” agenda with recent
methodological work on direct and indirect effects. Briefly, a key
distinction in the estimation of direct and indirect effects is
between a focus on controlled effects (by setting the value of the
mediator) and natural effects (by allowing the mediator to vary
‘naturally’ with exposure).>* Hafeman and Schwartz!! argue that
natural effects are most appropriate for an ‘explanation’ agenda
that is implicit in our paper. More specifically, Hafeman and
Schwartz’s second motivation for undertaking mediation analysis,
to ‘test a pathway specific hypothesis’,'" matches our motivating

example. Thus, using their framework, it is the ‘total indirect
effect” (TIE; the effect of exposure that would be prevented if the
exposure did not cause the mediator) that is of interest to us.
Accordingly, we also calculated TIEs and compared them to the
total risk difference (RD) for the above simulations (ie, P(Y=1]|
X=1)-P(Y=1|X=0); workings available in spreadsheets). Given
that our simulations forced OR homogeneity, there was (mathem-
atically necessary) heterogeneity of the RD for the XY association
across strata of Z. (It is mathematically impossible to specify RD
homogeneity for all three of RDxy|z, RDxz|yand RDzy|x using a
framework similar to that used above.) Nevertheless, examining
the TIEs using RDs within the framework of Schwartz and
Hafeman gave a qualitatively similar conclusion to our OR simula-
tions: for mediator misclassification the TIE was underestimated
(often grossly), and therefore the TIE as a percentage of the total
RD was underestimated; for exposure misclassification, both the
TIE and total RD were underestimated, but the TIE as a percent-
age was (usually) little affected.

A potential concern with our simulations is non-collapsibility
of the OR.*® For strong effects and large differences in the pro-
portion of exposed across strata of a third variable, one may see
a lower crude OR than by stratum of the third variable in the
absence of any confounding. Such a concern may extend to
when there is an absence of mediation. While noting scale
dependency (homogeneity of the three ORs in our simulations),
we do note that before modelling any misclassification, if we set
either ORxz |y or ORzy|x to 1 then there was perfect collaps-
lblllty of ORxy (e, ORXYlZ = O=ORXY|Z - 0=0ORxy). AlSO, the
above alternative examination using the TIEs provides further
reassurance that our key findings are not distorted by non-
collapsibility. Nevertheless, this might be a worthwhile area of
further methodological research.

CONCLUSION

Accurate classification of the mediator is essential and more
important than accurate classification of the exposure when the
goal is to estimate the percentage of the total X-Y association
mediated by Z. However, accurate classification of the exposure
is also still highly desirable for the following reasons. It gives an
observed total effect (ORx~y) that is both more accurate, and is
far enough away from the null to allow statistically stable esti-
mates of the percentage mediation to be calculated. Accurate

8 Blakely T, et al. J Epidemiol Community Health 2013;67:1-9. doi:10.1136/jech-2012-201813
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classification of the exposure also guards against substantial dif-
ferential or dependent misclassification of the exposure, which
will alter the conclusions that apply above for non-differential
and independent errors. Finally, accurate exposure assessment
combined with accurate mediator assessment will usually result
in more accurate estimation of the direct effect (ie, ORxy|z).

The accurate estimation of percentage mediation will require
attention to study design to minimise misclassification of the
mediator. Additionally, it is possible to use quantitative bias ana-
lyses methods,*® 2 3* 3 whereby one posits plausible ranges of
misclassification of the mediator and exposure and then calcu-
lates corrected total, direct and indirect effects. Such quantita-
tive bias analyses could also simultaneously model both collider
and misclassification bias.

What this study adds

» Determining direct and indirect effects, or the proportion of
and exposure—outcome association explained by a mediating
variable, is a common analysis in epidemiology.

» Confounding and collider bias as sources of error in
determining direct and indirect effects have been understood
for at least a decade, but only recently has there been
serious methodological scrutiny of misclassification bias.

» For the target parameter of ‘proportion of the exposure—
mediator association explained by the mediator’, we find using
simulations about non-differential and independent
misclassification of both a dichotomous exposure and mediator
that misclassification of the mediator is a far more important
source of error than misclassification of the exposure.
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