Optimization of diets for human health, low-cost and planetary health: a modeling approach

Prof Nick Wilson, Dr Christine Cleghorn, Dr Nhung Nghiem

BODE³ Programme, University of Otago, Wellington, New Zealand

Research funding: Health Research Council of NZ

Presentation Outline

- Background
- Modeling to optimize diets: health, low-cost, low GHGs etc

Methods & Results

- Modeling optimization of bread design
- Comparisons with other work
- Possible priorities for future research
 - ➢Key metrics, land use, waste, modeling interventions
- Conclusions

Background

Health: Improving nutrition – key to NCD control

Food costs: Food security a challenge internationally – including for some groups in high-income countries

Sustainability: Climate change – a particularly serious (& growing) threat to human health & ecosystems (up to a third of greenhouse gas [GHG] emissions from agriculture if consider land use)

Objective

To identify foods and dietary patterns that are:

- healthy (meet nutritional guidelines)
- low-cost
- associated with low GHG emissions

Done to help inform policies available to governments (eg, nutrition guidelines, food labelling laws, taxes/subsidies on foods and food voucher policies)

Methods

Scenario development & linear programming (LP) to model 16 diets for NZ population

LP: mathematical technique allows the generation of "optimal solutions" eg, the lowest cost diet that meets guidelines for healthy nutrition

LP: used for decades in the nutrition domain, with growing recent consideration of cost & sustainability

Methods continued

The first grouping of dietary scenarios focused on achieving the lowest daily food cost (& meeting recommended nutrient levels).

The next grouping – achieving the lowest GHG emission profile.

Specific dietary patterns (Mediterranean-style and Asian-style) + scenarios with "familiar meals" fairly acceptable to most NZers.

Data inputs: nutrients in foods (NZ), food prices (NZ), food wastage (UK), & food-specific GHG emissions (UK & NZ data).

For more see: Wilson et al 2013. *PLoS ONE*

Results

Low cost, low GHG, only 7 foods to provide all nutrients: oats (whole grain), powdered milk, carrots, kiwifruit, dried split peas, sunflower seeds, vegetable oil

Example of more realistic diet with minimum levels of some *required components* (17 foods):

- Breakfast: porridge: oats (whole grain), powdered milk, sugar
- Lunch: sandwiches: wholemeal bread, margarine, peanut butter, cheese; apple
- Dinner: tuna pasta bake meal: tuna, pasta, tomatoes, salt, carrots, green peas, split peas, wholemeal flour, oil

Results: Dietary patterns & GHG emissions

[Derived from: Wilson et al 2013, PLoS One]

Results: Cost & GHG emissions per day of the various optimized daily dietary scenarios

Optimized diets: largely plant-based

Dietary pattern	Vegetarian/ vegan	Mainly plant, some meat		
Lowest cost (4 diets)	4 diets (all milk)	-		
Lowest GHG (4)	2 diets (milk) 1 diet vegan	1 diet (fish)		
Asian/Mediterranean style & low GHG (2)	2 diets (milk)	-		
"More familiar meals" (4) some required ingredients	_	4 diets had meat/fish (77g to 125g)		

Examples of costs, GHGs & nutrient intakes

Nutrients / Scenario:	Lowest cost (C1)	Lowest GHG (G1)	Asian style	Mediterr anean (MED)	NZ more typical (eg, mince meal NZ-M)
Emissions (kg CO ₂ e)	2.72	1.67	4.03	4.68	5.25
Price (<5 NZ\$)	3.19	4.99	4.95	5.64	6.22
Fruit and vegetables (g)	63	80	500	912	249
Energy (≥ 11,450 kJ)	11,450	11,450	11,723	11,788	12,650
Saturated fatty acids (≤ 30 g)	6	18	5	13	20
Polyunsaturated fatty acids (\geq 13.1 g)	14	83	13	14	15
Protein (≥ 52 g)	124	98	109	100	133
Dietary fibre (≥ 30 g)	51	54	57	57	64
Sodium (≤ 2,300 mg)	475	237	1,523	1,670	2,300
Total sugars (g)	90	22	43	125	45
Potassium (≥ 3,800 mg)	3,800	3,800	3,800	3,800	3,800
Calcium (≥ 840 mg)	840	840	840	840	840
Iron (≥ 8 mg)	23	33	19	24	31
Zinc (≥ 12 mg)	18	21	15	15	24
Selenium (≥ 60 µg)	60	90	60	60	60
Vitamin A (\geq 625 and \leq 3,000 µg RE)	625	625	1,700	625	625
Thiamin (≥ 1 mg)	2	6	2	2.1	3
Vitamin C (≥ 30 mg)	30	30	118	94	34
Vitamin E (≥ 10 mg)	11	78	11	14	11

Limitations

- Focus was on "optimal" vs smaller shifts from current diets
- Limited NZ data on GHGs & waste so partial reliance on UK values
- Sustainability aspect limited to GHGs
- NZ food prices are distorted:
 - Subsidized irrigation
 - Farmers don't pay for water pollution
 - No GHG taxes on agriculture (yet for NZ)

Unaddressed externalities, Example 1: In 2016 NZ had world's largest ever outbreak of waterborne campylobacteriosis (livestock faeces contaminated drinking water)

Example 2: Campylobacteriosis in NZ after regulation to reduce contaminated poultry meat

(Sears et al 2011, Emerg Inf Dis)

Example 3: Increased flooding risks from previously forested hill country now used for livestock grazing

Conclusions from this modeling

Identified optimal foods & dietary patterns that were healthy, low-cost & had low GHG emissions profile \rightarrow nearly all vegetarian diets

Some limitations but patterns were consistent with other literature

Probably reasonably generalizable

It has informed our research – but only modest government interest to date

RESEARCH ARTICLE

BMC Nutrition

Open Access

Designing low-cost "heart healthy bread": optimization using linear programing and 15-country comparison

Nick Wilson*, Nhung Nghiem, Sian Ryan, Christine Cleghorn, Nisha Nair and Tony Blakely

Abstract

Background: Bread is an important comp also typically too much of other nutrients the optimal design of low-cost "heart heal 15 countries.

Methods: Optimization using linear progra range of minimal sodium levels. Then with then dietary fiber, and then polyunsaturate and comparison nutrient and price data ca

Results: The optimized loaf costing NZ\$1. three out of the eight heart health nutrien in incredients (HHR\$3) was putritionally si

Bread design optimization

- Optimization using linear programing focused on achieving set loaf prices and for a range of constraints (↓sodium, ↑ALA, ↑PUFAs, ↑fiber).
- The optimized loaf costing NZ\$1.50 (US\$1.02) in ingredients superior to commercial white loafs in 3/8 heart health categories.
- The optimized loaf that was high in linseed and cost NZ\$3 (US\$2.04), typically superior (6/8 categories) to commercial seed/nut loafs and lower cost.
- But does not include GHG emissions (as per Swedish bread ^[Sundkvist et al 2001])

Media coverage of these bread designs: suggested high public interest

NZ Herald "Kiwi researchers design super-loaf"

HEART-HEALTHY BREAD FOR \$1.50

Dry ingredients: • Quantity • Percentage

\$1.50

is the cost of production

(ingredients, packaging, production wages, vehicle fuels costs, energy and water). They also modelled various profit margins. A 25% profit lifted the price to \$1.82. The loaf is on average 1036g, compared with 600g for a supermarket \$1 white loaf

Comparisons with other work

 Sustainability: Consistent pattern of vegetarian or low-meat diets being more sustainable/lower GHG emissions

• Health:

- General pattern of diets low in GHGs being healthier.
- But health gains jeopardised if sugar is used to substitute for less meat/dairy
- Cost: Most studies suggest costsaving/cost-neutral; but some that a sustainable diet is more expensive

Possible priorities for future research

1) Improved GHG metrics for foods: food wastage, land use, water use

Eg, land use relates to:

- Biodiversity
- Water quality
- Timber production opportunities
- Carbon sequestration opportunities
- Flood protection (hill country)

Possible priorities for future research

2) Can zoonotic infectious disease risks be quantified? (Eg, pandemic influenza from poultry & pigs; campylobacteriosis from poultry)

Possible priorities for future research

3) Capturing antimicrobial resistance risks associated with livestock agriculture

4) Research/modeling interventions to achieve healthy & sustainable diets (eg, cost-effectiveness of dietary interventions)

Research on *existing* **nutrition interventions – sustainability impacts?**

- Mexico's "junk food" tax (GHG impact?)
- Soda taxes & plastic waste impacts?
- National nutrition guidelines that include sustainability (eg, Germany)
- Vouchers for farmers markets in USA (low-income families)
- Food labels green stars

This shows how environmentally-friendly a product is based on the amount of water, nitrogen, and carbon pollution caused during production.
5 stars is the most environmentally-friendly and 1 star is the least.

Modeling of theoretical interventions

- Taxes on ruminant meats & dairy products ^[Eg, Edjabou & Smed 2013; Briggs et al 2013]
 - Eg, tax of £2.72/t CO₂eq in UK averted 7770 deaths/y & reduced emissions & raised revenue
- Taxing ruminant agriculture (CH₄, NO_x) planned for NZ

Conclusions

- Modeling studies and other research: possible to have foods and dietary patterns that are healthy, low-cost, & environmentally sustainable (all predominantly plant-based diets)
- Such research can inform personal decisions but also policies (food/agriculture taxes/subsidies, labeling interventions)
- Future work could improve the metrics (food waste & land use) & model cost-effectiveness of dietary interventions

Questions?

