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Abstract

We study a Lucas (1978) �fruit-tree� economy under the assumption that

agents are Choquet expected utility (CEU) rather than standard expected util-

ity (EU) decision makers. The agents�non-additive beliefs about the economy�s

stochastic dividend payment process may thus express ambiguity attitudes and

accommodate violations of Savage�s sure-thing principle as elicited by Ellsberg

(1961). As our main formal result we establish the existence of a unique stationary

equilibrium price function for the assets in this economy. In order to account for

the dynamic inconsistency of CEU decision makers, we thereby use an equilibrium

concept that combines the market clearing condition of general equilibrium theory

with Bayesian Nash equilibrium. A simple example about the equity premium in

our economy with non-additive beliefs illustrates our formal �ndings.
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1 Introduction

In a Lucas �fruit-tree�economy agents with identical preferences can trade on spot mar-

kets assets which are claims to future dividend payments that follow a time-homogenous

Markov process. Lucas (1978) establishes existence and uniqueness of the equilibrium

in this economy whereby equilibrium asset prices are characterized by a stationary price

function. This seminal asset-pricing model makes the two - implicit - assumptions that,

�rstly, the agents are expected utility maximizers such that, secondly, their subjective

beliefs correctly re�ect the objective probabilities of the dividend payment process.

In this paper we study Lucas��fruit-tree�economy under the assumption that agents

are Choquet expected utility (CEU) decision makers. CEU decision makers maximize

expected utility with respect to probability measures that are not necessarily additive

(Schmeidler 1986,1989; Gilboa 1987). As a generalization of standard expected util-

ity theory, CEU theory is capable of accommodating paradoxes of the Ellsberg (1961)

type according to which real-life decision makers violate Savage�s sure-thing principle.

When restricted to the domain of gains, CEU theory is formally equivalent to cumula-

tive prospect theory (Tversky and Kahneman, 1992; Wakker and Tversky, 1993) which

generalizes the celebrated prospect theory of Kahneman and Tversky (1979).

As our main formal result we establish the existence of a unique stationary equilib-

rium price function and characterize its properties. By abandoning Savage�s sure-thing

principle CEU decision making is, �rstly, dynamically inconsistent and, secondly, gives

rise to a multitude of perceivable Bayesian update rules for non-additive beliefs. In order

to address dynamic inconsistency our equilibrium concept takes account of the strategic

situation in which di¤erent future agents play against each other. While Lucas�recursive

equilibrium de�nition is equivalent to an Arrow-Debreu equilibrium if the commodity

space includes all possible realizations of the dividend payment process, our de�nition

of an equilibrium combines the market clearing condition of general equilibrium theory

with the concept of Bayesian Nash equilibrium generalized to non-additive beliefs. Thus,

in contrast to a rational expectations equilibrium approach, according to which asset

prices are determined by the objective probabilities of the dividend payment process,

equilibrium asset prices in our CEU economy are determined by non-additive subjective

beliefs that may re�ect ambiguity attitudes. The generation of such conditional non-

additive beliefs for all time period agents is formally described by a time-homogenous

stochastic process that satis�es the one-step-ahead Markov property. Our formal de�n-

ition of a stochastic process with respect to a non-additive probability measure thereby

includes the relevant Bayesian update rule in order to address the existence of di¤erent

perceivable update rules in CEU decision making.
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Most related to our approach are Epstein and Wang (1994) and, to a lesser extend1,

Hansen, Sargent, and Tallarini (1999) who also consider a Lucas �fruit-tree�economy

under the assumption that the agents are not necessarily EU decision makers whose

beliefs are given as unique additive probability measures. Motivated by the max-min

expected utility (MMEU) approach of Gilboa and Schmeidler (1989), these authors con-

sider agents who resolve their uncertainty not by a unique additive probability measure

but rather by some set of additive probability measures. Instead of directly adopting

MMEU preferences, however, Epstein and Wang proceed with a recursive de�nition of

the agents�utility functional in order to ensure dynamically consistent decision making.

Furthermore, Epstein and Wang simply �[:::] obviate the need for an updating rule�(Ep-

stein and Wang p. 294) by taking conditional beliefs which satisfy the Markov property

as primitives of their approach. In later contributions, Epstein and Schneider (2003), as

well as Hansen, Sargent, Turmuhambetova, and Williams (2006) for a continuous time

framework, consider proper MMEU preferences and provide formal (rectangularity) con-

ditions on priors such that the updated preferences obey dynamic consistency. While

MMEU theory is closely related to CEU theory restricted to convex capacities, the simi-

larity between these approaches and our decision-theoretic framework ends here. As one

main di¤erence, the restriction to dynamically consistent preferences excludes prefer-

ences that strictly violate Savage�s sure-thing principle as elicited in Ellsberg paradoxes.

While Epstein and Schneider (2003) regard dynamic consistency as an inadmissible prin-

ciple of dynamic decision making, Hansen et al. (2006) conclude:

�If multiple priors truly are a statement of a decision maker�s subjective be-

liefs, we think it is not appropriate to dismiss such beliefs on the grounds

of dynamic inconsistency. Repairing that inconsistency through the enlarge-

ments necessary to induce rectangularity reduces the content of the original

set of prior beliefs. In our context, this enlargement is immense, too immense

to be interesting to us.�(p. 78)

Similarly, Eichberger, Grant, and Kelsey (2006) argue that ambiguity attitudes as

elicited in Ellsberg paradoxes and inconsistencies in dynamic decision making are hardly

separable and any attempt of doing so would be overtly restrictive. Since our CEU

approach does not exclude dynamically inconsistent decision behavior, our model can

accommodate a broader notion of ambiguity attitudes, including ambiguity attitudes

1An agent in the robust control approach of Hansen, Sargent, and Tallarini (1999) fears possible

misspeci�cation errors in his model. Thus, while not directly developed within the MMEU framework

of Gilboa and Schmeidler (1989), the decision situation of the period t agents in the robust control

approach can be re-interpreted as a max-min decision situation with respect to error-contaminated

priors.
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that are not compatible with the sure-thing principle. In contrast to Epstein and Wang

(1994) and Hansen, Sargent, and Tallarini (1999), the present paper therefore attempts

to incorporate rather than to exclude dynamic inconsistent decision making in order

to capture relevant aspects of real-life decision making. Also in contrast to these ap-

proaches, we emphasize the important role played by the choice of the Bayesian update

rule in the de�nition of the stochastic process that generates the agents� conditional

beliefs.

The remainder of the analysis is structured as follows. Section 2 introduces CEU

theory and non-additive beliefs. In Section 3 it is demonstrated that a violation of Sav-

age�s sure-thing principle implies dynamically inconsistent update rules. Three relevant

examples of Bayesian update rules for non-additive beliefs are presented in Section 4.

Section 5 describes stochastic processes with respect to non-additive beliefs. In Section

6 we describe the economy and introduce our equilibrium concept. We state and prove

our main formal result in Section 7. In Section 8 a simple example is presented that il-

lustrates the di¤erence between the expected utility and the CEU approach with respect

to the so-called equity premium puzzle. Finally, Section 9 concludes.

2 Choquet decision theory and non-additive beliefs

In this section we brie�y recall basic elements of Choquet expected utility theory. CEU

theory was �rst axiomatized by Schmeidler (1986, 1989) within the Anscombe and Au-

mann (1963) framework, which assumes preferences over objective probability distribu-

tions. Subsequently, Gilboa (1987) as well as Sarin and Wakker (1992) have presented

CEU axiomizations within the Savage (1954) framework, assuming a purely subjective

notion of likelihood. CEU theory is equivalent to cumulative prospect theory (Tver-

sky and Kahneman 1992, Wakker and Tversky 1993) restricted to the domain of gains

(compare Tversky and Wakker 1995). Moreover, as a representation of preferences over

lotteries, CEU theory coincides with rank dependent utility theory as introduced by Quig-

gin (1981, 1982). Within the context of CEU theory, properties of such capacities are

used in the literature for formal de�nitions of, e.g., ambiguity and uncertainty attitudes

(Schmeidler 1989; Epstein 1999; Ghirardato and Marinacchi 2002), pessimism and op-

timism (Eichberger and Kelsey 1999; Wakker 2001), as well as sensitivity to changes in

likelihood (Wakker 2004).

Let us consider a measurable space (
;F) with F denoting a �-algebra on the state

space 
 and a non-additive probability measure (=capacity) � : F ! [0; 1] satisfying

(i) � (;) = 0, � (
) = 1
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(ii) A � B ) � (A) � � (B) for all A;B 2 F :
The Choquet integral of a bounded function f : 
! R with respect to capacity � is

de�ned as the following Riemann integral extended to domain 
 (Schmeidler 1986):

E [f; � (d!)] =

Z 0

�1
(� (f! 2 
 j f (!) � zg)� 1) dz +

Z +1

0

� f! 2 
 j f (!) � zg dz

(1)

whereby we will simply write E [f; �] for E [f; � (d!)]. For example, in case f takes on

m di¤erent values de�nition (1) becomes

E [f; �] =

mX
i=1

f (!i) � [� (A1 [ ::: [ Ai)� � (A1 [ ::: [ Ai�1)] ;

with � (A1 [ A0) = 0 whereby A1; :::; Am is the partition of 
 such that f (!1) > ::: >
f (!m) for !i 2 Ai. While we have

E [f + g; �] = E [f; �] + E [g; �] (2)

for functions f and g that are comonotonic, i.e., for all s; t 2 
,

(f (s)� g (s)) (f (t)� g (t)) � 0;

additivity of E [�; �] does not necessarily hold for arbitrary functions f and g when � is
no additive probability measure.

For the remainder of the paper we assume that the agents have CEU preferences

over Savage-acts. Recall that a Savage-act f maps the state space into some set of

consequences, i.e., f : 
 ! X. The Choquet expected utility of Savage-act f with

respect to � is then de�ned as the Choquet expected value E [w (f) ; �] where w : X ! R
denotes a vNM utility function which is unique up to a positive a¢ ne transformation.

3 Violation of the sure-thing principle and dynamic

inconsistency

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg type

which show that real-life decision-makers violate Savage�s sure-thing principle. Because

of the abandoning of the sure-thing principle there are two important implications for

conditional CEU preferences over Savage-acts. First, in contrast to Bayesian updating of

additive probability measures, there exist several perceivable Bayesian update rules for

non-additive probability measures (cf. Gilboa and Schmeidler 1993, Sarin and Wakker

1998, Pires 2002, Eichberger, Grant and Kelsey 2006, Siniscalchi 2001, 2006). Second,
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any preferences that (strictly) violate the sure-thing principle cannot be updated in a

dynamically consistent way. That is, there does not exist any updating rule for capacities

such that ex-ante CEU preferences that (strictly) violate the sure-thing principle are

updated in a dynamically consistent manner to ex-post CEU preferences. Before we

address the �rst implication in Section 4 let us elaborate in some detail on the second

implication.

De�ne a Savage-act fBh : 
! X such that

fBh (!) =

(
f (!) for ! 2 B
h (!) for ! 2 :B

where B is some non-empty event. Recall that Savage�s sure-thing principle states that,

for all acts f; g; h; h0 and all events B 2 F ,

fBh � gBh implies fBh0 � gBh0. (3)

Let us interpret event B as new information received by the agent. The sure-thing princi-

ple then implies a straightforward way for deriving ex-post preferences �B, conditional
on the new information B, from the agent�s original preferences � over Savage-acts.

Namely, we have

f �B g if and only if fBh � gBh for any h, (4)

implying for a subjective EU decision-maker

f �B g , E [w (f) ; � (d! j B)] � E [w (g) ; � (d! j B)] .

E [w (f) ; � (d! j B)] denotes here the expected utility of act f with respect to the con-
ditional additive probability measure � (� j B) de�ned, for all A;B 2 F with � (B) > 0,

by

� (A j B) = � (A \B)
� (B)

.

It is well known that the updating of EU preferences satis�es dynamic consistency

which - informally - states that there are no strict ex-post incentives for deviating from

an ex-ante optimal plan of actions. Formally, we de�ne dynamic consistency in terms of

update rules, i.e., rules that derive conditional preferences, f�Bg for all events B, from
an ex-ante preference ordering �.

De�nition: Dynamic Consistency. We speak of a dynamically consistent update
rule i¤ for all (�information�) partitions P � F and all Savage-acts f; g, f �B g
for all B 2 P implies f � g.
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Observation 1. There does not exist any dynamically consistent update rule for pref-
erences � that strictly violate the sure-thing principle.

Proof: For preferences that strictly violate the sure-thing principle we have, for
some f and g,

fBh � gBh and gBh0 � fBh0 for some h 6= h0 and some B 2 F .

Observe that any update rule for preferences must result in conditional preferences

f �B g or g �B f . Let P = fB;:Bg and consider at �rst the case f �B g. Since
h0 �:B h0, dynamic consistency implies fBh0 � gBh0, a contradiction to gBh0 � fBh0 by
the de�nition of a preference ordering. Now consider the case g �B f . Since h �:B h,
dynamic consistency implies gBh � fBh, a contradiction to fBh � gBh.�

4 Bayesian updating of non-additive beliefs

In case the sure-thing principle is violated, the speci�cation of act h in (4) is no longer

arbitrary so that there exist for CEU preferences several possibilities of deriving ex post

preferences from ex ante preferences. That is, in the CEU framework there exist several

perceivable ways of de�ning a conditional capacity � (� j B) such that

f �B g , E [w (f) ; � (� j B)] � E [w (g) ; � (� j B)]

for all B. In what follows we present three prominent update rules for capacities.

Let us at �rst consider conditional CEU preferences satisfying, for all acts f; g,

f �B g if and only if fBh � gBh

where h is the so-called conditional certainty equivalent of g, i.e., h is the constant act

such that g �B h. The corresponding Bayesian update rule for the non-additive beliefs
of a CEU decision maker is the so-called full Bayesian update rule which results in the

following conditional capacities (Eichberger, Grant, and Kelsey 2006)

�FB (A j B) = � (A \B)
� (A \B) + 1� � (A [ :B) (5)

for A;B 2 F .
In addition to the full Bayesian update rule let us also consider the class of so-called

h-Bayesian update rules for preferences � over Savage acts as introduced by Gilboa
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and Schmeidler (1993). That is, we consider some collection of conditional preference

orderings,
�
�hB
	
for all events B, such that for all acts f; g

f �hB g if and only if fBh � gBh (6)

where

h = (x�; E;x�;:E) ; (7)

with x� denoting the best and x� denoting the worst consequence possible and E 2 F .
For the so-called optimistic update rule h is the constant act where E = ;. That is,
under the optimistic update rule the null-event, :B, becomes associated with the worst
consequence possible. Gilboa and Schmeidler (1993) o¤er the following psychological

motivation for this update rule:

�[...] when comparing two actions given a certain event B, the decision maker implicitly

assumes that had B not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given B [...] exhibits �happiness�that B

has occurred; the decisions are made as if we are always in �the best of all possible

worlds�.�

As corresponding optimistic Bayesian update rule for conditional beliefs of CEU

decision makers we obtain

�opt (A j B) = � (A \B)
� (B)

: (8)

For the pessimistic (or Dempster-Shafer) update rule h is the constant act where E =


, associating with the null-event,:B, the best consequence possible. The psychological
interpretation for this update rule according to Gilboa and Schmeidler (1993) is as

follows:

�[...] we consider a �pessimistic�decision maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.�

The corresponding pessimistic Bayesian update rule for CEU decision makers is

�pess (A j B) = � (A [ :B)� � (:B)
1� � (:B) : (9)
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5 Stochastic processes with non-additive beliefs

Since we are ultimately interested in uncertainty with respect to period t dividend-

payments, we now impose further structure on the measure space (�;
;F) in order to
describe a stochastic process with respect to �. Because there does not exist a unique

de�nition for conditional capacities we are going to include the relevant Bayesian update

rule in the de�nition of a stochastic process.

Fix some Bayesian update rule for capacities such that f�Bg for all events B is

well-de�ned and denote by � (� j �) the corresponding conditional capacity. Consider a
sequence of random variables (Xt)t�1 taking on values in (X;X ) where X is a (non-

empty) complete separable metric space and X denotes the Borel �-algebra in X. Let

X1 = �1t=1X and consider a T -rectangle set B � X1 such that

B = A1 � :::� AT �X1

where At 2 X for t = 1; :::; T . Denote by AT the collection of all T -rectangle sets B
and de�ne FT as the �-algebra generated by AT ; that is, FT is the intersection of all �-
algebras that contain the T -rectangle sets. We also refer to FT as the standard product
algebra in XT = �Tt=1X. Similarly, denote by F1 the �-algebra generated by A1.
Obviously, F1 � F2 � ::: � F1 so that the (Ft)t�1 constitute a �ltration. Let Pt denote
the �nest partition of 
 contained inFt and let us interpret Pt as the agent�s �information
partition�in time period t. By the �ltration property, the information partitions (Pt)t�1
become �ner with increasing time, i.e., for every P 2 Pt+1 there is some P 0 2 Pt such
that P � P 0, and we have P1 = X1. This formally re�ects the ideas that (i) the agent

does not loose any information with the passing of time and that (ii) he will eventually

know the true state of the world if he lives forever.2 Set now (
;F) = (X1;F1) and
observe that each random variable Xt (!) = Xt (x1; x2; :::) = xt is Ft-measurable, which
completes our construction of the stochastic process (� (� j �) ;
;F) = (� (� j �) ; X1;F1).
For a stochastic process (� (� j �) ; X1;F1) let � = � (� j X1) denote the uncondi-

tional capacity on (X1;F1). The �nite-dimensional capacity �t;:::;t+n for Xt� :::�Xt+n,

with t � 1 and n � 0, is then de�ned by

�t;:::;t+n (At � :::� At+n) = � (X � :::�X � At � :::� At+n �X1)

= �

 
t+n\
s=t

(X � :::�X � As �X1)

!
2An equivalent way of constructing the stochastic process (� (� j �) ; X1;F1) would be to start out

with a de�nition of the sequence of information partitions (Pt)t�1 and de�ne each Ft as the �-algebra
in 
 generated by Pt.
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for all At � ::: � At+n 2 Fn. A stochastic process (�;X1;F1) is said to be stationary
i¤ all �nite-dimensional capacities �t;:::;t+n are independent of t.

Similarly, for a given stochastic process (� (� j �) ; X1;F1) de�ne the �nite-dimensional
conditional capacity �t;:::;t+n (� j �) for Xt � ::: � Xt+n, with t � 1 and n � 0, given

As � :::� As+m 2 Fm as

�t;:::;t+n (At � :::� At+n j As � :::� As+m) (10)

= � (X � :::�X � At � :::� At+n �X1 j X � :::�X � As � :::� As+m �X1)

for all At� :::�At+n 2 Fn. The following de�nition formally expresses the idea that the
agent�s beliefs about the immediate future T +1 are exclusively determined by events in

period T so that the previous history, up to time period T � 1, has no impact on these
beliefs.

De�nition: The One-Step-Ahead Markov Property. We say that the stochastic
process (� (� j �) ; X1;F1) has the one-step-ahead Markov property i¤, for all T ,

�T+1 (AT+1 j A1 � :::� AT ) = �T+1 (AT+1 j AT )

for any At 2 X with t = 1; :::; T + 1.

De�nition: Time Homogeneity (=Stationary Transitions). We say that a

stochastic process (� (� j �) ; X1;F1) is time-homogenous i¤ all �nite-dimensional
conditional capacities �t;:::;t+n (� j �) are independent of t.

Observe that we have for a time-homogenous process

� (X � :::�X � AT+1 �X1 j X � :::�X � AT �X1) (11)

= � (X � :::�X � AS+1 �X1 j X � :::�X � AS �X1)

whenever AT = AS and AT+1 = AS+1. In the case of time-homogeneity we will therefore

slightly abuse notation and write

� (AT+1 j AT )

for (11) or �T+1 (AT+1 j AT ).
Finally, we will need a technical de�nition ensuring that the conditional Choquet

expected value of a bounded real-valued continuous function in X is itself a bounded

real-valued continuous function in X.
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De�nition: The Feller Property. Consider a time-homogenous stochastic process
(� (� j �) ; X1;F1) with the one-step-ahead Markov property. We say that � (� j �)
satis�es the �Feller property�i¤ for every bounded continuous function f : X ! R,
the function Tf : X ! R de�ned by

(Tf) (x) = E [f; � (dx0 j x)]

is also bounded and continuous, i.e., if f 2 C [X] then Tf 2 C [X] whereby C [X]
denotes the space of bounded real-valued continuous functions on X endowed with

the supremum norm k�k1.

Remark. To see that the inclusion of the update rule in the de�nition of a stochastic
process is relevant for non-additive beliefs assume for a moment that � reduces to an ad-

ditive probability measure, say �. An important class of (additive) stationary stochastic

processes that also trivially satisfy the one-step-ahead Markov property as well as time-

homogeneity are i.i.d. processes (� (� j �) ; X1;F1) such that � (AT+1 j AT ) = � (AT+1)
for all AT+1; AT . If we want to de�ne i.i.d. processes with respect to a non-additive mea-

sure � our concept of independence will depend on the chosen update rule. For example,

we would say that AT+1 is independent of AT with respect to � (� j �) i¤ � satis�es
for full Bayesian updating

� (A) =
� (A \B)

� (A \B) + 1� � (A [ :B) ,

for optimistic updating

� (A) =
� (A \B)
� (B)

,

and for pessimistic updating

� (A) =
� (A [ :B)� � (:B)

1� � (:B) ,

whereby

A : = X � :::�X � AT+1 �X1 2 F1
B : = X � :::�X � AT �X1 2 F1.

6 The economy

Consider the decision-situation of a representative period t agent who has initial endow-

ment zt = (z1;t; :::; zk;t) 2 [0; 1]k of k di¤erent assets whereby z0 = 1. The agent has to

11



choose the amounts of assets he is going to buy, respectively sell, on the period t spot

market; that is, he e¤ectively decides about his period t+1 asset holdings zt+1 2 [0; 1]k.
For realized dividend payments ys = (y1;s; :::; yk;s) 2 Rk per asset unit and ex-dividend
spot market asset prices ps = (p1;s; :::; pk;s) 2 Rk, the period s = t; t+1; ::: consumption
from the agent�s perspective is given as follows

c (ys;ps; zs; zs+1) = ys � zs + ps � (zs � zs+1) .

In our model the period t agents are Choquet decision makers who are uncertain

about future dividend-payments. In order to describe this uncertainty in terms of a

stochastic process we consider a sequence of random variables (Yt)t�1 de�ned on 


which take on values in (Y;Y) where Y is a non-empty compact subset of the Euclidean

space Rk and Y is the Borel �-algebra inY. Denote by FT the standard product algebra
in YT = �Tt=1Y and observe that the F1 � F2 � ::: � F1 constitute a �ltration where

F1 denotes the standard product algebra in Y1 = �1t=1Y. Finally, de�ne Yt (!) =

Yt (y1;y2; :::) = yt whereby we interpret yt = (y1;t; :::; yk;t) as the realized period t

dividend-payments in the state of the world !. Analogously to (10), a period t agent�s

belief about future dividend payments At+1� :::�At+1+n 2 Fn under the condition that
he has observed the history y1; :::;yt 2 �ti=1Y of dividend payments is de�ned as the

�nite-dimensional conditional capacity �t+1;:::;t+1+n (� j �) such that

�t+1;:::;t+1+n (At+1 � :::� At+1+n j y1; :::;yt)
= � (Y � :::�Y � At+1 � :::� At+1+n �Y1 j fy1g � :::� fytg �Y1) .

For a given non-additive belief � de�ned on (
;F) and a �xed Bayesian update rule we
have thus constructed a stochastic process (� (� j �) ;
;F) = (� (� j �) ; X1;F1), which
formally describes how the period t agents�conditional non-additive beliefs about the

economy�s dividend-payments are generated.

Assumptions on beliefs. We assume that (� (� j �) ; X1;F1) is a time-homogenous
stochastic process with the one-step-ahead Markov property such that � (� j �) sat-
is�es the Feller property. In particular, we assume:

(A1) The �One-step-ahead Markov property�: For all t � 0 and all histories

y1; :::;yt 2 �ti=1Y,

�t+1 (At+1 j y1; :::;yt) = �t+1 (At+1 j yt)

for all At+1 2 Y.
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(A2) �Time-homogeneity�: For all t � 0 and all yt 2 Y,

�t+1 (At+1 j yt) = � (At+1 j yt)

for all At+1 2 Y.

(A3) The �Feller property�: Let f : Y ! R be any real-valued continuous func-
tion in Y and de�ne Tf : Y ! R such that

(Tf) (y) = E [f; � (dy0 j y)] .

Then Tf is also a real-valued continuous function in Y.

Contingent on the realized state of the world (y1; :::;yt;yt+1; :::) 2 
, a period t agent
gains vNM utility

w (zt+1) =
1X
s=t

�s�tu (c (ys;ps; zs; zs+1))

from choosing (conditional Savage act) zt+1 for given zs, s 6= t+ 1, and ps, s = 0; 1; :::,
whereby � 2 (0; 1) is the time-discount factor, u : R+ ! R+ is continuously di¤er-
entiable, strictly increasing, strictly concave and bounded. Let y1 denote the generic

element of Y1. Contingent on the observed history of dividend payments (y1; :::;yt) 2
�tj=1Y, the Choquet expected utility of period t agent�s asset holding choice is then
given as3

E [w (zt+1) ; � (dy1 j y1; :::;yt)] (12)

= u (c (yt;pt; zt; zt+1)) + E

" 1X
s=t+1

�s�tu (c (ys;ps; zs; zs+1)) ; � (dy1 j y1; :::;yt)
#
.

Let us, somewhat informally, describe this economy as a Bayesian game such that the

period t = 1; 2; ::: agents are di¤erent players whose beliefs about �nature�s moves�are

given as conditional capacities. A strategy of a period t agent is then any Ft-measurable
function ft+1 : �tj=1Y ! [0; 1]k; that is, a player�s strategy maps the set of possible

histories into the set of possible asset holdings at period t+1. Since consumption in time

periods s > t+ 1 is irrelevant to the �rst-order conditions of the maximization problem

(12), we obtain the following characterization of an equilibrium under the assumptions

that, �rstly, all period t agents choose mutually best responses with respect to belief

� (� j �) and, secondly, at equilibrium prices demand equals supply in each time period.

3Notice that this de�nition of the Choquet expected utility of an uncertain in�nite consumption

stream coincides for the multiple-prior framework with de�nition (2.4.3) discussed by Epstein and

Wang (1994).
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De�nition: The strategy pro�le
�
f�t+1
	
t=1;2:::

and the price-sequence fp�tgt=1;2;:::constitute
an equilibrium of this economy if and only if, for all histories (y1; :::;yt) 2 �tj=1Y,

f�t+1 (y1; :::;yt) = arg max
zt+12[0;1]k

u (c (yt;p
�
t ; f

�
t ; zt+1)) (13)

+�E
�
u
�
c
�
yt+1;p

�
t+1; zt+1; f

�
t+2

��
; � (dyt+1 j yt)

�
such that p�t and p

�
t+1 ensure

z�t+1 = z
�
t (14)

for all t.

Because of the market-clearing condition (14) we know that in any equilibrium every

period t agent must optimally hold the initial endowment of assets; that is, f�t = 1 for all

t. In order to study the equilibria of this economy, it therefore remains to characterize

the (shadow) prices which support this allocation. The assumptions on beliefs allow us

to consider a stationary situation in which every period t agent, t = 0; 1; :::, faces the

same maximization problem. As a consequence, we can restrict attention to stationary

equilibrium price functions.

Observation 2. A stationary price function p� : Y ! �kj=1R+ is an equilibrium
price-function if and only if, for all yt;yt+1 2 Y,

f�t+1 = 1 = arg max
zt+12[0;1]k

u (ct (yt;p
� (yt) ; f

�
t = 1; zt+1))

+�E
�
u
�
ct+1

�
yt+1;p

� (yt+1) ; zt+1; f
�
t+2 = 1

��
; � (dyt+1 j yt)

�
for all t.

7 The main result

In this section we state and prove our main formal result which characterizes the asset-

pricing equilibrium in the economy. Our formal proof is thereby based on a contraction

mapping argument that is similar to Lucas� formal argument in the case of expected

utility decision makers with additive beliefs.

Proposition. There exists a unique continuous equilibrium price-function p� : Y !
�kj=1R+ such that, for j = 1; :::; k,

p�j (y) =
f �j (y)

u0 (y � 1) , y 2 Y

14



whereby f �j 2 C [Y] is the unique �xed point of the operator T : C [Y] ! C [Y]

de�ned by

(Tfj) (y) = �E
�
u0 (y0 � 1) � y0j + fj (y0) ; � (dy0 j y)

�
, y 2 Y.

Moreover, as approximation for the �xed-point f �j we have for any fj 2 C [Y]

T nfj � f �j 

1 � �n 

fj � f �j 

1 .
Proof: The corresponding FOC�s of the maximization problem are

p�j;t (yt) � u0 (yt � 1) = �E
�
u0 (yt+1 � 1) �

�
yj;t+1 + p

�
j;t+1 (yt+1)

�
; � (dyt+1 j yt)

�
for j = 1; :::; k. Since the problem is stationary, we have p�t (y) = p

� (y) for all y and t

so that the equilibrium price function is, after dropping the time indices, characterized

by

p�j (y) � u0 (y � 1) = �E
�
u0 (y0 � 1) �

�
y0j + p

�
j (y

0)
�
; � (dy0 j y)

�
for j = 1; :::; k. De�ne now the operator T such that

(Tfj) (y) = �E
�
u0 (y0 � 1) � y0j + fj (y0) ; � (dy0 j y)

�
and observe that p�j : Y ! R exists and is unique if and only if T has a unique �xed
point f �j =

�
Tf �j

�
so that p�j =

f�j
u0 . Since Y is compact, any real valued continuous

function f in Y is also bounded so that f 2 C [Y] whereby C [Y] denotes the space of
bounded real-valued continuous functions in Y endowed with the supremum norm k�k1.
Recall that C [Y] is a complete metric space. By the Feller property, the function Tfj :

Y ! R is also continuous so that the operator T maps the complete metric space C [Y]
into itself. As a consequence, we can apply the contraction mapping theorem according

to which there exists a unique �xed point of T if there exists some number (=modulus)

c < 1 such that, for all functions f; g 2 C [Y],

kTf � Tgk1 � c � kf � gk1 .

By Theorem 5 in Blackwell (1965), if T is monotone and satis�es, for all functions fj
and any constant a,

[T (fj + a)] (y) � (Tfj) (y) + c � a (15)

for some c < 1, then T is a contraction with modulus c. Since the Choquet integral is

monotone, so is T . In order to prove that T is a contraction, it therefore remains to be

15



shown that condition (15) is satis�ed for some c < 1. Observe that a constant function

a is comonotonic to any function, so that, by (2),

�E
�
u0 (y0 � 1) � y0j + fj (y0) + a; � (dy0 j y)

�
� �E

�
u0 (y0 � 1) � y0j + fj (y0) ; � (dy0 j y)

�
+ c � a

,

�E
�
u0 (y0 � 1) � y0j + fj (y0) ; � (dy0 j y)

�
+ �E [a; � (dy0 j y)]

� �E
�
u0 (y0 � 1) � y0j + fj (y0) ; � (dy0 j y)

�
+ c � a

,

� � c:

Thus, set c = � to see that (15) is satis�ed for some c < 1.�

Since E [a � f; �] = aE [f; �] for any constant a, we immediately obtain from the �rst
order conditions the following CEU counterpart of a familiar result from EU asset pricing

theory.

Corollary. Expressed in terms of the gross-return of asset j, i.e.,

R�j =
p�j (y

0) + y0j
p�j (y)

and the so-called stochastic discount factor

M = � � u
0
(y0 � 1)

u0 (y � 1) ,

the economy�s equilibrium is characterized by the following conditions

1 = E
�
M �R�j ; � (dy0 j y)

�
(16)

for j = 1; :::; k.

8 An illustrative example: The equity premium

Based on the Lucas fruit-tree economy, Mehra and Prescott (1985) study a model with a

stationary productivity growth rate process for which they observe the so-called �equity

premium puzzle�. According to this puzzle, a realistically calibrated model implies a

16



much lower di¤erence in gross returns between a �risky� and a �risk-free� asset than

observed in the empirical data. Although there is no productivity growth in our fruit-

tree economy, it is nevertheless instructive to have a look at the formal relationship

between asset returns in our Choquet economy and compare the case between additive

and non-additive beliefs. In order to focus the analysis, we will restrict attention to a

sub-class of non-additive probability measures de�ned as neo-additive capacities.

8.1 Neo-additive capacities

The concept of neo-additive capacities has been introduced by Chateauneuf, Eichberger,

and Grant (2007).

De�nition. For a given measurable space (
;F) the neo-additive capacity, �, is de-
�ned, for some �; � 2 [0; 1] by

� (A) = � � (� � !o (A) + (1� �) � !p (A)) + (1� �) � � (A) (17)

for all A 2 F such that � is some additive probability measure and we have for

the non-additive capacities !o

!o (A) = 1 if A 6= ;
!o (A) = 0 if A = ;

and !p respectively

!p (A) = 0 if A 6= 

!p (A) = 1 if A = 
.

The parameter � can be interpreted as the decision makers degree of ambiguity

whereas � stands for his degree of optimism. The motivation for these interpretations

is immediate from the following observation, which extends a result (Lemma 3.1) of

Chateauneuf, Eichberger, and Grant (2007) from the case of �nite random variables to

the more general case of random variables with a closed and bounded range.

Observation 3. Let f be real-valued function with closed and bounded range. Then
the Choquet expected value (1) of f with respect to a neo-additive capacity (17) is

given by

E [f; �] = � (�max f + (1� �)min f) + (1� �)E [f; �] . (18)
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Proof: Relegated to the appendix.

Observation 4. Suppose the non-additive belief of the agent is given as the neo-additive
capacity (17). If the agent applies the full Bayesian update rule, his conditional

non-additive belief is given by

�FB (A j B) = �B � �+ (1� �B) � � (A j B) , (19)

for A;B 2 F , whereby
�B =

�

� + (1� �) � � (B) . (20)

Proof: Relegated to the appendix.

8.2 The equity premium

Under the assumption that the agents have neo-additive beliefs and apply the full

Bayesian update rule, the economy�s equilibrium conditions (16) are given as

1 = �y
�
�max

�
M �R�j

�
+ (1� �)min

�
M �R�j

��
+ (1� �y)E

�
M �R�j ; � (dy0 j y)

�
,

or equivalently,

1 = �y
�
�max

�
M �R�j

�
+ (1� �)min

�
M �R�j

��
+(1� �y)

�
Cov

�
M;R�j ; � (dy

0 j y)
�
+ E [M;� (dy0 j y)] � E

�
R�j ; � (dy

0 j y)
��

for j = 1; ::; k, whereby

�y =
�

� + (1� �) � � (fyg �Y1)
.

For a �risk-free�asset we have, by de�nition, constant equilibrium returns R�f implying

1 = R�f (�y (�maxM + (1� �)minM) + (1� �y)E [M;� (dy0 j y)]) .

Let

� = �y (�maxM + (1� �)minM) + (1� �y)E [M;��]
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and observe that the following relationship holds between equilibrium returns of a risky,

R�j , and a risk-free, R
�
f , asset in this economy

R�f =
�y
�

�
�max

�
M �R�j

�
+ (1� �)min

�
M �R�j

��
(21)

+
(1� �y)
�

Cov
�
M;R�j ; � (dy

0 j y)
�

+
(1� �y)E [M;� (dy0 j y)]

�
E
�
R�j ; � (dy

0 j y)
�
.

In case the neo-additive capacities reduce to additive beliefs, i.e., �y = 0, we have

� = E [M;� (dy0 j y)] so that we obtain the following familiar characterization of the
equilibrium equity premium in terms of gross-returns

R�f =
Cov

�
M;R�j ; � (dy

0 j y)
�

E [M;� (dy0 j y)] + E
�
R�j ; � (dy

0 j y)
�
,

E
�
R�j ; � (dy

0 j y)
�
�R�f =

�Cov
�
M;R�j ; � (dy

0 j y)
�

E [M;� (dy0 j y)] .

Standard formulations of the equity-premium puzzle proceed by assuming that the sub-

jective additive belief � (dy0 j y) coincides with the �objective�probability of the econ-
omy�s dividend-payments, say ��. According to the equity premium puzzle the empiri-

cally observed value of the equity premium

E
�
R�j ; �

���R�f (22)

is then much higher as the value of

�Cov
�
M;R�j ; �

��
E [M;��]

(23)

if the model parameters (e.g., the risk-aversion coe¢ cient in the case of a CRRA utility

function) are calibrated with realistic values.4 While any thorough discussion of the

equity premium puzzle is beyond the scope of this paper, it is immediately obvious from

(21) that the formal equivalence between the empirically observed equity premium (22)

and (23) does no longer hold in the case of non-additive beliefs. The theoretical rela-

tionship between E
�
R�j ; � (dy

0 j y)
�
and R�f is much more complex in this CEU economy

with neo-additive beliefs than under the assumption of expected utility maximizers be-

cause it additionally depends on the agent�s degree of ambiguity, �y, and his degree of

4For reviews on the extremely rich literature on the equity premium- and related asset return puzzles

see the survey articles by Kocherlakota (1996), Campbell (2003), Mehra and Prescott (2003) and the

textbook treatments in Cochrane (2001) and Du¢ e (2001).
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optimism, �, in a non-trivial way. For example, in the case of extreme ambiguity, i.e.,

�y = 1, we have

R�f =
�max

�
M �R�j

�
+ (1� �)min

�
M �R�j

�
�maxM + (1� �)minM

so that the equilibrium return of the risk-free asset would be completely independent

of any (�objective�) expected return, E
�
R�j ; �

��, of the risky asset since the agent only
cares about the worst, resp. best, possible return of the asset. That is, for �y = 1 the

model�s implications are compatible with any empirically observed equity premium (22).

While this case describes an admittedly extreme scenario of CEU decision-making, it

illustrates that the standard equity premium formula (23) is apparently not very robust

with respect to a generalization from additive to non-additive beliefs.

Finally observe that even in case we restrict attention to the comparably simple

class of neo-additive capacities the economy�s equilibrium conditions (16) depend on

the applied update rule. That is, the speci�c relationship (21) between the equilibrium

returns of a risk-free and a risky asset is only valid under the assumption that the

agents apply the full Bayesian update rule. If we used instead, e.g., the optimistic or

the pessimistic update rule, di¤erent equilibrium conditions would obtain.

9 Concluding remarks

We study a Lucas �fruit-tree� economy under the assumption that the agents are

Choquet decision makers who have non-additive beliefs about the economy�s dividend-

payments. As main formal result we establish conditions such that there exists a unique

asset-pricing equilibrium in this economy. Our equilibrium concept thereby takes ac-

count of the fact that Choquet decision makers are dynamically inconsistent whenever

they violate Savage�s sure-thing principle. In particular, our equilibrium concept com-

bines the market clearing condition of general equilibrium theory with the concept of

Bayesian Nash equilibrium with respect to non-additive beliefs. The conditional non-

additive beliefs of all time period agents are thereby generated by a time-homogenous

stochastic process that satis�es the one-step-ahead Markov property and that explicitly

states the Bayesian update rule applied by the agents.

We present a simple example which illustrates that the assumption of non-additive

beliefs may result in a theoretical relationship between the equilibrium returns of assets

which strongly di¤ers from the standard results obtained under the assumption of ad-

ditive beliefs. The introduction of CEU preferences to consumption based asset pricing

models opens, in our opinion, an interesting avenue for future research with respect to

asset return puzzles such as, e.g., the equity premium puzzle. This is especially true
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since the CEU approach is founded on behavioral axioms that have proved useful in the

description of real-life decision making in experimental situations.
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Appendix

Proof of observation 3: By an argument in Schmeidler (1986), it su¢ ces to restrict
attention to a non-negative valued random variable f so that

E [f; �] =

Z +1

0

� f! 2 
 j f (!) � zg dz, (24)

which is equivalent to

E [f; �] =

Z max f

min f

� f! 2 
 j f (!) � zg dz

since the range of f is closed and bounded. We consider a partition Pn, n = 1; 2; :::, of


 with members

Akn = f! 2 
 j ak;n < f (!) � bk;ng for k = 1; :::; 2n

such that

ak;n = [max f �min f ] � (k � 1)
2n

+min f

bk;n = [max f �min f ] � k
2n
+min f .

De�ne the step functions an : 
! R and bn : 
! R such that, for ! 2 Akn, k = 1; :::; 2n,

an (!) = ak;n

bn (!) = bk;n.

Obviously,

E [an; �] � E [f; �] � E [bn; �]

for all n and

lim
n!1

E [bn; �]� E [an; �] = 0.

That is, E [an; �] and E [bn; �] converge to E [f; �] for n ! 1. Furthermore, observe
that

min an = min f for all n, and

max bn = max f for all n.

Since limn!1min bn = limn!1min an and E [bn; �] is continuous in n, we have

lim
n!1

E [bn; �] = �
�
� lim
n!1

max bn + (1� �) lim
n!1

min bn

�
+ (1� �) lim

n!1
E [bn; �]

= � (�max f + (1� �)min f) + (1� �)E [f; �] .
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In order to prove proposition 3, it therefore remains to be shown that, for all n,

E [bn; �] = � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

Since bn is a step function, (24) becomes

E [bn; �] =
X
Akn2Pn

�
�
A2

n

n [ ::: [ Akn
�
� (ak;n � ak�1;n)

=
X
Akn2Pn

ak;n �
�
�
�
A2

n

n [ ::: [ Akn
�
� �

�
A2

n

n [ ::: [ Ak�1n

��
,

implying for a neo-additive capacity

E [bn; �] = max bn
�
��+ (1� �)�

�
A2

n

n

��
+
2n�1X
k=2

ak;n (1� �)�
�
Akn
�

+min bn

"
1� ��� (1� �)

2nX
k=2

�
�
Akn
�#

= ��max bn + (1� �)
2nX
k=1

ak;n�
�
Akn
�
+min bn [� � ��]

= � (�max bn + (1� �)min bn) + (1� �)E [bn; �] .

�

Proof of observation 4: An application of the full Bayesian update rule to a
neo-additive capacity gives

�FB (A j B) =
� � �+ (1� �) � � (A \B)

� � �+ (1� �) � � (A \B) + 1� (� � �+ (1� �) � � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A [ :B))

=
� � �+ (1� �) � � (A \B)

1 + (1� �) � (� (A \B)� � (A)� � (:B) + � (A \ :B))

=
� � �+ (1� �) � � (A \B)
1 + (1� �) � (�� (:B))

=
� � �+ (1� �) � � (A \B)

� + (1� �) � � (B)

=
� � �

� + (1� �) � � (B) +
(1� �) � � (B)

� + (1� �) � � (B)� (A j B)

= �B � �+ (1� �B) � � (A j B)

with �B given by (20).�
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