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Abstract
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We examine market performance in a market with linear demand for

two classes of di¤erentiated products. One product is produced by a
single �rm, which may or may not act as a Stackelberg price leader. One
class of products, di¤erentiated from each other and from the singleton
product, is produced by an endogenous number of �rms. We contrast
simultaneous price setting and Stackelberg price leadership, and consider
three leadership scenarios. In the base case, the leader produces one
variety, while followers each produce one variety of a class of products
that are better substitutes for each other than for the leader�s variety. In
the second scenario, the leader is horizontally integrated into the class
of products produced by followers. In the third scenario, the leader is
horizontally integrated and bundles its two varieties.
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1 Introduction

We examine the determinants of market performance in a market with linear
demand for two classes of di¤erentiated products. One product (variety A) is
produced by a single �rm (�rm A). Each variety in a second class of products
(the B varieties), di¤erentiated from each other and from variety A, is produced
by one of an endogenous number of �rms (the B �rms). We compare outcomes
if �rm A acts as a Stackelberg price leader with outcomes if �rm A sets price
simultaneously with other �rms, which for simplicity we refer to as a Bertrand
market. We consider two alternative �rm structures, and two types of conduct,
of �rm A. In the base case, we contrast simultaneous price setting with Stack-
elberg leadership by �rm A if there are an endogenously-determined number
n + 1 of B �rms. In the second case, �rm A is horizontally integrated into
the B group, and produces one B variety along with variety A. In the third
case, �rm A is once again horizontally integrated into B group and in addition
bundles its two products.
The endogenous number of follower �rms is determined by market size, en-

try cost,1 and the structure (horizontally integrated or not) and conduct (price
leader or not) of the �rm that produces variety A. A general result is that if
�xed cost is small relative to market size, so that the number of follower �rms
is large, di¤erences in market performance due to di¤erences in leader structure
and conduct are small. Product di¤erentiation implies that markets with the
demand and cost structure we examine are not, and not even approximately,
perfectly competitive. But conditional on the existence of product di¤erenti-
ation, if entry is easy, consumer surplus and net social welfare are much the
same whether �rms set prices or quantities, whether �rms set choice variables
simultaneously or sequentially, and whether �rm A is or is not integrated into
group B.
Results are otherwise if �xed cost are large, so that the number of B �rms

is small.2 There are some ranges of �xed cost for which entry deterrence is
not a factor, in the sense that the equilibrium number of B �rms is invariant
to small changes in the Stackelberg leader�s decision variable. In such cases,
Stackelberg leadership is pro�table for the leader, and reduces both consumer
surplus and net social welfare. For other ranges of �xed cost, the Stackelberg
leader will lower price to deter entry. There are ranges of �xed cost for which
such entry deterrence maximizes consumer surplus and net social welfare. But
in the bulk of the cases we examine, either consumer surplus, or net social
welfare, or both, would be greater with simultaneous price setting than with
Stackelberg leadership.
Qualitatively similar, but stronger, relationships appear if the Stackelberg

leader is horizontally integrated into the B group and sells its products as a
bundle.

1See Stigler (1968), Sutton (1991).
2We present numerical results for an endogenous number 0 to 3 or 4 B �rms. Partly this

is a practical matter: equilibrium conditions cannot be solved analytically. But it coincides
with the intuition that whatever policy issues are raised by leadership, horizontal integration,
and bundling are likely to manifest themselves when the equilibrium number of �rms is small.
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2 Related literature

Our analysis of market performance bears some relation to two streams of lit-
erature in industrial economics, that on bundling and foreclosure and that on
Stackelberg leadership and market performance with free entry.
The literature on bundling is characterized by contrasting opinions on its

possibilities to foreclose markets. According to the leverage theory (a.o., Kaysen
and Turner, 1959), a monopolist can use bundling to leverage its monopoly
power from the primary (monopoly) market in a secondary market, in which
it faces ex ante competition, to foreclose and hence monopolize that secondary
market, thereby reducing social welfare. The leverage theory has been criticized
by the Chicago School.3 According to its �single monopoly pro�t theorem,�only
one monopoly pro�t can be extracted from a market: if the secondary market is
competitive,4 the monopolist in the primary market cannot increase its pro�ts in
the secondary market by bundling its two products. Hence, if bundling occurs,
it must have other, e¢ ciency, motivations, such as economies of scale, price
discrimination, or risk sharing. The Chicago view fails if the target market is
imperfectly competitive.5 Whinston (1990) argues that, with price competition,
bundling is only pro�table when it deters entry or induces a �rm to exit the
market and bundling is thus a mechanism to foreclose the secondary market.
Second, in his wide-ranging work on the implications of leadership for market

performance, Etro (2007, 2008, and elsewhere) highlights that standard results
of oligopoly models often hinge on the assumption that market structure is
exogenous. Endogenizing market structure can reverse familiar �ndings.

Elaborate on Etro�s contribution. Discuss how our results relate to
each of these literatures.

3 Model setup

3.1 Demand

We work with the linear demand product di¤erentiation speci�cation of Spence
(1976), Dixit (1979), and Vives (1984). With one �rm producing variety A and
n+ 1 �rms each producing one group B variety, inverse demand equations are

pA = a�
 
qA + s

nX
i=0

qBi

!
(1)

for variety A and

pBi = a�

0@sqA + qBi + � nX
j=i

qBj

1A (2)

for variety Bi.

3See for example Director and Levi (1956), Bowman (1957), Posner (1976) and Bork (1978).
4And the �good approximation�assumption of the Chicago School is that most industries,

most of the time, can be treated as if they are perfectly competitive (Reder, 1982).
5See Martin (1999), Choi and Stefanidis (2001), Carlton and Waldman (2002), Nalebu¤

(2004).
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s measures di¤erentiation between variety A and the B group of products.
� measures di¤erentiation within the B group. We assume

0 < s < �; (3)

which implies that all varieties are substitutes and that the B varieties are closer
substitutes one for another than for variety A.6 For simplicity, we refer to the
�rm that produces variety A as �rm A and to �rms (other than �rm A, if �rm A
is horizontally integrated into the B group) that produce one of the B varieties
as B �rms.
As is well known, inverse demand equations of the form (1), (2) can be

derived from a quadratic aggregate welfare function,7

W = a

0@qA1 + nX
j=0

qBj

1A

�1
2

24q2A1 + nX
j=0

q2Bj + 2sqA1

nX
j=0

qBj + 2�
nX
j=0

qBj

nX
k=j+1

qBk

35 : (4)

We will use (4) for welfare calculations and to derive the inverse demand
equations that apply if, when �rm A produces variety A and variety B0, it
bundles the two varieties.
We examine the case of price-setting �rms. Inverse demand equations of the

form (1), (2) imply demand equations8�
1� � + (n+ 1)

�
� � s2

��
qA =

[1� � + (n+ 1) (� � s)] a� (1 + n�) pA + s
nX
0

pBi (5)

(1� �)
�
1� � + (n+ 1)

�
� � s2

��
qBi = (1� �) (1� s) a

+(1� �) spA �
�
1� � + (n+ 1)

�
� � s2

�
�
�
� � s2

��
pBi +

�
� � s2

� nX
j 6=i

pBj :

(6)
If all B varieties set the same price, (6) simpli�es to

qB =
(1� s) a+ spA � pB
1� � + (n+ 1) (� � s2) : (7)

6Much of the formal modelling goes through for s < 0 < �, making variety A and the B
varieties complementary, provided 0 < jsj < �. We limit attention to the s > 0 case for ease
of interpretation.

7The linear demand product di¤erentiation model can also be derived from a discrete choice
model in which individuals� reservation prices for one variety depend on the prices of other
varieties on the market; see Martin (2009).

8An outline of derivations is given in the Appendix. Full details of derivations are available
on request from the authors.
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3.1.1 One B �rm

A special case, to which we will refer from time to time below, deserves particular
mention: If there is one B �rm (n = 0), � drops out of the demand equations,
which become �

1� s2
�
qA = (1� s) a� pA + spB0 (8)�

1� s2
�
qB0 = (1� s) a+ spA � pB0 (9)

These are demand equations for a symmetric duopoly with linear aggregate
demands and product di¤erentiation parameter s.

3.2 Supply

We assume that all varieties (A and B) are produced with identical and constant
marginal cost, which (without loss of generality) we normalize to be zero. We
assume each B variety is produced by one �rm. Each active B �rm incurs a sunk
entry cost F . The number of B �rms/varieties satis�es a free-entry condition:
B �rms enter until entry of one additional B �rms would imply losses for all B
�rms. If �rm A is horizontally integrated into the B group, it too incurs sunk
cost F .9

4 Base case: n continuous

We begin by examining Bertrand (simultaneous price setting) and Stackelberg
price leadership cases, treating n as a continuous variable.

4.1 Simultaneous price setting

4.1.1 Best responses

Firm A�s objective function is

�A = pAqA; (10)

where qA is given by (5).
The �rst-order condition to maximize �A with respect to pA can be written

as
2 (1 + n�) pA � (n+ 1) spB = [1� � + (n+ 1) (� � s)] a (11)

Firm B0�s objective function is

�B0 = pB0qB0 � F; (12)

where qB0 is given by (6) for i = 0.
The �rst-order condition to maximize �B0 can be written

(1� �) (1� s) a+(1� �) spA�2
�
1� � + n

�
� � s2

��
pB0+

�
� � s2

� nX
j=1

pBj � 0;

(13)

9Since we simply assume that �rm A is the unique producer of variety A, we can neglect
�xed cost of producing variety A without a¤ecting our results.
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or (making all B variety prices the same and collecting terms)10

� (1� �) spA +
�
2 (1� �) + n

�
� � s2

��
pB = (1� �) (1� s) a (14)

Solving (14) for pB gives the B-�rm best response price,

pB = (1� �)
(1� s) a+ spA

2 (1� �) + n (� � s2) (15)

4.1.2 Equilibrium prices, payo¤s, and number of B �rms

Solving the �rst-order equations (11) and (14) gives Bertrand equilibrium prices
with n+1 B �rms,

pBertA =�
2 (1� �) + n

�
� � s2

��
[1� � + (n+ 1) (� � s)] + (n+ 1) (1� �) s (1� s)

2 (1 + n�) [2 (1� �) + n (� � s2)]� (n+ 1) (1� �) s2 a:

(16)

pBertB = (1� �) s [1� � + (n+ 1) (� � s)] + 2 (1 + n�) (1� s)
2 (1 + n�) [2 (1� �) + n (� � s2)]� (n+ 1) (1� �) s2 a: (17)

Equilibrium payo¤s are

�BertA =
1 + n�

1� � + (n+ 1) (� � s2)
�
pBertA

�2
(18)

and

�BertB =
1

1� �
1� � + n

�
� � s2

�
1� � + (n+ 1) (� � s2)

�
pBertB

�2 � F: (19)

Substituting for pBertB , if n is treated as a continuous variable and entry
occurs until pro�t per B �rm equals zero, the condition that determines the
equilibrium number of B varieties is

�BertB =
(1� �)

�
1� � + n

�
� � s2

��
1� � + (n+ 1) (� � s2) �

�
s [1� � + (n+ 1) (� � s)] + 2 (1 + n�) (1� s)

2 (1 + n�) [2 (1� �) + n (� � s2)]� (n+ 1) (1� �) s2 a
�2
� F � 0: (20)

(20) is a �fth-degree equation in n.

4.1.3 FB01: �rst entry of a B �rm if prices are set simultaneously

Let n = 0, n+1 = 1, so there is one B �rm. As noted above (Section 3.1.1), this
makes the market a symmetric price-setting duopoly. Equilibrium prices are

pBertA (1) = pBertB (1) =
1� s
2� sa: (21)

From (19), the equilibrium pro�t of one B �rm is

�BertB (1) =
1� s

(1 + s) (2� s)2
a2 � F: (22)

10This is without loss of generality, since (in view of the underlying symmetry of the model)
all B �rms set the same price in equilibrium.
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F n+ 1 pBertA pBertB �BertA CSBert NSWBert

91429 1 130: 83 64: 767 10284: 3: 657 1 3: 759 9
80000 1:0867 128: 58 61: 125 9189: 2 3: 873 0 3: 964 9
70000 1:1703 126: 61 57: 978 8290: 9 4: 040 7 4: 123 6
60000 1:2686 124: 5 54: 664 7393: 2 4: 201 0 4: 274 9
50000 1:3905 122: 16 51: 042 6468: 6 4: 359 7 4: 424 4
40000 1:5519 119: 45 46: 920 5488: 9 4: 522 5 4: 577 4
30000 1:7843 116: 16 42: 024 4426: 4 4: 695 4: 739 3
20000 2:1696 111: 86 35: 817 3238: 1 4: 887 3 4: 919 7
10000 3:0323 105: 41 26: 897 1846: 7 5: 123 1 5: 141 6
5000 4:2478 100: 09 19: 899 1020: 6 5: 282 2 5: 292 4
1000 9:3689 91: 659 9: 480 8 235: 53 5: 487 1 5: 489 5
500 13:205 89: 382 6: 808 2 122: 03 5: 534 7 5: 535 9
100 29:391 86: 142 3: 108 9 25: 619 5: 597 6 5: 597 9

Table 1: Equilibrium characteristics, di¤erent values of �xed cost, simultane-
ous price setting, n treated as a continuous variable. Values for CSBert and
NSWBert are 105 times the reported values. (a = 1000, � = 9=10, s = 3=4).

Thus one B �rm would just break even, if prices are set simultaneously, for
�xed cost

FB01 =
1� s

(1 + s) (2� s)2
a2: (23)

4.1.4 Numerical results

In the absence of an analytical solution for the equilibrium number of �rms,
we solve (20)) numerically for speci�c parameter values11 and di¤erent values
of F . With numerical values for the number of B �rms (n+1), it is straightfor-
ward to obtain results for equilibrium characteristics of interest. Representative
results are shown in Table 1.
As F falls from FB01, the equilibrium number of B �rms rises. The higher the

number of B �rms, the lower is the equilibrium price of the B varieties. With the
upward-sloping best-response equations that are characteristic of price-setting
oligopoly with linear demand and constant marginal cost (see (11), (15)), the
lower is pBertB , the lower is pBertA .
As F falls, qBertA also falls.12 Lower pBertA tends to increase the quantity

demanded of �rm A, but this e¤ect is dominated by the inward movement of
A�s residual demand as the number of B varieties increases. Since pBertA and
qBertA both fall as F falls, their product, �BertA , necessarily falls as F falls as
well.
As F falls, prices and outputs (per variety, for the B �rms) fall, and the

number of B varieties increases. The net impact on consumer surplus as F falls

11The parameter values used throughout the paper are a = 1000, � = 9=10, s = 3=4. Maple
programs that produce numerical results for general parameter values are available on request
from the authors.
12This is not shown in Table 1, but �rm A�s �rst-order condition implies that in equilibrium

qBertA is positively proportional to pBertA .
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is, in principle, ambiguous. Direct evaluation from (4)13 veri�es the intuitive
result, that consumer surplus rises as F falls.
Since �rm A�s pro�t falls as F falls, while n is determined so that B-�rm

pro�t is zero, and consumer surplus rises as F falls, the overall impact on net
social welfare, the sum of pro�ts and consumer surplus, is once again in principle
ambiguous. Direct evaluation again veri�es the intuitive result, that net social
welfare increases as F falls.

4.2 Stackelberg price leadership

If �rm A acts as a Stackelberg price leader, and n is a continuous variable, it
can be modelled as maximizing pro�t subject to two constraints, B-�rm best-
response pricing (15) and the free-entry constraint (set (19) equal to zero). A
Lagrangian for this constrained optimization problem is

max
pA;pB ;n

L = pA
[1� � + (n+ 1) (� � s)] a� (1 + n�) pA + (n+ 1) spB

1� � + (n+ 1) (� � s2)

+�

�
pB � (1� �)

(1� s) a+ spA
2 (1� �) + n (� � s2)

�
+�

"
F � 1

1� �
1� � + n

�
� � s2

�
1� � + (n+ 1) (� � s2)p

2
B

#
:

(24)
where � is the Lagrangian multiplier associated with the B-�rm best response
equation and � is the Lagrangian multiplier associated with the free-entry con-
straint.
The Kuhn-Tucker �rst-order conditions for the solution to (24) form a sys-

tem of �ve equations in �ve unknowns (pA; pB ; n; �; and �). Some details are
given in the Appendix. Not surprisingly, there are no analytical results. We
illustrate the properties of the solution, and compare with the Bertrand case,
using numerical evaluation.

Table 2 compares the equilibrium number of B �rms and prices for the
Bertrand and Stackelberg regimes. For large F , the equilibrium number of B
�rms is small, and (as one expects) �rm A�s leadership price is substantially
higher than its Bertrand equilibrium price. The B-�rm Stackelberg follower
price is also higher than the B-�rm Bertrand price. With a higher pB , the
Stackelberg leadership number of B varieties must be greater, all else equal, to
satisfy the B-�rm zero-pro�t constraint. As for the Bertrand case, Stackelberg
prices fall, and the Stackelberg number of B �rms rises, as F falls. For low F ,
there is little di¤erence between the Bertrand and Stackelberg outcomes.

Table 3 compares welfare results for the Bertrand and Stackelberg regimes.
As expected, �rm A�s Stackelberg payo¤is substantially greater than its Bertrand
payo¤. Bertrand consumer surplus is greater than Stackelberg leadership con-
sumer surplus for F = 91428:57, otherwise less, but the amount of consumer
surplus is essentially the same under either regime for all values of �xed cost.
With consumer surplus essentially the same under both regimes, �rm A�s Stack-
elberg pro�t greater than its Bertrand pro�t, and B-�rm pro�t zero in both
cases, Stackelberg net social welfare is greater than Bertrand net social welfare.

13And subtracting the amount consumers pay for the quantities demanded.
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F (n+ 1)
Bert

(n+ 1)
SL

pBertA pSLA pBertB pSFB
91429 1 1:0399 130: 83 209: 23 64: 767 190: 62
80000 1:0867 1:1178 128: 58 195: 05 61: 125 165: 28
70000 1:1703 1:1970 126: 61 183: 91 57: 978 145: 56
60000 1:2686 1:2923 124: 5 173: 39 54: 664 127: 26
50000 1:3905 1:4121 122: 16 163: 14 51: 042 109: 81
40000 1:5519 1:5719 119: 45 152: 82 46: 920 92: 776
30000 1:7843 1:8031 116: 16 142: 05 42: 024 75: 688
20000 2:1696 2:1877 111: 86 130: 19 35: 817 57: 860
10000 3:0323 3:0500 105: 41 115: 76 26: 897 37: 765
5000 4:2478 4: 265 6 100: 09 106: 02 19: 899 25: 306
1000 9:3689 9: 386 9 91: 659 93: 379 9: 480 8 10: 560
500 13:205 13: 223 89: 382 90: 425 6: 808 2 7: 348 1
100 29:391 29: 409 86: 142 86: 499 3: 108 9 3: 216 9

Table 2: Equilibrium number of �rms, di¤erent values of �xed cost, simultaneous
price setting and Stackelberg leader continuous n approach (a = 1000, � = 9=10,
s = 3=4).

F �BertA �SLA CSBert CSSL NSWBert NSWSL

91429 10284 87182 3: 657 1 3: 666 3: 759 9 4: 537 8
80000 9189: 2 77856 3: 873 0 3: 864 7 3: 964 9 4: 643 3
70000 8290: 9 70686 4: 040 7 4: 027 6 4: 123 6 4: 734 5
60000 7393: 2 64092 4: 201 0 4: 186 5 4: 274 9 4: 827 4
50000 6468: 6 57851 4: 359 7 4: 345 7 4: 424 4 4: 924 2
40000 5488: 9 51791 4: 522 5 4: 509 7 4: 577 4 5: 027 6
30000 4426: 4 45729 4: 695 4: 684 4: 739 3 5: 141 3
20000 3238: 1 39403 4: 887 3 4: 878 5 4: 919 7 5: 272 5
10000 1846: 7 32241 5: 123 1 5: 117 5: 141 6 5: 439 4
5000 1020: 6 27763 5: 282 2 5: 278 0 5: 292 4 5: 555 6
1000 235: 53 22405 5: 487 1 5: 485 3 5: 489 5 5: 709 4
500 122: 03 21228 5: 534 7 5: 533 4 5: 535 9 5: 745 7
100 25: 619 19708 5: 597 6 5: 597 5: 597 9 5: 794 1

Table 3: Welfare comparisons, di¤erent values of �xed cost, simultaneous price
setting and Stackelberg leadership, n treated as a continuous variable. Values for
CSBert and NSWBert are 105 times the reported values. (a = 1000, � = 9=10,
s = 3=4).
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Threshold FBerti;i+1 FLPi;i+1
0 to 1 91429 105337
1 to 2 23680 24513
2 to 3 10224 10417
3 to 4 5656 5728
4 to 5 3582 3616

Table 4: Threshold values for B-�rm entry, Bertrand (simultaneous price set-
ting) and Stackelberg regimes, n+1 = 1; 2; 3; 4; 5 (a = 1000, � = 9=10, s = 3=4).

Once again, the two regimes di¤er little for low F (large n, although n is of
course endogenous).
Thus, treating the number of B �rms as a continuous variable, Stackelberg

leadership improves market performance.

5 Base case: integer-valued n

5.1 Simultaneous price-setting

Treating n as an integer-valued variable requires one change in the simultaneous-
price-setting model of Section 4.1: suppressing all parameters except n, for nota-
tional compactness, the free-entry value of n+1 satis�es the pair of inequalities

�BertB (n+ 1) � 0 > �BertB (n+ 2) ; (25)

rather than the zero-pro�t condition (20). B-�rm pro�t is zero only for speci�c
values of �xed cost. Otherwise, active B �rms earn some economic pro�t, but
not so much that entry of another B �rm would be pro�table.
Setting n successively equal to 0, 1, 2, 3, and 4 in �BertB (n+ 1) = 0 gives

the threshold values at which the �rst, second, ..., �fth B �rm could enter and
just break even. We denote these entry-threshold levels of �xed cost as FBert01 ,
FBert12 , ..., FBert45 . The second column of Table 4 reports these threshold levels
for our test parameter values.

5.2 Stackelberg leadership

To present the intuition behind the Stackelberg outcome, consider �rst a �xed
cost so large that �rm A can set the monopoly price without entry being prof-
itable for a B �rm.
As F falls, a level (see below) is reached at which a single B �rm could enter

the market and just break even, if A sets the Stackelberg leader price. We make
the tie-breaking assumption that if a B �rm would just break even, it does not
enter.
The Stackelberg leader price maximizes �rm A�s pro�t on the residual de-

mand curve with one B �rm in the market. From (15), if there is one B �rm
(n = 0), the B price is

pB =
(1� �) (1� s) a+ (1� �) spA

2 (1� �) + (0) (� � s2) =
1

2
[(1� s) a+ spA] : (26)
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Substituting n = 0 and (26) in the demand equation (5) and rearranging
terms, A�s residual demand equation with one active B �rm is

qA =
1

2

(1� s) (2 + s) a�
�
2� s2

�
pA

1� s2 : (27)

Firm A�s objective function, Stackelberg leader price, and payo¤ with one
B-�rm follower are

�SLA =
1

2
pA
(1� s) (2 + s) a�

�
2� s2

�
pA

1� s2 ; (28)

pSLA =
1

2

(1� s) (2 + s)
2� s2 a; (29)

and

�SLA =
1

8

(1� s) (2 + s)2

2� s2 a2; (30)

respectively.
For pSLA given by (29), the B �rm�s payo¤ is

�SFB =
1

16

(1� s)
�
4 + 2s� s2

�2
(1 + s) (2� s2)2

a2 � F; (31)

from which it follows that the value of F at which one B �rm would just break
even if �rm A sets the Stackelberg leader price ignoring the possibility of entry
deterrence is14

FLP01 =
1

16

(1� s)
�
4 + 2s� s2

�2
(1 + s) (2� s2)2

a2: (32)

But �rm A need not ignore the possibility of entry deterrence. As a Stack-
elberg leader that takes account of the impact the price it sets has on the
equilibrium number of �rms, �rm A can set the price that makes the B-�rm�s
follower pro�t equal to zero:

�B =
1

4

1

1� s2 [(1� s) a+ spA]
2 � F = 0: (33)

This entry-limiting price is

pLP1A =
1

s

h
2
p
(1� s2)F � (1� s) a

i
: (34)

Under our tie-breaking assumption, if �rm A sets price pLP1A , the B �rm
stays out of the market. Firm A, by setting a price below what one might call
its �naive�(ignoring the endogeneity of entry) Stackelberg price, deters entry.15

The cost of deterring entry is the need to reduce price below the Stackelberg

14For our test parameter values, FLP01 = 105337 (see Table 4). Entry would occur at a
higher level of �xed cost with Stackelberg than Bertrand pricing because (in the absence of
entry-deterrence), the Stackelberg price is greater than the Bertrand price, all else equal.
15One can think of this pricing strategy as a version of limit pricing (Marshall [1890] 1920;

Sylos-Labini 1957; Modigliani, 1958), where the force of potential competition induces an
incumbent to depart from what would otherwise be its pro�t-maximizing strategy.
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level.16 The bene�t of deterring entry is that demand is that the quantity
demanded at this lower price is determined by the monopoly demand,

qA = a� pA; (35)

not the residual demand if there is one active B �rm, (27).
For a range of �xed cost immediately below FLP01 , A�s most pro�table option

is to set the entry-deterring price pLP1A . As F falls, pLP1A falls as well: �rm A
must set a lower price to make entry unpro�table. By setting a lower price, the
incumbent reduces its entry-deterring payo¤. For a su¢ ciently low level of �xed
cost, the incumbent would make the same pro�t setting the price that makes
the equilibrium pro�t of one B-�rm Stackelberg follower equal to zero that it
would make as a Stackelberg leader with one B-�rm follower in the market.
For a range of �xed cost beginning with this threshold value, �rm A and

its B-�rm follower interact as in the standard model of price leadership with
di¤erentiated products. Modest reductions in �xed cost increase the B �rm�s
pro�t, but not so much as to induce entry by a second B �rm.
If F falls su¢ ciently, a level is reached below which a second B �rm could

pro�tably enter, if �rm B sets the Stackelberg leadership price for two followers.
Once again, �rm A can deter entry of the second B �rm by setting a price that
would make B-�rm post-entry pro�t zero. Firm A�s pro�t is less than it would
be with one follower, but greater than it would be as a Stackelberg leader with
two followers.17

As F falls further, A�s entry-deterrence pro�t falls. Eventually a level of F
is reached below which �rm A earns a greater pro�t with two followers in the
market than it would earn keeping the second B �rm out. Below this second
entry threshold, �rm A maximizes pro�t with two B �rms in the market.
As F falls further, the cycle repeats itself: Stackelberg leadership with a

given number of followers, entry deterrence, entry of an additional follower.
Values of �xed cost FLPi;i+1 at which �rm A �nds it pro�table to price to deter

entry or additional entry are given in the third column of Table 4. Interleaved
between these values are the values of �xed cost at which �rm A �nds it prof-
itable to give entry deterrence and act as the Stackelberg leader of a market
with one additional B-�rm follower (Table 5).
These thresholds describe �rm A�s pro�t-maximizing conduct, given that

it acts as a Stackelberg price leader. If �rm A would earn a greater pro�t
in a simultaneous-pricing regime, it can accomplish this when it sets price by
setting the Bertrand price for equilibrium number of follower �rms. Follower
�rms, setting prices on their best-response functions, will of necessity set their
Bertrand prices as well. In this sense, �rm A can choose between Bertrand and
Stackelberg pricing regimes.
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(n+ 1)
SL Deter?

105337 � F 0 NO
61747 � F < 105337 0 YES
24513 � F < 61747 1 NO
17134 � F < 24513 1 YES
10417 � F < 17134 2 NO
8436 � F < 10417 2 YES
5728 � F < 8436 3 NO
4924 � F < 5728 3 YES
3616 � F < 4924 4 NO
3214 � F < 3616 4 YES
2489 � F < 32148 5 NO

Table 5: Fixed cost thresholds, Stackelberg price leader movement into and out
of entry deterrence pricing.

F n+ 1 �A CS NSW
Bert; SL Bert SL Bert SL Bert SL

105337 < F 0 250000 250000 125000 125000 375000 375000
24513 < F � 61747 1 91429 93944 365710 342130 548570� F 541161� F
10417 < F � 17134 2 41962 42105 481330 477970 570650� 2F 569100� 2F
5728 < F � 8436 3 32484 32525 511700 510230 574860� 3F 574010� 3F

Table 6: Bertrand and Stackelberg comparison, small n (a = 1000, � = 9=10,
s = 3=4).

5.2.1 Welfare: entry deterrence not a factor

Table 6 shows welfare results, for our test parameter values, for ranges of �xed
cost where entry deterrence is not an issue: �rm A does not �nd it pro�table to
deter entry, and the endogenously-determined number of B �rms is the same in
either pricing regime.
For these values of F , Stackelberg leadership is pro�table for �rm A. Having

�rm A act as a Stackelberg leader is pro�table for such B �rms as are in the
market, as one would expect with price-setting �rms and pro�t di¤erentiation.
The Stackelberg leader sets a price above the Bertrand level, and the �rm B
Stackelberg follower price is greater than its Bertrand price.18 Consumers, who
pay higher prices for the same number of varieties are worse o¤with Stackelberg
pricing. Stackelberg leadership is advantageous �rm �rms, disadvantageous for
consumers, and on balance reduces net social welfare is less than Bertrand net
social welfare.
16The di¤erence in prices is

pSLA � pLP1A =
1

2
(1� s) 4 + 2s� s

2

s (2� s2)
a� 2

s

q
(1� s2)F ;

which is zero for F = FLP01 and positive for F < FLP01 .
17The one B �rm that is in the market also earns greater pro�t if �rm A deters entry of a

second B �rm.
18We omit �B from the table for expositional compactness. Complete sets of results are

available from the authors on request.
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5.2.2 Pricing to deter entry

Interleaved between the ranges of �xed cost covered in Table 6 are successive
pairs of ranges of �xed cost. The number of B �rms may be one less in the
Stackelberg market than in the Bertrand market: for a �rst range of F , �rm
A sets price to deter entry. For lower ranges of F , A gives up entry deterrence
and the number of B �rms is the same in both types of markets.
For our test parameter values, for F � 105337 there are no B �rms in either

a Bertrand or a Stackelberg market; �rm A maximizes its payo¤ by setting the
unconstrained monopoly price.
For 91429 < F � 105337 there are no B �rms in either a Bertrand or a

Stackelberg market, and in a Stackelberg market, �rm A sets a price to deter
entry. The corresponding lower price makes consumer surplus greater than it
would be with one Stackelberg follower on the market. Since entry deterrence
leaves both �rm A and consumers better o¤, it necessarily improves net social
welfare (row 1, Table 7).
For 61747 < F � 91429, there is one B �rm in a Bertrand market, there are

no B �rms in a Stackelberg market, and in a Stackelberg market, �rm A sets
price to deter entry. For 24513 < F � 61747 there is one B �rm under either
pricing regime, and in the Stackelberg regime, �rm A does not set price to deter
entry. We illustrate the pro�t-maximizing and welfare maximizing choices for
regimes for 61747 < F � 91429 in Figures 1, 2, and 3.

620006400066000680007000072000740007600078000800008200084000860008800090000
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20000

40000
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Stackelberg

Figure 1: Firm A�s Stackelberg and Bertrand payo¤s, 61747 < F � 91429.
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Figure 2: Consumer surplus, Stackelberg and Bertrand regimes,
61747 < F � 91429.
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Figure 3: Net social welfare, Stackelberg and Bertrand regimes,
61747 < F � 91429.

For this range of F , �rm A always earns greater pro�t by acting as a Stackel-
berg leader, and this is the regime that maximizes net social welfare. Consumer
surplus is higher in a Bertrand market with one B �rm than in a Stackelberg
entry-deterrence market with no B �rms for 73473 < F � 91429, and highest
in the Stackelberg market for 61747 < F � 73473.
As shown in Table 7, for the �rst two ranges of �xed cost where the Stackel-

berg leader prices to deter entry, its pro�t-maximizing price regime maximizes
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�A CS NSW
91429 < F � 105337 SL SL SL
73473 < F � 91429 SL B SL
61747 < F � 73473 SL SL SL

Table 7: Maximizing regime, pA, CS, and NSW , 61747 < F � 105337 For
these values of �xed cost, the Stackelberg leader prices to deter entry.

�A CS NSW
23680 < F � 24513 B SL SL
17134 < F � 23680 SL B B

Table 8: Maximizing regime, pA, CS, and NSW , 17134 < F � 24513. For
these values of �xed cost, the Stackelberg leader prices to deter entry.

consumer welfare for one of the three ranges of �xed cost, and maximizes net
social welfare for two of the three ranges of �xed cost.
For the immediately lower range of �xed cost, 24513 < F � 61747, as shown

in Table 6, the leader�s most pro�table pricing regime is never the regime that
maximizes consumer surplus or net social welfare.
There follow two ranges of �xed cost where there is successively 1 or 2 B

�rms in the Bertrand market, 1 B �rm in the Stackelberg market, and in the
Stackelberg market �rm A sets price to deter entry. As reported in Table 8,
the Stackelberg leader�s most pro�table pricing regime is never the regime that
would be preferred by consumers or maximize net social welfare.

5.2.3 Discussion

Our results are for markets where �xed cost is large, relative to market size, and
the equilibrium number of �rms small. In such markets, if price leadership does
not a¤ect the equilibrium number of follower �rms, it is pro�table for �rms but
means higher prices for a given number of varieties, lower consumer surplus,
and lower net social welfare.
Otherwise, entry deterrence by a price leader may increase net social wel-

fare, compared with simultaneous price setting. If so, it may be at the expense
of consumer welfare (row 2, 7). If Stackelberg entry deterrence would improve
consumer surplus and net social welfare, the Stackelberg leader may �nd simul-
taneous pricing most pro�table (row 1, Table 8). If Stackelberg entry deterrence
is most pro�table for the leader, it may reduce consumer surplus and net social
welfare (row 2, Table 8).

6 Horizontal integration

6.1 Analytics

We now contrast simultaneous price-setting (Bertrand) behavior with Stack-
elberg leadership by �rm A, if �rm A produces variety B0 as well as variety
A. There are thus an endogenous number n of independent �rms producing
varieties of product B.
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n CS �A
Bert SL Bert SL Bert SL

3396: 8 < F � 3803: 1 4 532440 30104� F
3803: 1 < F � 5203: 4 3 523170 34682� F
5203: 4 < F � 6140: 2 3 523170 34682� F
6140:2 < F � 8763: 4 2 506270 44133� F
8763: 4 < F � 11617 2 506270 44133� F
11617 < F � 15684 1 464780 71614� F
15684 < F � 30697 1 464780 71614� F

30697 < F 0 62500 500000� F

Table 9: Simultaneous price-setting and Stackelberg leadereship comparisons,
horizontal integration by �rm A (a = 1000, � = 9=10, s = 3=4).

Firm A�s objective function is now

�A = pAqA + pB0qB0 � F: (36)

In equilibrium (i.e., pBi = pB for i = 1; 2; :::; n) the �rst-order conditions to
maximize (36) with respect to pA and pB0 are

2 (1� �) (1 + n�) pA � 2 (1� �) spB0 � (1� �)nspBi =

(1� �) [1� s+ n (� � s)] a (37)

and

�2 (1� �) spA + 2
�
1� s2 + (n� 1)

�
� � s2

��
pB0 �

�
� � s2

�
npB =

(1� �) (1� s) a; (38)

respectively. As expected, with horizontal integration �rm A internalizes cross-
price e¤ects on the quantities demanded of its varieties.
The equilibrium B-�rm best-response equation is

pB =
(1� �) (1� s) a+ (1� �) spA

�
� � s2

�
pB0

2 (1� s2) + (n� 1) (� � s2) : (39)

(37), (38), and (39) are linear in prices, and can be solved for equilibrium
prices, given n. The free-entry remains (25).

6.2 Numerical results

Tables 9 and 10 make some basic comparisons of the simultaneous price-setting
and leadership regimes when �rm A is integrated into production of one of the
B varieties.

This section is in preparation.
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n NSW
Bert SL Bert SL SL�Bert

3396: 8 < F � 3803: 1 4 577750� 5F
3803: 1 < F � 5203: 4 3 576280� 4F
5203: 4 < F � 6140: 2 3 576280� 4F
6140:2 < F � 8763: 4 2 573640� 3F
8763: 4 < F � 11617 2 573640� 3F
11617 < F � 15684 1 567100� 2F
15684 < F � 30697 1 567100� 2F

30697 < F 0 562 500� F

Table 10: Simultaneous price-setting and Stackelberg leadereship comparisons,
horizontal integration by �rm A (a = 1000, � = 9=10, s = 3=4).

7 Bundling

7.1 Analytics

When �rm A is horizontally integrated in the B market, it can o¤er its two
products as a bundle if it is pro�table to do so. Here we assume �rm A bundles
one unit of variety A with one unit of variety B, and contrast outcomes if it acts
or does not act as a Stackelberg price leader in the market for di¤erentiated
bundles.
We let x0 denote the number of bundles sold by �rm A, and xj the quantity

of the pseudo-bundle of �rm Bj, j = 1; 2; :::; n. Firm Bj�s pseudo-bundle contains
zero units of variety and one unit of variety Bj. Thus

qA = qB0 = x0 (40)

and, for j = 1; 2; :::; n,
qBj

= xj : (41)

Inserting these relations in (4) yields the aggregate welfare function if �rm
A bundles:

WB = a

0@2x0 + nX
j=1

xj

1A
�1
2

242 (1 + s)x20 + nX
j=1

x2j + 2 (s+ �)x0

nX
j=1

xj + 2�
nX
j=1

xj

nX
k=j+1

xk

35 : (42)

Maximizing this utility function under appropriate budget constraints and
inverting the inverse demand functions gives direct demand equations for bun-
dles: n

2 [1 + (n� 1)�] (1 + s)� n (s+ �)2
o
x0 =

[2 (1� �) + n (� � s)] a� [1 + (n� 1)�] p0 + (s+ �)
nX
j=1

pj ; (43)

and
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n
2 [1 + (n� 1)�] (1 + s)� n (s+ �)2

o
xj =

2 (1� �) a+ (s+ �) p0 �
1

1� �Xpj +
1

1� �
�
� � s2 + � (1� �)

� nX
i=1
i 6=j

pi; (44)

where
X =

2 [1 + (n� 1)�] (1 + s)� n (s+ �)2 �
��
� � s2

�
+ � (1� �)

�
: (45)

The payo¤ functions of the two types of �rms are

�A = p0x0 � F (46)

and
�BJ

= pjxj � F; (47)

respectively.

7.2 Outcomes

Given the altered demand structure of equations (43) and (44), the equilibrium
outcome can be characterized in the same way as for the base case of Section 5.
The Bertrand outcome is a price-setting equilibrium of a market with di¤eren-
tiated products. In the Stackelberg market, there are ranges of �xed cost where
�rm A can set the Stackelberg leader price without inducing entry. There are
ranges of �xed cost where the number of B �rms is the same in a Bertrand or
Stackelberg market, and in the Stackelberg market �rm A sets price to deter
entry. There are ranges of �xed cost where there is one more B �rm in the
Bertrand than the Stackelberg market, and �rm A sets price to deter entry. For
some values of �xed cost, �rm A earns a greater pro�t setting the Bertrand
equilibrium price in a market with a larger number of B �rms than it would
earn setting the entry-deterring price in a market with one fewer B �rms.

7.3 Numerical results

7.4 Exclusion

Table 11 simply compares the number of B �rms/varieties for a given level of
�xed cost under the two alternative regimes. For the indicated ranges of �xed
cost, Stackelberg leadership is exclusionary in the sense that for some ranges of
�xed cost, the equilibrium number of �rms is less under Stackelberg leadership
than under Bertrand competition (simultaneous price setting).

7.5 Entry deterrence not a factor

Exclusion, or the lack of it, is a topic that appears in the policy literature, and
this may be justi�ed to the extent that there is a one-to-one relation between
number of active �rms and market performance. It is market performance that
is of primary interest.19

19For much of its long existence, U.S. antitrust policy objected to actions that were pro�table
only on the condition that they excluded equally-e¢ cient competitors.
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n
Bertrand Stackelberg Deter?

49785 < F 0 0 No
33820 < F � 49785 0 0 Yes
19452 < F � 33820 1 0 Yes
13999 < F � 19452 1 1 No
11589 < F � 13999 1 1 Yes
7199:6 < F � 11589 2 1 Yes
6226:5 < F � 7199:6 2 2 No
5698 < F � 6226:5 2 2 Yes
4018:4 < F � 5698 3 2 Yes
3674:8 < F � 4018:4 3 3 No
3368 < F � 3674:8 3 3 Yes
2562:2 < F � 3368 4 3 Yes

Table 11: Number of B �rms, Bertrand and Stackelberg regimes, by range of
�xed cost, �rm A bundles. a = 1000, � = 9=10, s = 3=4, n+ 1 = 1; 2; 3; 4; 5. D
indicates �rm A prices to deter further entry.

n �A CS NSW
Bert SL Bert SL Bert SL

49785 < F 0 285174� F 285714� F 142857 142857 428571� F 428 571� F
13999 < F � 19452 1 44336� F 82993� F 456169 425719 568130� 2F 558 501� 2F
6226:5 < F � 7199:6 2 33117� F 45673� F 505000 495470 572890� 3F 569140� 3F
3674:8 < F � 4018:4 3 28223� F 34288� F 523320 518490 574330� 4F 571460� 4F

Table 12: Payo¤s, Bertrand and Stackelberg regimes, by range of �xed cost,
�rm A bundles, entry deterrence not a factor. a = 1000, � = 9=10, s = 3=4,
n = 0; 1; 2; 3.
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nBert nSL SL Deter? �A CS NSW
11589 < F � 13999 1 1 Yes B SL SL
7199:6 < F � 11589 2 1 Yes B SL SL
5698 < F � 6226:5 2 2 Yes B SL SL
4018:4 < F � 5698 3 2 Yes SL B� SL

Table 13: Maximizing regime, pA, CS, and NSW , 4018:4 < F � 5698. *For
4018:4 � F � 4118:4, consumer surplus is greater under Stackelberg price
leadership.

Table 12 shows results that correspond to those of Table 6 for the base case.
For these ranges of �xed cost, Stackelberg leadership is more pro�table for �rm
A than simultaneous price setting, but leaves consumers worse o¤ and reduces
net social welfare.

7.6 Pricing to deter entry

The picture for �rm A, if it bundles, is somewhat di¤erent if entry deterrence is
a factor. When �rm A bundles and the endogenous number of B �rms is small,
it is generally not pro�table for �rm A to act as a Stackelberg leader (Table 13).
Consumers would be better o¤, and net social welfare greatest, if �rm A were
a Stackelberg leader. Except for the lowest ranges of �xed cost we examine,20

however, �rm A�s interests and consumer/social interests are not aligned.

8 Conclusion

Economists and policymakers should both keep in mind, not only that mar-
ket structure is endogenous, but that incumbent �rms are aware that market
structure is endogenous, and set their own strategies accordingly. There are
circumstances in which exclusionary, above marginal-cost leadership prices, be-
cause they are lower prices, improve market performance. We show that this
is not a general result, and in so doing, our work joins a small set21 of pa-
pers highlighting circumstances in which full understanding of the determinants
of market performance requires examination of discrete changes in numbers of
�rms.
Price leadership generally worsens market performance if it does not involve

exclusion. Where the relation between �xed cost and market means a price
leader could exclude rivals, it might prefer not to act as a price leader, although
consumer welfare and net social welfare would be greater if it were to do so.
Where the relation between �xed cost and market means a price leader could
exclude rivals, it might prefer to exclude, although this reduces consumer welfare
and net social welfare.
20That is, for 4018:4 < F � 4018:4 if one takes consumer surplus as a measure of market

performance, 4018:4 < F � 5698 if one looks at net social welfare. In this range of F , there
are 3 B �rms in the Bertrand regimes, 2 in the Stackelberg regime, and �rm A sets price to
deter entry.
21Among which one may include Selten (1973), Lambson (1987), and Martin and Valbonesi

(2008).
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For the speci�cation investigated here, if entry deterrence is not a factor, a
�rm that bundles will �nd it pro�table to act as a price leader, although this
leaves consumers and society as a whole worse o¤. If a bundling �rm can
exclude rivals by acting as a Stackelberg leader, it may not �nd it pro�table to
do so, although leadership would bene�t consumers and society as a whole. It
may �nd it pro�table to act as a price leader, although this leaves consumers
worse o¤.
These results show that there is no general conduct-structure-market per-

formance relationship. Leadership may improve market performance, or it may
not. Bundling may improve market performance, or it may not. Leadership by
a �rm that bundles may improve market performance, or it may not. If �xed
cost is small relative to market size, meaning that the equilibrium number of
�rms is large, di¤erences in market performance under di¤erent �rm structure
and pricing regimes are likely to be small. If �xed cost is large relative to market
size, which is when competition policy issues are most likely to arise, there is
no substitute for an explicit evaluation of the impact of business practice on
market performance.
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10 Appendix

10.1 Direct demand, no bundling

Write the system of inverse demand equations as�
pA
pB

�
= a

�
1

Jn+1

�
�
�

1 sJ 0n+1
sJn+1 Zn+1

��
qA
qB

�
; (48)

where pA and qA are scalars, pB and qB are n + 1-row column vectors of B-
variety prices and quantities,22 respectively, Jn+1 is an n+1-row column vector
of 1s and

Zn+1 = (1� �) In+1 + �Jn+1J 0n+1: (49)

The inverse of Zn+1 is known,

Z�1n+1 =
1

1� �

�
In+1 �

�

1 + n�
Jn+1J

0
n+1

�
; (50)

22There is some abuse of notation here, as we have used pB in the text to denote the scalar
value of the common equilibrium price of the B varieties.
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and by using one of the standard formulae for the inverse of a partitioned matrix,�
A B
B0 C

��1
=

�
D �DBC�1

�C�1B0D C�1 + C�1B0DBC�1

�
; (51)

where
D =

�
A�BC�1B0

��1
; (52)

one obtains the demand equations (5), (6).

10.2 Monopoly

If there are no B �rms and entry would be unpro�table, �rm A�s inverse demand
equation is (35). Monopoly equilibrium characteristics are
Price:

pmA =
1

2
a: (53)

Output:

qmA =
1

2
a: (54)

Pro�t:
�mA =

1

4
a2: (55)

Net social welfare:

W = aqA �
1

2
q2A = a

�
1

2
a

�
� 1
2

�
1

2
a

�2
=
3

8
a2: (56)

Consumer surplus:

CSm =Wm � pAqA =
3

8
a2 � 1

4
a2 =

1

8
a2: (57)

10.3 Base case

10.3.1 Simultaneous price-setting

Firm A�s price best-response equation is (11). Solving (11) and the B-�rm
�rst-order condition (??) gives �rm A�s equilibrium price,

pA =

�
2 (1� �) + n

�
� � s2

��
[1� � + (n+ 1) (� � s)] + (n+ 1) (1� �) s (1� s)

2 (1 + n�) [2 (1� �) + n (� � s2)]� (n+ 1) (1� �) s2 a;

(58)
and the B-�rm equilibrium price, (??).
For numerical evaluation, we solve the �rst-order conditions and the free-

entry condition �B (n+ 1) = 0 for �xed values of n + 1, obtaining the implied
equilibrium prices and requisite value of F . Equilibrium quantities and welfare
expressions follow from equilibrium prices and the value of F .23

23The Maple programs used to obtain numerical results are available on request from the
authors.
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10.4 Stackelberg leadership

If n is treated as a continuous variable, a Lagrangian for �rm A�s constrained
optimization problem is (24). The �rst-order conditions to maximize (24) are
pA:

[1� � + (n+ 1) (� � s)] a� 2 (1 + n�) pA + (n+ 1) spB
1� � + (n+ 1) (� � s2) +�

(1� �) s
2 (1� �) + n (� � s2) � 0:

(59)
pB :

(n+ 1) spA
1� � + (n+ 1) (� � s2) � �� 2�

1

1� �
1� � + n

�
� � s2

�
1� � + (n+ 1) (� � s2)pB � 0 (60)

n:

�pA
s (1� �) [(1� s) a� pB + spA]
[1� � + (n+ 1) (� � s2)]2

+� (1� �)
�
� � s2

�
[(1� s) a+ spA]

[2 (1� �) + n (� � s2)]2
�� 1

1� �

�
� � s2

�2
[1� � + (n+ 1) (� � s2)]2

p2B = 0;

(61)
along with the B-�rm best-response equation and the free-entry condition.
These are the coe¢ cients of � and �, respectively, in (24), set equal to zero.
Clearing fractions, we write these equations as
�: �

2 (1� �) + n
�
� � s2

��
pB � (1� �) [(1� s) a+ spA] = 0 (62)

�:

(1� �)F
�
1� � + (n+ 1)

�
� � s2

��
�
�
1� � + n

�
� � s2

��
p2B = 0 (63)

Numerically solving the �rst-order conditions for parameter values and n
gives threshold values of F at which an additional B �rm could enter and just
break even.
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