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1. Motivation and Introduction

During the past half century, economists have made considerable progress in under-

standing the theoretical structure of strategic behaviour under market mechanisms,

such as auctions, when the number of potential participants is relatively small; see

Krishna (2002) for a comprehensive presentation and evaluation of progress.

One analytic device, commonly used to describe bidder motivation at single-

object auctions, is a continuous random variable which represents individual-specific

heterogeneity in valuations. The conceptual experiment involves each potential bid-

der’s receiving a draw from a distribution of valuations. Conditional on his draw,

a bidder is then assumed to act purposefully, maximizing either the expected profit

or the expected utility of profit from winning the auction. Another frequently-made

assumption is that the valuation draws of bidders are independent and that the bid-

ders are ex ante symmetric—their draws being from the same distribution of valua-

tions. This framework is often referred to as the symmetric independent private-values

paradigm (symmetric IPVP). Under these assumptions, a researcher can then focus

on a representative agent’s decision rule when describing equilibrium behaviour.

At many real-world auctions, the latent valuations of potential bidders are prob-

ably dependent in some way. In auction theory, it has often been assumed that

dependence satisfies affiliation, a term coined by Milgrom and Weber (1982). Affil-

iation is a condition concerning the joint distribution of signals. Often, affiliation is

described using the intuition presented by Milgrom and Weber (1982): “roughly, this

[affiliation] means that a high value of one bidder’s estimate makes high values of

the others’ estimates more likely.” Thus described, affilation seems like a relatively

innocuous condition. In the case of continuous random variables, following the path

started by Karlin (1968), some refer to affiliation as multivariate total positivity of

order two, or MTP2 for short. Essentially, under affiliation, with continuous ran-

dom variables, the off-diagonal elements of the Hessian of the logarithm of the joint

probability density function of signals are all non-negative; i.e., the joint probabil-

ity density function is log-supermodular. Under joint normality of signals, affiliation

requires that all the pair-wise covariances be weakly positive.

How is affiliation related to other forms of dependence? Consider two continuous
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random variables V1 and V2, having joint probability density function fV1,V2
(v1, v2)

as well as conditional probability density functions fV2|V1
(v2|v1) and fV1|V2

(v1|v2) and

conditional cumulative distribution functions FV2|V1
(v2|v1) and FV1|V2

(v1|v2). Intro-

duce g(·) and h(·), functions that are non-decreasing in their arguments. de Castro

(2007) has noted that affiliation implies that

a) [FV2|V1
(v2|v1)/fV2|V1

(v2|v1)] is decreasing in v1 (and v2 in the other case), often

referred to as a decreasing inverse hazard rate,

which implies that

b) Pr(V2 ≤ v2|V1 = v1) is non-increasing in v1 (and v2 in the other case), also

referred to as positive regression dependence,

which implies that

c) Pr(V2 ≤ v2|V1 ≤ v1) is non-increasing in v1 (and v2 in the other case), also

referred to as left-tail decreasing in v1 (v2),

which implies that

d) cov[g(V1, V2), h(V1, V2)] is positive,

which implies that

e) cov[g(V1), h(V2)] is positive,

which implies that

f) cov(V1, V2) is positive.

The important point to note is that affiliation is a much stronger form of dependence

than positive covariance. In addition, de Castro (2007) has demonstrated that within

the set of all signal distributions the set satisfying affiliation is small, both in the

topological sense and in the measure-theoretic sense.

Affiliation delivers several predictions and results: first, under affiliation, the

existence and uniqueness of a monotone pure-strategy equilibrium (MPSE) is guar-

anteed. Also, the three commonly-studied auction formats—English as well as first-

and second-price—can be ranked in terms of the revenues they can be expected to

generate. Specifically, the expected revenues at English auctions are weakly greater
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than those at second-price (Vickrey) auctions which are weakly greater than those at

first-price auctions (either sealed-bid or Dutch).

Investigating equilibrium behaviour at auctions, empirically, when latent valu-

ations are affiliated, has challenged researchers for some time. Laffont and Vuong

(1996) showed that identification is impossible to establish in many models when af-

filiation is present. In fact, Laffont and Vuong demonstrated that any model within

the affiliated-values paradigm (AVP) is observationally equivalent to a model within

the affiliated private-values paradigm (APVP). For this reason, virtually all empir-

ical workers who have considered some form of dependence have worked within the

APVP.

Only a few researchers have dealt explicitly with models within the APVP.

In particular, Li, Perrigne, and Vuong (2000) have demonstrated nonparametric

identification within the conditional IPVP, a special case of the APVP, while Li,

Perrigne, and Vuong (2002) have demonstrated nonparametric identification within

the APVP. One of the problems that Li et al. faced when implementing their approach

is that nonparametric kernel-smoothed estimators are often slow to converge. In

addition, Li et al. do not impose affiliation in their estimation strategy, so the first-

order condition used in their indirect estimation strategy need not constitute an

equilibrium. Li, Paarsch, and Hubbard (2007) have sought to address some of these

technical problems using semiparametric methods which sacrifice the full generality

of the nonparametric approach in lieu of additional structure.

To date, except for Brendstrup and Paarsch (2007), no one has attempted to ex-

amine, empirically, models in which the private values are potentially dependent, but

not necessarily affiliated. Incidentally, using data from sequential English auctions of

two different objects, Brendstrup and Paarsch found weak evidence against affiliation

in the valuation draws of two objects for the same bidder.

de Castro (2007) has noted that, within the private-values paradigm, affiliation

is unnecessary to guarantee the existence and uniqueness of a MPSE. In fact, he has

demonstrated existence and uniqueness of a MPSE under a weaker form of depen-

dence, one where the inverse hazard rate is decreasing in the conditioned argument.

Because affiliation is unnecessary to guarantee existence and uniqueness of bid-
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ding strategies in models of first-price auctions with private values, expected revenue

predictions based on empirical models in which affiliation is imposed are potentially

biased. Knowing whether valuations are affiliated is central to ranking auction for-

mats in terms of the expected revenues generated. In the absence of affiliation, the

expected-revenue rankings delivered by the linkage principle of Milgrom and Weber

(1982) need not hold: the expected-revenue rankings across auctions formats remain

an empirical question. Thus, investigating the empirical validity of affiliation appears

both an important and a useful exercise.

In next section of this paper, we present a brief description of affiliation and its

soldier—total positivity of order two (TP2). Subsequently, following the theoretical

work of de Castro (2007,2008), in section 3 we construct a tractable empirical model

of equilibrium behaviour at first-price auctions when the private valuations of bidders

are potentially dependent, but not necessarily affiliated. In section 4, we develop a test

of affiliation, while in section 5 we apply our methods in an empirical investigation

of low-price, sealed-bid, procurement-contract auctions held by the Department of

Transportation in the State of Michigan. We summarize and conclude in section 6,

the final section of the paper.

2. Affiliation and TP2

As mentioned above, affiliation is often described using an example with two random

variables that can take on either a low or an high value. The two random variables

are affiliated if high (low) values of each are more likely to occur than high and low

or low and high values. A commonly-used graph of the four possible outcomes in a

two-person auction game with two values is depicted in figure 2.1. The (1, 1) and

(2, 2) points are more likely than the (2, 1) or (1, 2) points. Letting pij denote the

probability of (i, j), affiliation in this example then reduces to TP2—viz.,

p11p22 ≥ p12p21.

Put another way, TP2 means that the determinant of the matrix

P =

(
p11 p12

p21 p22

)
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must be weakly positive. Independence in valuations obviously satisfies the lower

bound on this determinental inequality. Note, too, that affiliation restricts distribu-

tions to a part of the simplex depicted in figure 2.2. In that figure, it is the region on

the simplex that appears to be a semi-circle rising from the line where p11+p22 equals

one. In order to draw this figure, we needed to impose symmetry, so p12 and p21 are

equal; thus, the intercept for p12 is one half. Conditions that are weaker than affili-

ation, but that also guarantee existence and uniqueness of equilibrium, are depicted

in figure 2.2, too. In fact, in this simple example, the entire simplex satisfies these

weaker conditions. In richer examples, however, it is a subset of the simplex, but one

that contains the set of affiliated distributions. Thus, the assumption of affiliation

could be important in determining the revenues a seller can expect from a particular

auction format.

Another important point to note is that affiliation is a global restriction. To see

the importance of this fact, introduce the valuation 3 for each player; five additional

points then appear, as is depicted in figure 2.3. Affiliation requires that the proba-

bilities at all collections of four points satisfy TP2; i.e., the following additional six

inequalities must hold:
p12p23 ≥ p13p22

p22p33 ≥ p23p32

p21p32 ≥ p22p31

p11p33 ≥ p13p31

p12p33 ≥ p13p32

p21p33 ≥ p23p31.

Of course, symmetry would imply that pij equal pji for all i and j, so the joint

mass function for two players and three valuations under symmetric affiliation can be

written as the following matrix:

P =





p11 p12 p13

p21 p22 p23

p31 p32 p33



 =





a d e
d b f
e f c





where the determinants of all (2 × 2) submatrices must be positive. Note, too, that
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Figure 2.1

Affiliation with Two Players and Two Values for Signals
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Figure 2.3

Affiliation with Two Players and Three Values for Signals
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all the points must also live on the simplex, so

0 ≤ a, b, c, d, e, f < 1 and a+ b+ c+ 2d+ 2e+ 2f = 1.

How many inequalities are relevant? Let us represent the above matrix in the

following tableau:

1 2 3
1 a d e
2 d b f

3 e f c

where the row and column numbers will be used later to define TP2 inequalities.

There are
(3
2

)
×
(3
2

)
or nine possible combinations of four cells—i.e., nine inequalities.

However, by symmetry, three are simply duplicates of others. The following tableau

represents all of the inequalities:
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(1,2) (1,3) (2,3)

(1,2) ab ≥ d af ≥ de df ≥ be

(1,3) af ≥ de ac ≥ e2 dc ≥ ef

(2,3) df ≥ be dc ≥ ef bc ≥ f

where (i, j)×(ℓ,m) means form a matrix with elements from rows i and j and columns

ℓ and m of the first tableau. Observe that when the three inequalities highlighted in

bold are satisfied, all others will be also satisfied. In fact, the inequality (1, 3)×(1, 2) :

af ≥ de derives from (1, 2) × (1, 2) : ab ≥ d and (2, 3) × (1, 2) : df ≥ be. Finally,

inequality (2, 3)×(1, 3) : dc ≥ ef derives from the other two, previously established—

viz., (2, 3) × (1, 2) : df ≥ be and (2, 3) × (2, 3) : bc ≥ f2. All other inequalities can

be obtained from the adjacent ones in this fashion, and we relegate to an appendix

of the paper the necessary tedious calculations for other cases.

Adding values to the type spaces of players expands the number of determinental

restrictions required to satisfy TP2, thus restricting the space of distributions that can

be entertained. Likewise, adding players to the game, particularly if the players are

assumed symmetric, also restricts the space of distributions that can be entertained.

For example, suppose a third player is added, one who is symmetric to the previous

two. The probability mass function for triplets of values (v1, v2, v3), where vn = 1, 2, 3

and n = 1, 2, 3, can be represented as an array whose slices can then be represented

by the following three matrices for players 1 and 2, indexed by the values of player 3:

P1 =





a d e
d b f
e f c



 , P2 =





d b f
b h g
f g i



 , and P3 =





e f c
f g i
c i j



 .

In general, if the number of players is N and the number of values is k, then,

without symmetry or affiliation, probability arrays have (kN − 1) unique elements.

Also, de Castro (2008) has shown that symmetry reduces this to
(
k+N−1

k−1

)
elements,

while affiliation restricts where these
(
k+N−1

k−1

)
probabilities can live on the simplex

via the determinental inequalities required by TP2. For it well-known that a function

is MTP2 (affiliated), if and only if, it is TP2 in all relevant collections of four points.
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As an aside, in this three-by-three example, only nine constraints are relevant—viz.,

ab ≥ d2, bc ≥ f2, df ≥ be,

dh ≥ b2, hi ≥ g2, bg ≥ fh,

eg ≥ f2, gj ≥ i2, f i ≥ cg.

If these hold, then the remainder are satisfied, too. Knowing the maximum number

of binding constraints is relevant later in the paper when we discuss our test statistic.

The proof of this claim is contained in an appendix to the paper.

3. Theoretical Model

We develop our theoretical model within the private-values paradigm, assuming away

any interdependencies. We consider a set N of bidders {1, 2, . . . , N}. Now, bidder

n is assumed to draw Vn, his private valuation of the object for sale, from the

closed interval [v, v]. We note that, without loss of generality, one can reparametrize

the valuations from [v, v] to [0, 1]. Below, we do this. We collect the valuations

in the vector v which equals (v1, . . . , vN ) and denote this vector without the nth

element by v−n. Here, we have used the now-standard convention that upper-case

letters denote random variables, while lower-case ones denote their corresponding

realizations. Now, V lives in [0, 1]N . We assume that the values are distributed

according to the probability density function fV : [0, 1]N → R+ which is symmetric;

i.e., for the permutation ϕ : {1, . . . , N} → {1, . . . , N} , we have fV (v1, . . . , vN ) equals

fV (vϕ(1), . . . , vϕ(N)). Letting fn(vn) denote the marginal probability density function

of Vn, we note that it equals
∫ 1
0 · · ·

∫ 1
0 fV (v−n, vn) dv−n. (Below, we constrain

ourselves to the case where fn(·) is the same for all n, but this is unnecessary and done

only because, when we come to apply the method, we have not enough information

to estimate the case with varying fns.) Our main interest is the case when fV is not

the product of its marginals—the case where the types are dependent. We denote the

conditional density of V−n given vn by

fV−n|Vn
(v−n|vn) =

fV (v−n, vn)

fn(vn)
.
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Finally, we denote the largest order statistic of V−n given vn by Zn and its probability

density and cumulative distribution functions by f(zn|vn) and F (zn|vn), respectively.

We assume that bidders are risk neutral and abstract from a reserve price. Given

his value vn, bidder n tenders a bid sn ∈ R+. If his tender is the highest, then bidder

n wins the object and pays what he bid. A pure strategy is a function σ : [0, 1] → R+

which specifies the bid σ (vn) for each value vn. The interim pay-off of bidder n, who

bid sn when his opponents follow σ : [0, 1] → R+, is

Π(vn, sn, σ) = (vn − sn)

∫ σ−1(sn)

v

f(zn|vn) dzn = (vn − sn)F [σ−1(sn)|vn].

We focus on symmetric, increasing pure-strategy equilibria (PSE) which are defined

by σ : [0, 1] → R+ such that

Π[vn, σ(vn),σ−n] ≥ Π(vn, s,σ−n) ∀ s, vn. (3.1)

As mentioned above, in most theoretical models of auctions that admit depen-

dence in valuation draws, researchers have assumed that fV satisfies affiliation. Af-

filiation can be formally defined as follows: for all v and v′, the random variables V

are said to be affiliated if

fV (v ∨ v′)fV (v ∧ v′) ≥ fV (v)fV (v′)

where

(v ∨ v′) = [max(v1, v
′
1),max(v2, v

′
2), . . . ,max(vN , v

′
N )]

denotes the component-wise maxima of v and v′, sometimes referred to as the join,

while

(v ∧ v′) = [min(v1, v
′
1),min(v2, v

′
2), . . . ,min(vN , v

′
N )]

denotes the component-wise minima, sometimes referred to as the meet. We do not

restrict ourselves to fV s that satisfy affiliation. We assume only that fV belongs to

a set of distributions P which guarantees the existence and uniqueness of a MPSE.

This set P is partially characterized in de Castro (2008).

Let C denote the set of continuous density functions fV : [0, 1]N → R+ and let

A denote the set of affiliated probability functions. For convenience and consistency
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with the notation used in later sections, we include in A the set of all affiliated

probability functions, not just the continuous ones. Endow C with the topology of

the uniform convergence—i.e., the topology defined by the norm of the supremum

‖fV ‖ = sup
v∈[0,1]N

|fV (v)| .

Let D be the set of probability functions fV : [0, 1]N → R+ and assume there is a

measure µ over it.

We now introduce a transformation T
k : D → D which is the workhorse of our

method. To define T
k, let I : [0, 1] → {1, 2, . . . , k} denote the function that associates

to v ∈ [0, 1] the ceiling ⌈kv⌉—viz., the smallest integer at least as large as kv. Thus,

for each v ∈ [0, 1], we have v ∈
(

I(v)−1
k , I(v)

k

]

. Similarly, let S(v) denote the “square”

(hypercube)
∏N

n=1

(
I(vn)−1

k , I(vn)
k

]

where v collects (v1, v2, . . . , vN ) ∈ [0, 1]N . From

this, we define T
k : D → D as the transformation that associates to each fV ∈ D the

probability density function T
k(fV ) given by:

T
k(fV )(v) = kN

∫

S(v)
fV (u) du.

Observe that T
k(fV ) is constant over each square

∏N
n=1

(
mn−1

k , mn
k

]
, for all com-

binations of mn ∈ {1, . . . , k}. The term kN above derives from the fact that each

square
∏N

n=1

(
mn−1

k , mn
k

]
has volume (1/kN ). Note that for all probability density

functions fV ∈ D, T
1(fV )(v) equals one for all v ∈ [0, 1]N ; i.e., T

1(fV ) is the uniform

distribution on [0, 1]N .

We now need to introduce a compact notation to represent arrays of dimension
N times

︷ ︸︸ ︷

k × k × · · · × k. We denote by MkN

the set of arrays and by [P] an array in that

set. When there are but two players, an array is obviously just a matrix, while

in our application N is three. The (i1, i2, . . . , iN )th element of an array is denoted

[P](i1, i2, . . . , iN ), or [P](i) for short, where i denotes the vector (i1, i2, . . . , iN ). Now,

I(v) = i if v ∈
(

i−1
k , i

k

]
. Thus, for k ∈ N, we define the finite-dimensional subspace

Dk ⊂ D as

Dk =
{

fV ∈ D : ∃ [P] ∈ MkN

, fV (v) = [P][I(v1), . . . , I(vN )]
}

.
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Observe that Dk is a finite-dimensional set. In fact, when N is two, a probability

density function fV ∈ Dk can be described by a (k × k) matrix P as follows:

fV (v1, v2) = [P](i, j) if (v1, v2) ∈
(
i− 1

k
,
i

k

]

×
(
j − 1

k
,
j

k

]

(3.2)

for i, j ∈ {1, 2, . . . , k}. The definition of fV at the zero measure set of points

{(v1, v2) = ( i
k ,

j
k ) : i = 0 or j = 0} is arbitrary.

Note, too, that the width of the cells can be allowed to vary. For example,

one might be 0.4 wide, while the next one can be 0.2 wide, and the last can be 0.4

wide. In fact, the transformation can be defined in terms of rectangles, instead of

squares as above. To illustrate this, consider again the symmetric case and introduce

figure 3.1. Let 0 = r0 < r1 < r2 < . . . < rk−1 < rk = 1 be an arbitrary

partitioning of the interval [0, 1]. Now, define I : [0, 1] → {1, 2, . . . , k} by I(v) = j

if and only if v ∈ (rj−1, rj ]. Define B(v) as the rectangle (box) where v collects

(v1, . . . , vN ) ∈ [0, 1]N lies. Thus, B(v) ≡∏N
n=1(rI(vn)−1, rI(vn)]. Then, define

T
k
B

(f0
V )(v) =

∫

B(v) f
0
V (u) du

∫

B(v) du
.

The following theorem was proven by de Castro (2007):

Theorem 1. Let f0
V be a symmetric and continuous probability density function.

Then, f0
V is affiliated if and only if for all k, T

k
B

(f0
V ) is also affiliated.

In our notation,

f0
V ∈ A ⇔ T

k
B

(f0
V ) ∈ A, ∀ k ∈ N

or

A = ∩k∈NT
−k

B

(

A ∩Dk
)

.

Why is this important? Well, in many applications, the set of hypercubes defined by

a large k will have many empty cells, which causes problems in both estimation and

inference. Thus, one may want to subdivide the space of valuations irregularly, but

symmetrically, as illustrated in figure 3.1 when N is two.

One can also subdivide the space of valuations asymmetrically and irregularly as

illustrated in figure 3.2. In this case, we impose a fine grid from which we then build
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Figure 3.1
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rectangles for the areas in which we are interested. To accomplish this, fix a grid of

rectangles B. We say that a generalized grid G is generated by B if the element G(v)

where v lies is formed by the union of rectangles B(v′) adjacent to B(v) or adjacent

to rectangles adjacent to B(v), and so on. We define

T
k
G

(f0
V )(v) =

∫

G(v) f
0
V (u) du

∫

G(v) du
.

Thus, with some modifications, we can still test affiliation using T
k
G

(f0
V ). The

following corollary states what should be tested:

Corollary 1. Let f0
V be a symmetric, continuous, and affiliated probability

density function. Let G be an area generated by B. If G(u) = B(u), for u = v,

v′, v ∧ v′, and v ∨ v′, then T
k
G

(f0
V ) satisfies the affiliated inequality

T
k
G

(f0
V )(v ∨ v′)Tk

G
(f0

V )(v ∧ v′) ≥ T
k
G

(f0
V )(v)Tk

G
(f0

V )(v′).

Proof: This is an immediate implication of Theorem 1. In fact, since f0
V is affiliated,

T
k
B

(f0
V ) is also affiliated, and G(u) = B(u) implies T

k
G

(f0
V )(u) = T

k
B

(f0
V )(u) for

u = v, v′, v ∧ v′, and v ∨ v′.

At this point, it is useful to note that Corollary 1 does not state the converse

implication, as Theorem 1 does. However, the stated direction is what we need in

order to construct a test that can reject affiliation. Indeed, if the true distribution

is affiliated, then all inequalities obtained of the form specified in Corollary 1 must

be satisfied. If we are able to conclude that some of these inequalities do not hold,

then this would imply that the true distribution is not affiliated. Also, note that

the implications in the Corollary 1 are necessary, but not sufficient for affiliation. In

other words, the Corollary provides weaker conditions than Theorem 1. Why then

is this corollary helpful? Because it allows us to test in regions where estimation is

precise—where we have more observed data.

The results presented here also hold when the interval [0, 1] is partitioned with

different sets of numbers 0 < rn,1 < rn,2 < . . . < rn,k−1 < 1, for each direction

n = 1, . . . , N . In this case, however, the grid distribution T
k(f0

V ) will not be
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symmetric when rn,j 6= rn′,j for n 6= n′. Also, as noted previously, symmetry of

the regions is unimportant to a test of affiliation: only if symmetry is important in

the application need the areas be chosen to generate symmetric grid density functions.

4. Test of Affiliation

The key result from de Castro (2007) that allows us to develop our test of symmet-

ric affiliation is the following: if the true probability density function f0
V exhibits

affiliation, then T
k
B

(f0
V ), a discretized version of it, will too. To the extent that the

grid distribution T
k
B

(f0
V ) can be consistently estimated from sample data, one can

then test whether the estimated grid distribution exhibits affiliation. Of course, sam-

pling error will exist, but presumably one can evaluate its relative importance using

first-order asymptotic methods.

Consider a sequence of T auctions indexed t = 1, . . . , T at which N bidders

participated by submitting the NT bids {{snt}N
n=1}T

t=1. At this point, at least two

different strategies can be pursued, the first a conventional approach following along

the path of Guerre, Perrigne, and Vuong (2000) as well as Li et al. (2000,2002), and

another which we have pursued. We describe our approach first and then, later in

this section, we relate our approach to an implementation of Guerre et al. (2000).

Under our approach, we note that affiliation is preserved under a monotonic

transformation, so examining a discretization of g0
S(s), the true probability density

function of bids under the hypothesis of expected-profit maximizing equilibrium

behaviour, is the same as examining f0
V (v). Of course, neither f0

V nor g0
S is known.

One can, however, construct an estimate of T
k
B

(g0
S) on the interval [0, 1]N by first

transforming the observed bids according to

unt =
snt − s

s̄− s
n = 1, . . . , N and t = 1, . . . , T

where s is the smallest observed bid and s̄ is the largest observed bid, and then by

breaking up this hypercube into L(= kN ) cells and counting the number of times

that a particular N -tuple falls in that cell.1 Now, the random vector Y , which

1 We know that the support of g0

S is strictly positive at s̄0, the true upper bound of support
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represents the number of outcomes that fall in each of the cells and equals the vector

(Y1, Y2, . . . , YL)⊤, follows a multinomial distribution having the joint probability mass

function

gY (y|π) =
T !

y1! · · · yL!

L∏

ℓ=1

πyℓ

ℓ

where πℓ equals Pr(Yℓ = yℓ), with yℓ = 0, 1, . . . , T , while π collects (π1, . . . , πL) and

lives on the simplex—viz., the set

SL = {π|π ≥ 0L, ι⊤Lπ = 1}

with ιL being an (L × 1) vector of ones. Note, too, that ι⊤y equals T , the number

of observations.

For ℓ = 1, . . . , L, the unconstrained maximum-likelihood estimates of the πℓs

are the (yℓ/T )s. To test for affiliation, maximimize the following logarithm of the

likelihood function (minus a constant):

L(π) = y⊤ log(π)

subject to

1) the vector π lies in the simplex SL and

2) all of the determinental inequalities required for TP2 hold.

Then compare this value of L with the unconstrained one.

While the determinental constraints required for TP2 are convex sets of the

parameters when the sub-matrices are symmetric, they are not for general sub-

matrices. However, by taking logarithms of both sides of any general determinental

inequality

ab ≥ cd,

of bids, and we assume that f0

V is strictly positive at v, so g0

S is strictly positive at s0, the
true lower bound of support of bids. Consequently, the sample estimators of the lower and
upper bounds of support of S converge at rate T , which is faster than the rate of convergence
of sample averages—rate

√
T . Hence, when using sample averages in our estimation, we can

ignore this first-stage, pre-estimation error—at least under first-order asymptotic analysis.
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one can convert this into a linear inequality, which does give rise to convex constraint

sets, albeit in variables that are logarithms of the original variables. To wit,

log a+ log b− log c− log d ≥ 0

defines a convex set. Of course, the adding-up constraint for the simplex must be

finessed—e.g., by considering the following:

exp(log a) + exp(log b) + exp(log c) + exp(log d) + . . . ≤ 1,

which gives rise to a convex set. Thus, the problem is almost a linear programme.

One needs also to worry about the “logarithm variables” zipping off to minus infinity,

which can occur if any of the weights in the objective function (the elements of y)

equal zero. To finesse this numerically, one needs to restrict the logarithm variables

to be in the set, say [−20, 0], but this is not without complications for the statistical

specification.

Obviously, the sampling theory associated with the difference in these two values

of the objective function L is not straightforward because not all of the inequality

constraints required by MTP2 may hold and, from sample to sample, the ones that

do hold can change, but we shall provide one strategy to deal with this later.

For known N and fixed k, the specific steps involved in implementing the test in

this problem are the following. First, form the grid distribution of the joint density as

the unknown array [P]. Letting [E] denote the array of counts for the grid distribution,

the logarithm of the likelihood function for this multinomial process is

∑

i

[E](i){log[P](i)}. (4.1)

Now, the following inequalities be met:

−20 ≤ log{[P](i)} ≤ 0 and
∑

i

exp (log{[P](i)}) ≤ 1, (4.2)

while symmetry requires the following linear restrictions:

[P](i) = [P][ϕ(i)] (4.3)
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where ϕ(·) is any permutation, and affiliation requires the following determinental

inequalities:

log

{
[P](i ∧ i′)[P](i ∨ i′)

[P](i)[P](i′)

}

≥ 0 (4.4)

hold. A test of affiliation, within a symmetric environment, involves comparing the

maximum of equation (4.1), subject to the constraints in (4.2) and (4.3), with the

maximum of equation (4.1), subject to the constraints in (4.2), (4.3), and (4.4).

Consider now adapting the research of Guerre et al. (2000), which was within

the symmetric IPVP, to the APVP, as was done by Li et al. (2000,2002). Guerre et

al. focused on the first-order condition for an equilibrium which, in our notation with

affiliation, can be written as

v = s+
F [σ−1(s)|σ−1(s)]σ′[σ−1(s)]

f [σ−1(s)|σ−1(s)]
(4.5)

Following Guerre et al., Li et al. noted that the term

F [σ−1(s)|σ−1(s)]σ′[σ−1(s)]

f [σ−1(s)|σ−1(s)]

can be consistently estimated using observed bids. In particular, letting G(w|s)
denote the conditional cumulative distribution function ofW , the largest of the (N−1)

opponents’ bids given a bid S, and g(w|s) its corresponding conditional probability

density function, then we know that

G(w|s) = F [σ−1(w)|σ−1(s)]

and

g(w|s) =
f [σ−1(w)|σ−1(s)]

σ′[σ−1(w)]
,

so
G(w|s)
g(w|s) =

F [σ−1(w)|σ−1(s)]σ′[σ−1(w)]

f [σ−1(w)|σ−1(s)]
.

Li et al. adapted the estimator of Guerre et al. to admit affiliation. Substituting their

estimators Ĝ(w|s) and ĝ(w|s) into equation (4.5), Li et al. then created the pseudo

values according to

v̂nt = snt +
Ĝ(snt|snt)

ĝ(snt|snt)
n = 1, . . . , N ; t = 1, . . . , T. (4.6)
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Unfortunately, the kernel-smoothed estimators that Li et al. employed do not neces-

sarily respect the inherent structure that affiliation would bestow on both Ĝ(·|·) and

ĝ(·|·), at least in small samples. Thus, the kernel-smoothed estimators that Li et al.

used to estimate fV (·) from the estimated pseudo-values {{v̂nt}N
n=1}T

t=1 defined by

equation (4.6) need not inherit affiliation.

One can now take the nonparameteric estimate of f0
V and then discretize it

on the interval [0, 1]N , and then apply the steps described above. Of course, as

mentioned before, the pre-estimation error in the pseudo-values {{v̂nt}N
n=1}T

t=1 could

be a problem. By working directly with the bids, our approach avoids this pre-

estimation error. Of course, the kernel-smoothing approach deals effectively with the

fact that, in small samples, any given cell [E] may be empty, which cause numerical

problems. In our application, we illustrate one way to deal with the problem that

occurs when equi-spaced cells are empty.

4.1. Sampling Distribution of Test Statistic

To get some notion concerning the potential effect that sampling variation can have

on our proposed test, consider first the example from figure 2.2. In this figure, there

are three parameters (p11, p22, p12) which we shall refer to as a b and c, respectively.

Now, a + b + 2c equals one, so the c implied by the simplex is [(1 − a− b)/2]. Also,

under TP2,

ab ≥ (1 − a− b)2

4
.

Focus on the equation

4ab = 1 − 2a− 2b+ 2ab+ a2 + b2.

In this simple example, the “centre” of the simplex for (a, b), the probability subvector

(0.25, 0.25), is one possible distribution within the symmetric IPVP. Note that this

point is at the maximum of the arc in figure 2.2. The point (0.3̇, 0.3̇), on the other

hand, lives in the affiliated set, while the point (0.2, 0.2) lives outside the affiliated

set.

Consider the maximum-likelihood estimator (â, b̂) in this multinomial model

where ĉ is derived from the simplex. For large enough T , we can invoke a central
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Table 4.1

Probability d̂ ∈ A Given d

T (0.2, 0.2) (0.25, 0.25) (0.3̇, 0.3̇)

1 0.308 0.357 0.442
10 0.229 0.447 0.799
25 0.141 0.466 0.934

100 0.020 0.485 0.999
225 0.002 0.491 1.000

limit theorem, so
√
T

(
â− a0

b̂− b0

)

d→ N
[
02,Σ(a0, b0)

]

where

Σ(a0, b0) =

(
a0(1 − a0) −a0b0

−a0b0 b0(1 − b0)

)

.

Here, as above, the superscript “0” on a and b denote the true values. Collect (a, b)

as d. Because

d̂
d→ N

[

d0,
1

T
Σ(d0)

]

,

its joint probability density function is approximately

h(d̂|d0) =
1

2π
∣
∣ 1
T Σ(d0)

∣
∣
exp

[

−T (d̂ − d0)⊤Σ(d0)−1(d̂ − d0)

2

]

.

What fraction of the d̂s lives in the set of affiliated distributions A? To calculate

this, integrate h(d̂|d0) for all affiliated distributions; i.e., find

∫

d̂∈A
h(d̂|d0) dd̂. (4.7)

In table 4.1, we present estimates of expression (4.7) for various sample sizes

when d0 is (0.2, 0.2), (0.25, 0.25), and (0.3̇, 0.3̇). Obviously, sampling error can result

in mis-classification, particularly within the symmetric IPVP. On the other hand, a

non-affiliated distribution, such as (0.2, 0.2), is rejected often, while an affiliated one,

such as (0.3̇, 0.3̇), is rarely rejected, even when the sample size is relatively small.

Our test of symmetric affiliation is based on the difference between the maximum

of the logarithm of the likelihood function L(P̂) minus the maximum of the logarithm
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of the likelihood function under symmetric affiliation L(P̃). Experience gleaned from

other models with a related structure—e.g., Wolak (1987;1989a,b;1991) as well as

Bartolucci and Forcina (2000) who investigated MTP2 in binary models—suggests

that the statistic

2[L(P̂) − L(P̃)] (4.8)

is not distributed according to a standard χ2 random variable.

Introducing vec[P] as a short-hand notation, for the L-vector created from the

array [P], our constrained-optimization problem can be summarized in a notation

similar to that of Wolak (1989b) as:

max
vec[P]

y⊤ log(vec[P]) subject to h(vec[P]) ≥ 0J

where h : R
L → R

J is the function representing all J relevant constraints where

J ≤ L and L is the total number of variables under the alternative hypothesis. (Here,

for notational parsimony, we have ignored the adding-up condition, which is implicit.)

Consider Nδ(vec[P0]), a neighbourhood of the true value vec[P0]. Denote by

H(vec[P0]) the matrix of partial derivatives whose (i, j)-element is ∂hi(vec[P])
∂vec[P]j

. Define

the set B = {vec[P] : H(vec[P0])vec[P] ≥ 0, vec[P] ∈ R
L}. Denote by I(vec[P0])

Fisher’s information matrix which is defined by

lim
T→∞

T−1E[P0]

[

− ∂2L(vec[P])

∂vec[P]∂vec[P]⊤

]

evaluated at vec[P0]. Finally, denote by

Π0 = H(vec[P0])I(vec[P0])−1H(vec[P0])⊤

the variance-covariance matrix of h(vec[P̂]) and by ω(j, J − j,Π0), the probability

that j constraints bind, that (J − j) constraints are strictly satisfied; i.e., they are

non-binding. We have the following:

Theorem 2. Consider the local hypothesis testing problem

H0 : h(vec[P]) ≥ 0J vec[P] ∈ Nδ(vec[P0])

H1 : not H0.
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The asymptotic distribution of the likelihood-ratio statistic satisfies the following

property:

sup
b∈B

Pr[P0],I(vec[P0])−1(D ≥ c) = Pr[P0](D ≥ c) =
J∑

j=0

Pr(Wj ≥ c)ω(j, J − j,Π0).

where D is the asymptotic value of the test statistic, while Wj is an independent

χ2 random variable having j degrees of freedom.

Proof: It is sufficient to verify that the assumptions of Theorem 4.2 in Wolak (1989b)

are satisfied; we do this in an appendix.

Because this statistic depends on the unknown population grid distribution [P0],

the statistic is not pivotal. Kodde and Palm (1986) have provided lower and upper

bounds for this test statistic for tests of various sizes and different numbers of maximal

constraints, but these bounds are typically quite far apart, particularly when the

maximal number of contraints that can bind is quite large, as would be the case in

any application to data from field auctions.

According to Wolak (1989b), the best way to evaluate the weights is using Monte

Carlo simulation. Wolak also offered lower and upper bounds for the probabilities

above (see his equations 19 and 20, p.215); these bounds are based on Kodde and

Palm (1986). An alternative strategy would be to adapt the bootstrap methods of

Bugni (2008) to get the appropriate p-values of the test statistic. Yet a third strategy

would be to adapt the subsampling methods described in Politis, Romano, and Wolf

(1999) as was done by Romano and Shaikh (2008).

4.2. Sensitivity of Test to Choice of k

The power of the proposed test clearly depends on the choice of k. Were k chosen to

be one (i.e., a uniform distribution on the N -dimensional hypercube), then affiliation

would never be rejected. On the other hand, given a finite sample of T observations, a

large k will result in many cells having no elements. While the choice of k is obviously

important and certainly warrants additional theoretical investigation along the lines

of research in time-series analysis by Guay, Guerre, and Lazarova (2008) concerning
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optimal adaptive detection of correlation functions, it is beyond the scope of this

paper. In fact, in most applications to auctions, where samples are often quite small,

k will be dictated by practical considerations—viz., the relative size of T .

4.3. Monte Carlo Experiment

Below, we describe a small-scale Monte Carlo experiment used to investigate the

small-sample properties of our testing strategy. Our simulation study involved sam-

ples of size T equal 100 and 250 with N of three bidders; each sample was then

replicated 1, 000 times. In all of the experiments, the building blocks were triplets of

independently- and identically-distributed uniform random variables on the interval

[0, 1]. We considered the following four types of experiments:

SI) (U1, U2, U3) are independent uniform random variables;

SA) (U1, U2, U3) are symmetric and affiliated random variables according to the

Frank copula with parameter α;

AA) (U1, U2, U3) are asymmetrically-affiliated random variables according to two

Frank copulas with parameters α and γ;

AN) (U1, U2, U3) are negatively correlated random variables having the following

correlation matrix:

Σ =





1.0 −0.1 −0.2
−0.1 1.0 −0.3
−0.2 −0.3 1.0



 = FF⊤

where

F =





1.0000 0.0000 0.0000
−0.1000 0.9950 0.0000
−0.2000 −0.3216 0.9255



 .

Above, SI denotes symmetric independence, SA denotes symmetric affiliation, AA

denotes asymmetric affiliation, and AN denotes asymmetric non-affiliation.

While Nelsen (1999) has provided a detailed introduction to the theory of copulas,

we repeat here some basic facts that important in understanding our experiments. In

what follows, for expositional reasons, for the most part, we restrict our discussion to

23



bivariate copulas, but the results generalize to the case of N variables easily. Given

two variables, U1 and U2, a bivariate copula C(u1, u2) is a continuous function having

the following properties:

1. Domain(C) = [0, 1]2;

2. C(u1, 0) = 0 = C(0, u2);

3. C(u1, 1) = u1 and C(1, u2) = u2;

4. C is a twice-increasing function, so

C(u1
1, u

1
2) − C(u0

1, u
1
2) − C(u1

1, u
0
2) + C(u0

1, u
0
2) ≥ 0

for any u0
1, u

0
2, u

1
1, u

1
2 ∈ [0, 1]2, such that u0

1 ≤ u1
1 and u0

2 ≤ u1
2.

Because U1 and U2 are both defined on the unit interval, they can be viewed as

uniform random variables with C(u1, u2) being their joint distribution function. Al-

ternatively, U1 and U2 can be viewed as the cumulative distribution functions of two

random variables V1 and V2 which are collected in the vector V . In this case, their

marginal distribution functions F1(v1) and F2(v2) are linked to their joint distribution

FV (v1, v2) by

FV (v1, v2) = C[F1(v1), F2(v2)].

One attractive feature of copulas is that the marginal cumulative distribution

functions do not depend on the choice of the dependence function for the two random

variables in question. When one is interested in the association between random

variables, copulas are a useful device because the dependence structure is easily

separated from the marginal cumulative distribution functions.

From Sklar’s Theorem, we know that a unique function C, the copula, exists

such that

FV (v1, v2) = C[F1(v1), F2(v2)].

Under symmetry,

FV (v1, v2) = C[FV (v1), FV (v2)]

because the two marginal cumulative distribution functions are identical. Also, one

can nest copulas. For example, consider two appropriately-defined bivariate copulas
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C1 and C2, then the joint cumulative distribution function of (V1, V2, V3) can be

represented

FV (v1, v2, v3) = C2

(
C1[FV (v1), FV (v2)], FV (v3)

)
.

When V1 and V2 are independent, the copula C(·) is trivial as

FV (v1, v2) = F1(v1) × F2(v2).

Different families of copulas exist. For example, perhaps the best known family is

the Gaussian family in which the dependence is completely determined by the linear

correlation coefficient ρ. Thus, the cumulative distribution function of a standard

normal bivariate distribution with linear correlation coefficient ρ is

Cρ(u1, u2) = Φ12,ρ[Φ
−1(u1),Φ

−1(u2)],

while the joint probability density function is

cρ(u1, u2) =
φ12,ρ[Φ

−1(u1),Φ
−1(u2)]

φ[Φ−1(u1)]φ[Φ−1(u2)]

where

Φ(v) =

∫ v

−∞
φ(z) dz =

1√
2π

∫ v

−∞
exp(−z2/2) dz

and

φ12,ρ(v1, v2) =
∂2Φ12,ρ(v1, v2)

∂v1∂v2

=
1

2π
√

1 − ρ2
exp

[

− 1

2(1 − ρ2)
(v2

1 + v2
2 − 2ρv1v2)

]

.

Affiliation within this bivariate normal family of distributions requires that ρ be non-

negative; within multivariate normal distributions affiliation requires that all of the

off-diagonal parameters of the variance-covariance matrix be non-negative.

A commonly-used family of copulas is the Archimedean family, which is uniquely

characterized by its generator function ζ(·) where

Cζ(u1, u2, . . . , uN ) = ζ−1[ζ(u1) + ζ(u2) + . . .+ ζ(uN )]. (4.9)
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Here, ζ(·) is a convex, decreasing function. Note, too, that ζ(1) must equal zero and

ζ−1(u) must be zero for any u exceeding ζ(0). These conditions are both necessary

and sufficient for Cζ to be a distribution function.

A commonly-used member of the Archimedean family of copulas is the Frank

copula, which has the following generator function:

ζ(u) = − log

[
exp(−αu) − 1

exp(−α) − 1

]

, (4.10)

and inverse-generator function

ζ−1(τ) = − 1

α
log (1 + exp(τ)[exp(−α) − 1]) . (4.11)

What interpretation can be given to the dependence parameter α? In the

bivariate case, the larger is a positive value of α, the greater the concordance, positive

dependence. On the other hand, a very negative value of α indicates negative

dependence. Independence obtains when α approaches zero. Note, however, that,

when N exceeds two, α is restricted to be positive because a negative α would mean

a non-monotonic inverse-generator function of the Frank copula; see example 4.22 in

Nelsen (1999, p. 123). The Frank copula has the following N -variate form:

Cζ(u1, . . . , uN ) = − 1

α
log

(

1 +

∏N
i=1[exp(−αui) − 1]

[exp(−α) − 1]N−1

)

α > 0. (4.12)

Müller and Scarsini (2005) have characterized various notions of positive depen-

dence, such as MTP2, for Archimedean copulas. They have also presented a general

condition that the generator of an arbitrary Archimedean copula must satisfy in order

to guarantee that MTP2 holds (cf. Theorem 2.11 in their paper). Genest (1987) has

shown that the relevant condition for the Frank copula coincides with the condition

that guarantees a monotonic inverse-generator function when N exceeds two; viz., α

must be positive. Genest’s (1987) condition requires that the Frank copula satisfy

TP2 as he was only concerned with the bivariate Frank copula. As mentioned above,

however, it is well-known that a function is MTP2 if and only if it is TP2 in all pairs.

To simulate data from a Frank copula with affiliation, we followed the approach

described by Cherubini, Luciano, and Vecchiato (2004). Theirs involves conditional
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sampling where, initially, w1, a U(0, 1) random draw is taken, and then u1 is set

equal to it. The next (dependent) draw is taken from C2(w2|u1), and u3 is drawn

from C3(w3|u1, u2) where all the wis are independent U(0, 1) draws. We implemented

conditional sampling using the parameterization of the Frank copula given in equation

(4.12) in conjunction with the generator function defined in equation (4.10) and

the inverse-generator function defined in equation (4.11). Specifically, to generate

symmetrically-affiliated draws (u1, u2, u3) from the trivariate Frank copula, we did

the following:

1. simulate the independent random variables (w1, w2, w3) from U(0, 1);

2. set u1 equal to w1;

3. use w2 and u1 to calculate

u2 = − 1

α

(

1 +
w2[1 − exp(−α)]

w2[exp(−αu1) − 1] − exp(−αu1)

)

; (4.13)

4. use w3 as well as u1 and u2 to define the following polynomial equation of order

two in the variable [exp(−αu3) − 1]:

w3 = D−1
2 [exp(−αu3) − 1][exp(−α) − 1]×

([exp(−α) − 1] + [exp(−αu1) − 1][exp(−αu2) − 1])2
(4.14)

where

D2 =
(
[exp(−α) − 1]2 + [exp(−αu1) − 1][exp(−αu2) − 1][exp(−αu3) − 1]

)2

which is then solved for u3.

The above algorithm yields three symmetrically-affiliated random draws from the

trivariate Frank copula for one simulation draw; this procedure was repeated either

100 or 250 times for each of 1, 000 replications.

In figure 4.1, we present a plot of all the points, when N is three and T is

250, for one replication generated under independence, weak affiliation. (Remember:

an α of zero is the independent case.) Note that the scatterplot looks uniform. In
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Figure 4.1

Simulated Data Under Independence, α = 0
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Figure 4.2

Simulated Data from Frank Copula, α = 2
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figure 4.2, we present a plot of all the points, when N is three and T is 250, for one

replication generated when α is 2, which means only modest affiliation. Our test

appears able to distinguish relatively well between weak and modest affiliation, and

to detect non-affiliation extremely well.

We next describe the algorithm used to implement conditional sampling using

the parameterization of two Frank copulas. Specifically, to generate asymmetrically-

affilated draws (u1, u2, u3), we did the following:

1. simulate the independent random variables (w1, w2, w3) from U(0, 1);

2. set u1 equal to w1;

3. use w2 and u1 to calculate

u2 = − 1

α

(

1 +
w2[1 − exp(−α)]

w2[exp(−αu1) − 1] − exp(−αu1)

)

;

4. form u∗ which equals C(u1, u2;α);

5. use w3 and u∗ to calculate

u3 = − 1

γ

(

1 +
w3[1 − exp(−γ)]

w3[exp(−γu∗) − 1] − exp(−γu∗)

)

.

The above algorithm yields three asymetrically-affiliated random draws; this proce-

dure was also repeated either 100 or 250 times for each of 1, 000 replications.

In figures 4.3 and 4.4 are presented the frequency distributions of the LR test

statistics for SI, SA, AA, and NA when k is three and T is either 100 or 250. The

test has relatively high power in the case NA, non-affilation. As expected, there

are fewer rejections with SA, symmetric affiliation, than under SI, weak affiliation

(independence). What is more surprising is that the test rejects less frequently under

AA, asymmetric affilation, than under SA, suggesting that it has low power in this

direction.

For k of three and T of 100 with symmetric independence, one can calculate

the weights {ω(j, J − j,Π0)}J
j=0 in Theorem 2. In figure 4.2, we present the exact
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Figure 4.3

SI, SA, AA, NA: k = , T = 
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Figure 4.4

SI, SA, AA, NA: k = , T = 
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Figure 4.5

Asymptotic and Kernel-Smoothed Density of Test Statistic:

SI, k = , T = 
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probability density function of the asymptotic approximation as well as the kernel-

smooth estimate using the Monte Carlo data. The approximation appears quite close

to the actual process, suggesting that the first-order asymptotics are working quite

well.

5. Empirical Application

To demonstrate the feasibility of our testing strategy, we have chosen to implement it

using data from low-price, sealed-bid, procurement auctions held by the Department

of Transportation (DOT) in the State of Michigan. At these auctions, qualified firms

are invited to bid on jobs that involve resurfacing roads in Michigan. We have chosen

this type of auction because the task at hand is quite well-understood. In addition,

there are reasons to believe that firm-specific characteristics make the private-cost

paradigm a reasonable assumption; e.g., the reservation wages of owners/managers,

who typically are paid the residual, can vary considerably across firms. On the other
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hand, other features suggest that the cost signals of individual bidders could be

dependent, perhaps even affiliated; e.g., these firms hire other factor services in the

same market and, thus, face the same costs for inputs such as energy as well as

paving inputs. For example, suppose paving at auction t has the following Leontief

production function for bidder n:

qnt = min

(
hnt

δh
,
ynt

δy
,
znt

δz

)

where h denotes the managerial labour, while y and z denote other factor inputs

which are priced competitively at Wt and Xt, respectively, at auction t. Assume that

Rn, bidder n’s marginal value of time, is an independent, private-cost draw from a

common distribution. In addition, assume that the other factor prices Wt and Xt are

draws from another joint distribution. The marginal cost per mile Cnt at auction t

can be then written as:

Cnt = δnRn + δyWt + δzXt,

which is a special case of an affiliated private-cost (APC) model, known as a con-

ditional private-cost model. The costs in this model are affiliated only when the

distribution of (δyWt + δzXt) is log-concave, which is discussed extensively in de Cas-

tro (2008). Li et al. (2000) have studied this model, extensively. In short, the affiliated

private-cost paradigm (APCP) seems a reasonable null hypothesis.

We have eschewed investigating issues relating to asymmetries across bidders

because introducing Fns that vary across bidders is computationally quite arduous

and yields little pedagogically. Also, we do not have the data necessary to implement

such a specification. Because no reserve price exists at these auctions, we treat the

number of participants as if it were the number of potential bidders and focus on

auctions at which three bidders participated. Thus, we are ignoring the potential

importance of participation costs which others, including Li (2005), have investigated

elsewhere.

The data for this part of the paper were provided by the Michigan DOT and were

organized and used by Li, Paarsch, and Hubbard (2007); a complete description of

these data is provided in that paper. In table 5.1, we present the summary descriptive

statistics concerning our sample of 834 observations—278 auctions that involved three
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Table 5.1

Sample Descriptive Statistics—Dollars/Mile

N = ; T = 

Variable Mean St. Dev. Median Minimum Maximum

Engineer’s Estimate 475,544.54 491,006.52 307,331.26 54,574.41 3,694,272.59
Winning Bid 466,468.63 507,025.81 286,102.57 41,760.32 3,882,524.81

All Tendered Bids 507,332.42 564,842.58 317,814.77 41,760.32 5,693,872.81

bidders each. We chose auctions with just three bidders not only to illustrate the

general nature of the method (if we can do three, then we can do N), but also to

reduce the data requirements. When we subdivide the unit hypercube into kN cells,

the average number of bids in a cell is proportional to (kN/T ). When N is very large,

the sample size must be on the order of kN in order to expect at least one observation

in each cell. This example also illustrates the potential limitations of our approach;

viz., even in relatively large samples, some of the cells will not be populated, so k

will need to be kept small. However, one can circumvent this problem by varying

the width of the subdivisions as we do below. Of course, one must then adjust the

conditions which define the determinental inequalities. We describe this below, too.

Our bid variable is the price per mile. Notice that both the winning bids as

well as all tendered bids vary considerably, from a low of $41,760.32 per mile to a

high of $5,693,872.81 per mile. What explains this variation? Well, presumbably

heterogeneity in the tasks that need to be performed. One way to control for this

heterogeneity would be to retrieve each and every contract and then to construct

covariates from those contracts. Unfortunately, the State of Michigan cannot provide

us with this information, at least not any time soon.

How can we deal with this heterogeneity? Well, in our case, we have an engineer’s

estimate p of the price per mile to complete the project.2 We assume that Cnt, the

cost to bidder n at auction t, can be factored as follows:

Cnt = λ0(pt)εnt (5.1)

2 Of course, besides p, it is possible that other covariates, which are common knowledge to all
the bidders, exist. Unfortunately, we do not have access to any additional information. Were
such information available, then we would condition on it as well.
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Figure 5.1

Scatterplot and Nonparametric, LS, and LAD Regressions
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Figure 5.2

Scatterplot of Transformed Fitted LS Residuals
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where λ0 is a known function. One example of this is

Cnt = ptεnt.

Another is

Cnt = δ0p
δ1
t εnt.

Under (5.1), the equilibrium bid Bnt at auction t for bidder n takes the following

form:

Bnt = λ0(pt)β(εnt),

so
Bnt

λ0(pt)
= β(εnt).

Of course, we do not know λ0, but we can estimate λ0 either parametrically, un-

der an appropriate assumption, or nonparametrically, using the following empirical

specification:

logBnt = ψ(pt) + Unt

where ψ(pt) denotes − log[λ0(pt)] and Unt denotes log[β(εnt)].

Empirical results from this exercise are presented in figure 5.1. In this figure are

presented results for the nonparametric regression (NP), the least-squares regression

(LS), the least-absolute-deviations (LAD) regression. To get some notion of the

relative fit, note that the R2 for the LS regression is around 0.97. The LS estimates of

the constant and slope coefficients are −0.3114 and 1.0268, respectively, while LAD

estimates of the constant and slope coefficients are −0.3221 and 1.0276, respectively.

Subsequently, we took the normalized fitted residuals, which (for the LS case) are

depicted in figure 5.2, and applied the methods described in section 4 above for a k of

two. Our test results are as follows: the maximum of the logarithm of the likelihood

function (minus a constant) without symmetry was −442.50, while the maximum of

the logarithm of the likelihood function under symmetry was −444.88, and under

symmetric affiliation it was also −444.88—a total difference of 2.38.3 At size 0.05,

3 The results for the LAD residuals were identical: the probability array obtained by discretizing
the LAD residuals was exactly the same as in the LS case because none of the fitted residuals
was classified differently. This is not, perhaps, surprising given the similar fits of the two
empirical specifications.
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twice the above difference is above the lower bound provided by Kodde and Palm

(1986), but below the upper bound, so the test is inconclusive.

Because a k of two is unusually small, we introduced a symmetric, but non-equi-

spaced, grid distribution like the one depicted in figure 3.1; see figures 5.3, 5.5, and

5.7 for the definitions of the elements of the probability array. As before,

ab ≥ d2, bc ≥ f2, df ≥ be,

dh ≥ b2, hi ≥ g2, bg ≥ fh,

eg ≥ f2, gj ≥ i2, f i ≥ cg.

Now, however, the adding-up inequality must be re-written, in this case as

8a+ 2b+ 8c+ 8d+ 16e+ 8f+

4d+ h+ 4i+ 4b+ 16f + 8g+

8e+ 2g + 8j + 8f + 16c+ 8i ≤ 1.

We depict the conditional scatterplots for each slice of the probability array in figures

5.4, 5.6, and 5.8. In these scatterplots, the symbol ◦ denotes (û1t, û2t|û3t ∈ (rj−1, rj ]),

while the symbol △ denotes (û1t, û3t|û2t ∈ (rj−1, rj ]), and the symbol ▽ denotes

(û2t, û3t|û1t ∈ (rj−1, rj ]).

Again, we applied our methods. Our test results are as follows: the maximum

of the logarithm of the likelihood function (minus a constant) under symmetry was

−715.72, while the maximum under symmetric affiliation was −716.49—a difference

of 0.77.4 At size 0.05, twice the above difference is below the lower bound provided

by Kodde and Palm, so we do not reject the hypothesis of symmetric affiliation. To

put these results into some context, the centre of the simplex had a logarithm of the

likelihood function of −916.24; using the marginal distribution of low, medium, and

high costs (0.4233, 0.4808, 0.0959) and imposing independence yielded a logarithm of

the likelihood function of −784.67.

4 The results for the LAD residuals were virtually identical: the probability array obtained by
discretizing the LAD residuals was almost the same as in the LS case.
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Figure 5.3

Symmetric, Non-Equi-Spaced Grid Distribution:

Ui versus Uj , given Ul ∈ (0.0,0.4]
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Figure 5.4

Scatterplot of Fitted LS Residuals:

Ui versus Uj , given Ul ∈ (0.0,0.4]
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6. Summary and Conclusions

We have constructed a tractable empirical model of equilibrium behaviour at first-

price auctions when bidders’ private valuations are dependent, but not necessarily

affiliated. Subsequently, we developed a test of affiliation and then investigated its

small-sample properties. We applied our framework to data from low-price, sealed-

bid auctions used by the Michigan DOT to procure road-resurfacing: we do not reject

the hypothesis of affiliation in cost signals.
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Figure 5.5

Symmetric, Non-Equi-Spaced Grid Distribution:

Ui versus Uj , given Ul ∈ (0.4,0.6]
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Figure 5.6

Scatterplot of Fitted LS Residuals:

Ui versus Uj , given Ul ∈ (0.4,0.6]
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A. Appendix

In this appendix, we present the calculations necessary to determine the maximum number
of binding constraints required to satisfy MTP2 as well as the proof of Theorem 2.

A.1. Maximum Number of Binding Constraints

When N is two, for k of four, let us represent the matrix in the following tableau:

1 2 3 4
1 a e h j

2 e b f i

3 h f c g

4 j i g d

Again, under the convention of section 2, the inequalities can be collected in the following
tableau:

(1,2) (1,3) (2,3) (2,4) (3,4) (1,4)

(1,2) ab ≥ e af ≥ eh eg ≥ bh ei ≥ bj hi ≥ fj ai ≥ ej

(1,3) af ≥ eh ac ≥ h2 ec ≥ fh eg ≥ fj gh ≥ cj ag ≥ hj

(2,3) ef ≥ bh ec ≥ fh bc ≥ f bg ≥ fi fg ≥ ci eg ≥ hi

(2,4) ei ≥ bj eg ≥ fj bg ≥ fi bd ≥ i2 df ≥ gi ed ≥ ij

(3,4) hi ≥ fj hg ≥ cj fg ≥ ci df ≥ gi cd ≥ g hd ≥ gj

(1,4) ai ≥ ej ag ≥ hj eg ≥ hi ed ≥ ij hd ≥ gj ad ≥ j2

In general, to obtain non-bold elements from bold ones, assume the inequalities in the bold
cells and do the following: if a cell is between two cells with previously obtained inequalities
(either diagonally or horizontally or vertically), then its inequality is obtained from these
two cells.5 In this fashion, we complete the tableau, with the exception of row (1, 4). Row
(1, 4) is obtained by combining rows (1, 2) and (2, 4).

Consider now the case of N equal three when k is two. A symmetric density can be
represented as

1 1 2
1 a c

2 c b

2 1 2
1 c b

2 b d

The inequalities are ab ≥ c2 and cd ≥ b2 in each of the tableaux indexed by the bold
numbers 1 and 2, which denote the value of player 3, plus ad ≥ bc for the three-dimensional

5 By diagonally, we mean the case that the cell is to the right and above cells already obtained.
For example, (1, 3) × (1, 3) derives from (1, 3) × (1, 2) and (2, 3) × (1, 3).
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Figure 5.7

Symmetric, Non-Equi-Spaced Grid Distribution:

Ui versus Uj , given Ul ∈ (0.6,1.0]
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Figure 5.8

Scatterplot of Fitted LS Residuals:

Ui versus Uj , given Ul ∈ (0.6,1.0]
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(3D) combinations. However, it is sufficient to impose just ab ≥ c2 and cd ≥ b2 because the
others follow from these two.

For the cases below, it is also useful to consider the asymmetric case when N is three
and k is two, so

1 1 2
1 a c

2 d b

2 1 2
1 e g

2 h f

Note that the cube has six faces, and the inequalities for the faces are:

ab ≥ cd, ef ≥ gh, ah ≥ de, ag ≥ ce, cf ≥ bg, and df ≥ bh.

We call these the two-dimensional (2D) inequalities because they correspond to faces of the
cube. In addition to these, however, one need also consider the following 3D inequalities:

af ≥ ch, af ≥ dg, and af ≥ be.

Now consider the case of N equal three and k equal three. A total of
(
3+3−1
3−1

)
or ten

different variables exist as depicted in the following three tableaux:

1 1 2 3
1 a d e

2 d b f

3 e f c

2 1 2 3
1 d b f

2 b h g

3 f g i

3 1 2 3
1 e f c

2 f g i

3 c i j

Because of symmetry, the 2D inequalities (for just one level of the the third variable) can
be represented in the following three tableaux:

1 (1,2) (1,3) (2,3)

(1,2) ab ≥ d af ≥ de df ≥ be
(1,3) af ≥ de ac ≥ e2 cd ≥ ef
(2,3) df ≥ be dc ≥ ef bc ≥ f
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2 (1,2) (1,3) (2,3)

(1,2) dh ≥ b dg ≥ bf bg ≥ bg
(1,3) dg ≥ bf di ≥ f2 bi ≥ fg
(2,3) bg ≥ fh bi ≥ fg hi ≥ g

3 (1,2) (1,3) (2,3)

(1,2) eg ≥ f ei ≥ cf fi ≥ cg
(1,3) ei ≥ cf ej ≥ c2 fj ≥ ci
(2,3) fi ≥ cg fj ≥ ci gj ≥ i

While not difficult, it is indeed tedious to verify that the above nine inequalities in bold are
independent. The 3D inequalities, which correspond to combining two levels of the third
variable, result in the following three tableaux:

1,2 (1,2) (1,3) (2,3)

(1,2) ah ≥ bd

(1,3) ag ≥ be, ag ≥ fd ai ≥ ef , ai ≥ dc

(2,3) dg ≥ he, dg ≥ bf di ≥ ge, di ≥ f2, di ≥ bc bi ≥ fg, bi ≥ hc

2,3 (1,2) (1,3) (2,3)

(1,2) gd ≥ bf , gd ≥ eh

(1,3) di ≥ f2, di ≥ bc, di ≥ eg dj ≥ cf , dj ≥ ei

(2,3) bi ≥ ch, bi ≥ fg bj ≥ if , bj ≥ cg hj ≥ ig

1,3 (1,2) (1,3) (2,3)

(1,2) ag ≥ df , ag ≥ be

(1,3) ai ≥ ef , ai ≥ cd aj ≥ ce

(2,3) di ≥ f2, di ≥ eg, di ≥ bc dj ≥ cf , dj ≥ ie bj ≥ if , bj ≥ cg

It is also easy (but tedious) to verify that all 3D inequalities follow from the 2D inequalities.
Note that, in principle, all cells in the above tableaux should have three inequalities, but
symmetry reduces this to two or, in some cases, just one.

A.2. Proof of Theorem 2

We need to verify that our framework satisfies the regularity conditions of Theorem 4.2
in Wolak (1989b). First, h ∈ R

L → R
J is linear for all but one condition, which is the

adding-up condition—viz., that the integral is one or the array defines a density. This is
true because the affiliation inequalities are log-linear and h takes the logarithms as inputs.
Thus, h is well-behaved and satisfies the regularity conditions stated in section 2 of Wolak
(1989b). It remains to verify the assumptions on pp.31–33 of Wolak (1989b).

The following assumptions involve only continuity and are trivially satisfied within our
framework:

Assumption 1. For all T , T−1L(P) is a continuous function of P.6

6 Note that Wolak (1989b) denotes the sample size T by n and the parameters P by β.
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Assumption 3. The partial derivatives ∂L(vec[P])
∂vec[P] exist and are continuous with

probability one.

Assumption 4. The second partial derivatives ∂2L(vec[P])
∂vec[P]∂vec[P]⊤

exist and are continuous

with probability one.

Now, we consider the other assumptions.

Assumption 2. T−1L(P) converges almost surely to a function L∞(P,P0) which is
EP0 [L(P)] for all P. The function LT (P,P0

T ) is then E
P

0

T

[log gY (P)] has a unique

maximum at P0
T . In addition, as T → ∞, the function LT (P,P0

T ) converges to
L∞(P,P0), which has a unique local maximum at P equal P0.

Convergence derives from the strong law of large numbers. Uniqueness of the maximum
derives from the fact that LT (P,P0

T ) is less than LT (P0
T ,P0

T ) for P 6= P0
T , and L∞(P,P0)

is less than L∞(P0,P0) for P 6= P0, which holds because there exist realizations y such
that L(y, π) 6= L(y, π0) for π 6= π0; see, for example, the comments following assumption
6A in Silvey (1959), p.391.

The following two assumptions are consequences of the definition of

I(vec[P]; vec[P0]) = lim
T→∞

E[P0]

[

− ∂2L(vec[P])

∂vec[P]∂vec[P]⊤

]

.

In section 4, we denoted I(vec[P]; vec[P0]) by I(vec[P0]) as a short-hand; here, we explicitly
distinguish between P and P0.

Assumption 5. The matrix

− 1

T

∂2L(vec[P])

∂vec[P]∂vec[P]⊤

converges almost surely and uniformly for all vec[P] to the matrix

I(vec[P]; vec[P0]).

Assumption 6. The matrix I(vec[P]; vec[P0]) is positive definite.

The asymptotic normality of the estimator (assumption 7 below) is verified by a standard
application of an appropriate central limit theorem.

Assumption 7. The vector

1

T

∂L(vec[P0])

∂vec[P]
, vec[P0] ∈ NδT

(vec[P0])

where δT equals O(T−1/2) is asymptotically normal with the mean zero vector and
covariance matrix I(vec[P0]).
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As Wolak (1989b) states, the above conditions can be directly verified by observing that
assumptions 1–12 of Silvey (1959) are satisfied.

We shall not repeat here Wolak’s assumption 8—the Abadie constraint qualification
condition—because it requires the introduction of much additional notation. Essentially,
this assumption requires that the cone of tangents of the set h(vec[P]) ≥ 0J be the same as

the intersection of directions d such that ∂hi(vec[P]
∂P

d ≥ 0 (if i is such that hi(vec[P]) ≥ 0)

and ∂hi(vec[P])
∂vec[P] d = 0 (if i is such that hi(vec[P]) = 0), where the derivatives are taken at

P̂, the estimated P. There is only one equality constraint, which is also the only one that
is non-linear (it is the condition that the integral is one). The directions in the cone for
this constraint is the same as the direction given by the above condition. Since the other
conditions are linear, then the equivalence of the directions is immediate. Thus, we conclude
verifying the conditions.
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