
Chasing other viral causes of respiratory illness

"The science of influenza surveillance and control"
The 16th Public Health Summer School, 14 Feb 2012

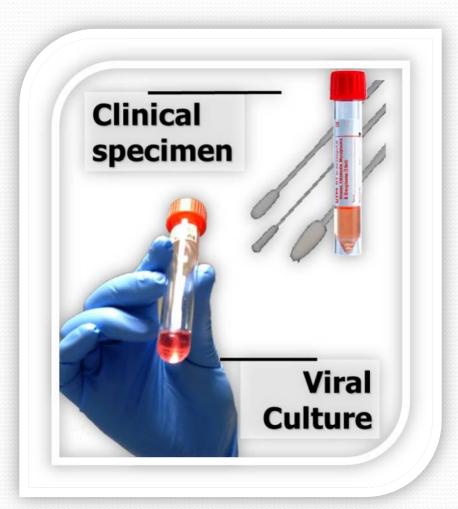
Dr Richard Hall

Institute of Environmental Science & Research (ESR)
National Centre for Biosecurity & Infectious Disease (NCBID), Wallaceville, New Zealand.

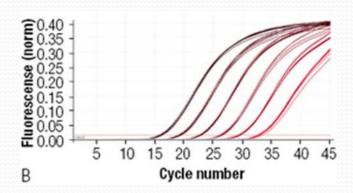
Lecture plan

- Viruses that cause influenza-like illness
- Methods for detection
- Hidden viruses
- Emergence of new viruses
- Co-infection

'Common Cold'


- Adenovirus (serotype B and C)
- Human Enterovirus (HEV)
- Human Rhinovirus (HRV)
- Coronavirus
- Respiratory Syncytial Virus (RSV)
- Human metapneumovirus (hMPV)
- Human parainfluenza virus (HPIV)
- Human bocavirus
- Influenza C

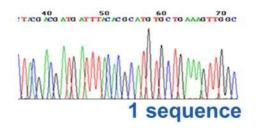
Diagnostics for 'common cold'


Viral culture

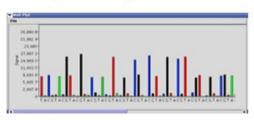
Serology

Detection of viral genome

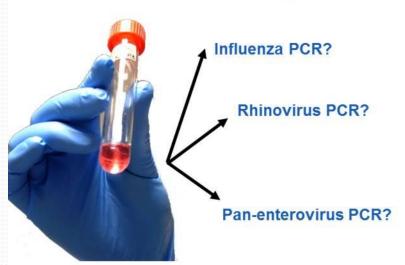
- Molecular diagnostics
 - Real-time Polymerase Chain Reaction (PCR)
- Nucleic Acid Amplification Tests
 - Rapid (TAT 24 hours)
 - Specific (exact sequence match)
 - Sensitive (detection of 1 virus)

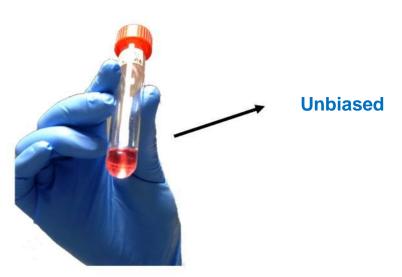

New Molecular Methods

- 'Multiplex' = detection of multiple agents in single test
- Published real-time PCR (single/multiple)
- FilmArray Respiratory Panel (Idaho Tech.)
- xTAG Respiratory Virus Panel (Luminex)

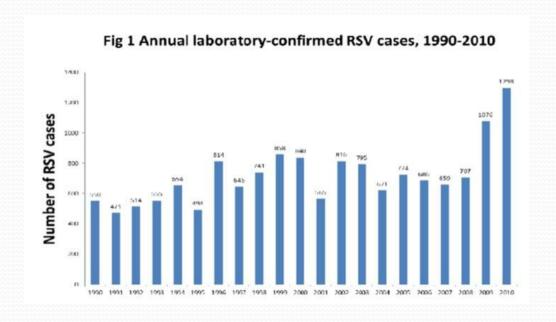


Next-generation Sequencing


Sanger Sequencing



Next-generation Sequencing


Millions of Sequences

Surveillance

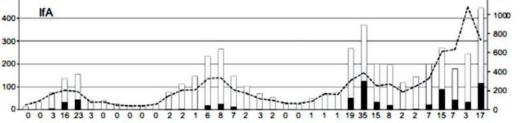
- In New Zealand, ESR Virology Reports
 - http://www.surv.esr.cri.nz/virology/virology.php
- Enterovirus, Adenovirus, RSV

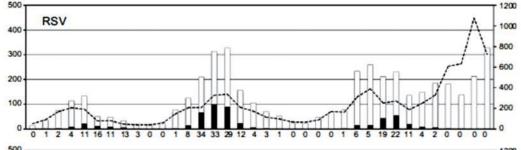
1200

Seasonal variations of respiratory agents

Surveillance

Scandinavian Journal of Infectious Diseases, 2012; 44: 9-17


informa healthcare


ORIGINAL ARTICLE

Seasonal variations of 15 respiratory agents illustrated by the application of a multiplex polymerase chain reaction assay

ROBIN BRITTAIN-LONG 1,2 , LARS-MAGNUS ANDERSSON 1,3 , SIGVARD OLOFSSON 5 , MAGNUS LINDH 3 & JOHAN WESTIN 3

From the ¹Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden, ²Acute Medical Assessment Unit, Aberdeen Royal Infirmary, Aberdeen, Scotland, and ³Department of Clinical Virology, Sahlgrenska University Hospital, Gothenburg, Sweden

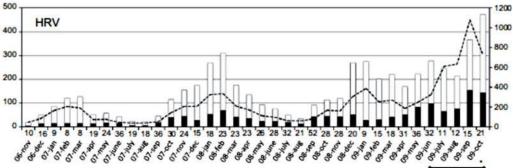
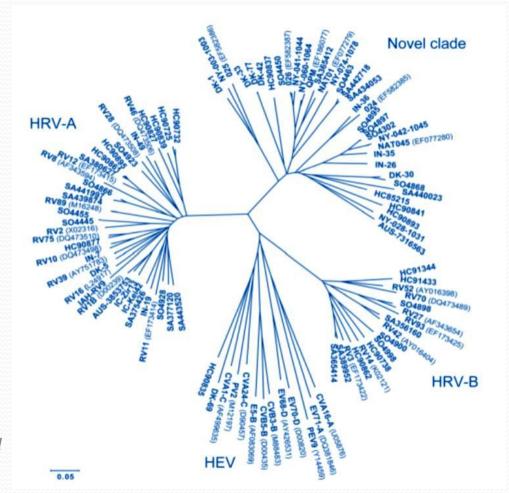


Figure 4. Multiplex real-time PCR each month from November 2006 through October 2009 (n = 7853). Number of samples positive for influenza A (IfA), respiratory syncytial virus (RSV), and human rhinovirus (HRV) depicted in black columns; number of total positive

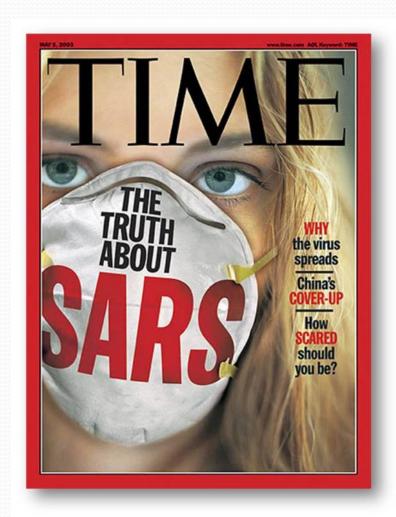

We thought we knew it all...

- Rhinoviruses
 - Cause 50% of 'common cold'
 - Can exacerbate asthma or COPD
 - Grow at lower temperature (32°C)
 - Closely related to enteroviruses
 - Difficult to inactivate

Hidden ILI virus

- 250 year old virus that causes 33% of 'common colds' only discovered in 2006.
- Human Rhinovirus C

Briese et al. (2008) Global distribution of a novel rhinovirus genotype. EID 14 (6), p944.


Coronaviruses

- Cause 10 30% of all 'common colds'
- Human coronavirus strains 229E, NL63, HKU1, OC43
- Usually mild URTI

 Associated with otitis media, pneumonia and exacerbation of asthma

Emergent ILI

- Severe-acute respiratory syndrome associated coronavirus (SARS)
- Biphasic illness.
 - Myalgia, cough, dyspnoea, fever with diarrhea and other gastrointestinal symptoms.
 - Respiratory distress syndrome (ventilation and intensive care).
- Emerged late in 2002
- 10.9% mortality rate

Emergent ILI

- Adenovirus 14p1
- First isolated during ARD outbreak in military camp in Netherlands in 1955
- Absent for 50 years
- Emerged in 2006
- LacklandAir Force Base, TX

Co-infection

Journal of Infection (2011) 63, 260-266

www.elsevierhealth.com/journals/jinf

Rate and influence of respiratory virus co-infection on pandemic (H1N1) influenza disease*

Frank P. Esper a,b,*, Timothy Spahlinger c, Lan Zhou a,c

Table 1 Presence of respiratory viruses in H1N1 and non H1N1 positive respiratory samples.

Virus	H1N1 Positive $(N = 229)$	H1N1 Negative $(N = 267)$	
	# (%)	# (%)	
RhinoVirus	19 (8.3%)	35 (13.1%)	
Coronavirusesa	5 (2.2%)	3 (1.1%)	
Adenovirus	2 (0.9%)	6 (2.2%)	
HPIV1	1 (0.4%)	16 (5.9%)	
HPIV2 ^a	2 (0.9%)	1 (0.4%)	
HPIV3	0 (0.0%)	1 (0.4%)	
WU Polyoma	1 (0.4%)	0 (0.0%)	
RSV	1 (0.4%)	13 (4.9%)	
HBoV1	0 (0.0%)	2 (0.7%)	
Total ^a	30 (13.1%)	77 (28.8%)	

a 1 Patient coinfected with HPIV2 and coronavirus.

Table 3 Breakdown of clinical severity score attributes between mono and coinfected H1N1 patients.

·	Vent	Admit	Admit ≥ 5d	O2 ≤ 87%	O2 Given
H1N1 Monoinfected (N = 199)	8.5%	69.8%	28.1%	9.0%	31.0%
H1N1 with co-infection ($N = 30$)	23.3%*	60.0%	26.7%	20.0%	33.3%
Non-rhinovirus co-infections ($N = 11$)	45.5% *	72.7%	27.3%	36.4% *	54.5%
Rhinovirus $(N = 19)$	10.5%	52.6%	26.3%	10.5%	21.1%

^{*}P < 0.05 compared to H1N1 monoinfection.

The 16th Public Health SUMMERSCHOOL 7 - 24 February 2012

WELLINGTON