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* Positive anthropogenic GHG emission trends
demand burning of carbon-based fuels to be
phased out as rapidly as possible.

 The now solidified, but still warm magma body
that lies beneath the extinct Dunedin Volcano
provides anomalously high ground heat flow.

e Successful utilization of this geothermal
resource would provide long-term economic and
environmental benefits locally, nationally and

globally.
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Shallow geothermal

Deep geothermal

Open loop GSHP Vertical GSHP fieli
4-50 m 40-250 m

Horizontal GSHP Vertical GSHP
1-2m 40-250 m

District heating
0.3-2 km

Conventional
hydrothermal
power production
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Low enthalpy sites for district heating

d ~80-150°C
(J Used for district heat.

U Reykjavik, Iceland benefits
from geothermal district
heating schemes with a
total capacity exceeding

J Possible to use organic Rankine cycle
(ORC) to generate electricity at low
temperature ~100°C

The 4MW Akca ORC geothermal plantin
Turkey. Credit: Exergy.




8-story library heated with shallow geothermal
energy saving over 1000 tons of coal annually

Geothermics 89 (2021) 101929
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Analysis of thermal performance and economy of ground source heat pump
system: a case study of the large building
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Dunedin is built on an extinct volcano.
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Much of the magma was trapped and
crystallized beneath the surface.
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2-6x enrichment of incompatible
elements in some of the volcanic
rocks (due to fractional
crystallization) means that 1-5x of
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The ancient magma body now forms a large mass of
dense igneous rock that perturbs our local gravity.
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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. B12, PAGES 30,835-30,848, DECEMBER 10, 2001

Crustal structure and thermal anomalies of the Dunedin
Region, South Island, New Zealand

Nicola J. Godfrey,!:2 Fred Davey,? Tim A. Stern,* and David Okaya!
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The Dunedin
region exhibits
anomalously high
heat flow - based
on very limited
data!
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High heat flow recorded in the Dunedin region is consistent with a hot body emplaced in
the midcrust ~10 Myr ago (Miocene) whose heat is just reaching the surface today. Uplift
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High heat flow recorded in the Dunedin region is consistent with a hot body emplaced in
the midcrust ~10 Myr ago (Miocene) whose heat is just reaching the surface today. Uplift
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MBIE “Smart Idea” Concept:
e drill 2x observation holes each ca. 500 m deep

* measure ground heat flow for 1+ year
e assess geothermal resource
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Low-Enthalpy Dunedin Geothermal Energy
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Further evidence of a significant geothermal energy

resource beneath Dunedin comes from a gas-rich
well on the Taieri.

Journal of Volcanology and Geothermal Research 192 (2010) 117-141

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

journal homepage: www.elsevier.com/locate/jvolgeores

Sources of solutes and heat in low-enthalpy mineral waters and their relation to
tectonic setting, New Zealand

A.G. Reyes ** B.W. Christenson °, K. Faure *
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Chemical “thermometers” in the water indicate
that it reacted with rock at ~ 80-110°C.
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Further evidence of a potential geothermal energy
resource beneath Dunedin comes from a gas-rich well
on the Taieri.

Proceedings World Geothermal Congress 2010
Bali, Indonesia, 25-29 April 2010

Assessing the Flow of Thermal Waters in Low-Temperature
Mineral Spring Systems in the South Island, New Zealand

A.G. Reyes
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The latest active volcanism exposed on the surface in the
Dunedin region, was about 10 Ma ago (Sewell and Weaver,
1989). However, an 1sland of high heat flow, 80 mW? (Allis
et al, 1998) and an above normal thermal gradient in the
Taier1 Basin, near Dunedin, exists. To explain these,
Godfrey et al (2001) suggested that heat from hot mantle
emplaced 10 My ago 1s just reaching the surface at present.
The existence of an actively degassing hot mantle source 1s
surmised from (1) seismic studies showing a low velocity
crust coinciding with a highly reflective region (Godfrey et
al, 2001) and (2) an 1sotopic He signature R/R, of 6.64
indicating entrainment of about 83% of mantle volatiles
(Giggenbach et al, 1993) from gas discharges 1n Taier1 well,
assuming that the source of CO, and He 1s not decoupled.
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The composition of the fluid
indicates these reactions took
place at > 40-60°C.

K/Na Na
0.02 0.05 0'11 0.2 0.15 .21'0 0 10'92 0.05 0. 0.2 05 20

_______________________ SV
Z P | R . P T
—— " : \

0.8 '
Mg/Ca
_______ ©
T O Y
u— . — (/2]
0-6 g/ :/9)‘ % -
- gles
2183,
0.4 - g8z
O\ ,(u
0.2 —
11
0 —

0 0.2 0.4 0.6

10¢,./(10¢;, ¥:C;y:2) 10¢;/(10c;, ¥ Cyy)
K K Na K K Na tEDGE



Geochimica et Cosmochimica Acta, Vol. 64, No. 14, pp. 2489-2507, 2000
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The subcontinental mantle beneath southern New Zealand, characterised by helium
isotopes in intraplate basalts and gas-rich springs

L. Hoke.}*" R. Porepa.” A. REay.? and S. D. WEaver?

Table 3. The isotopic composition of helium measured in thermal and nonthermal gas emissions from the South Island of New Zealand.

%
Date Mantle
Locality (ref. no.) Lat. Long. Type collected °C Rm/Ra He/Ne Rc/Ra hellium  He CO, N, CH,; Ref
Dunedin area
Mitchell (16) —45.11345 170.80433 w 900517 26 3.75 72 3.76 472 1.3100 190 780 2
Kingan (17) —45.00000 170.64865 900517 — 0.38 42 033 41 0.0650 940 120 1
Wairongoa (18) —45.80090 170.35400 980212 13 697 3304 703 882 0.0510 992 7 0.08

980212 12 6.69 088 6.69% 839 0.0507 809 141 5.37
871101 18 6.64 104 6.66 835 0.0950 965 30 3
900210 13 6.381 37 6.86 86.1 0.1300 960 32 4
980212 — 3.89 094 3.89*% 488 0.0024 984 14 n.a.

Wairongoa (18)
Wairongoa (18)
Wairobgoa (18)
Sailsbury Tunnel/N (19) —45.77690 170.32840

L7 I R 7 R 7 B 7 7
o o0y » OC

2 This work.
® Giggenbach et al., 1993.
tion of helium, and CO, and CH, contents in gases produced along

the New Zealand part of a convergent plate boundary. Geochim.
Cosmochimi. Acta 57, 3427-3455. Z‘ EDGE
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An order-of-magnitude calculation indicates that
the still hot igneous rock lies about 20 km deep.

Conductive heat transport
L=(at)??
for
o =10°m?st
t=11-16 Myr (3.5-5 x 1014 s)
then
L =19-22 km
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