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Abstract 
Competition points are awarded in sports events to determine which participants 
qualify for the playoffs or to identify the champion. We use competition points to 
measure strength in a prediction model and choose competition points to maximise 
prediction accuracy. This allows us to determine the allocation of competition points 
that most appropriately rewards strong teams. Our analysis focuses on Super Rugby 
as the characteristics of this competition closely match our modelling assumptions. 
We find that the current allocation of competition points is not optimal and suggest an 
alternative. Our findings have implications for other competitions. 
 
Keywords: Competition points; Nonlinear least squares; Sports predictions 
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1. Introduction 

Administrators of sports competitions involving round-robin or group stages typically 

award competition points in order to rank participants. These rankings are used to 

determine which competitors advance to the playoffs or identify the overall winner. It 

is, therefore, important that organisers employ allocation criteria that accurately 

reflect the strength of participants. 

 

A common allocation method awards a winning team two competition points, zero 

points to a losing team and one point to each team if a fixture is tied. A variant of this 

system, as commonly used in football (soccer) tournaments, grants teams participating 

in a tied match less than half the number of points awarded for a win. Bonus points 

have recently been introduced to some competitions. In the (North American) 

National Hockey League a bonus point is awarded to a losing team if overtime or a 

penalty shootout is required to determine a winner. In some forms of cricket, bonus 

point are awarded for narrow losses and dominant victories. We concentrate on Super 

Rugby, where up to two bonus points are offered, as the allocation of points in this 

competition is more complicated than most others and our modelling framework is 

well suited to this event. Namely, (a) there is no promotion or relegation, (b) playing 

rosters are relatively consistent across years, and (c) teams play balanced schedules 

each year. 

 

The inclusion of bonus points often produces a different hierarchy of teams relative to 

if bonus points were not included. For example, Super Rugby teams missed out on 

semi-finals berths even though they recorded more wins (or as many wins and more 

ties) than at least one semi-finalist in 1996, 2000 and 2006. Despite the influence 
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bonus points can have on the ordering of teams and ultimately the selection of semi-

finalists, the appropriateness of the allocation of Super Rugby competition points has 

not been evaluated. Furthermore, most other rugby competitions have adopted a 

similar system for allocating competition points, including the Rugby World Cup – 

reputably the world’s third largest sporting event.   

 

We determine the allocation of Super Rugby points that is best at revealing strong 

teams by constructing strength measures that are built on competition points and 

choosing competition points to maximise prediction accuracy. Intuitively, maximising 

prediction accuracy allows us to determine the optimal allocation of competition 

points as predictions using strength indices built on an allocation of competition 

points that is not good at revealing strong teams will be less accurate than predictions 

based on an allocation that is good at identifying strong teams. To our knowledge, this 

is the first study to determine the optimal allocation of competition points for a sports 

competition.  

 

This paper has three further sections. Section 2 outlines the salient features of Super 

Rugby. Our modelling framework and results are set out in Section 3. Section 4 

concludes. 

 

2. Super Rugby 

Rugby is played on a rectangular field with H-shaped goal posts at each end between 

teams of 15 players per side. (There are two variants of rugby: rugby union and rugby 

league. It is common to refer to the former as ‘rugby’ and the latter as ‘league’. This 

convention is followed here.) We make a distinction between game points and 
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competition points. Game points are awarded during a game and competition points – 

the subject of our investigation – are awarded at the end of a contest depending on the 

match outcome. Teams earn game points by scoring tries (placing the ball over their 

opponent’s goal line) and kicking goals (kicking the ball from the ground between the 

goal posts and over the cross bar). A try is worth five points and grants an opportunity 

to kick a conversion, which, if successful, is worth an additional two points (so seven 

points can be scored in a single scoring play). Teams can also attempt to kick a goal 

when they are awarded a penalty (from the position where the infringement occurred) 

or attempting a drop goal (dropping the ball and kicking it as it hits the ground) in 

general play. A goal is worth three points. The rules of rugby are set out by the 

International Rugby Board (www.irb.com). 

 

The Super Rugby competition has been played annually since 1996 by provincial/state 

sides from Australia, New Zealand and South Africa. Between 1996 and 2005, there 

were 12 Super Rugby teams (five from New Zealand, four from South Africa and 

three from Australia) and the competition was known as the Super 12. Two extra 

teams from Australia and South Africa respectively were added in 2006 and the 

tournament was renamed the Super 14. The name ‘Super Rugby’ encompasses both 

competitions.  

  

Each tournament begins with a round-robin phase where each team plays every other 

team once. Each team has one bye, so from 1996-2005 each team played 11 games 

over 12 rounds. The top four teams from this stage qualify for the semi-finals and the 

two winning semi-finalists contest the final. Hosting rights for the semi-finals and the 

final are awarded to the team in each contest that gained the highest round-robin 
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ranking. Competition points are awarded at the completion of each match according to 

several decision rules. A winning team is awarded four points, a losing team zero 

points and each team earns two points if a match is tied. In addition, bonus points may 

be awarded for (i) scoring four or more tries, and/or (ii) losing by seven or fewer 

points. So, a winning team may earn five or four competition points, a team that ties a 

match may be awarded three or two points, and a losing team may earn two, one or 

zero points. In total, there are 17 possible pairwise allocations of points per match (5-

2, 5-1, 5-0, 4-2, 4-1, 4-0, 3-3, 3-2, 2-2, 2-3, 0-4, 1-4, 2-4, 0-5, 1-5, 2-5). 

 

A bonus point for losing by a small margin was first introduced in New Zealand’s 

National Provincial Championship (NPC) in 1986. At the time a try was worth four 

(game) points and a bonus point was awarded if a team lost by six points or less. That 

is, similar to the narrow-loss bonus in Super Rugby, a losing team was awarded a 

competition point if an additional maximum scoring play (a try plus a conversion) by 

this team would have tied the game or reversed the match outcome. However, the 

value of a try was increased from four to five (game) points in 1992 but the minimum 

losing margin required to earn a narrow-loss bonus was not increased to seven points 

until 1995. In contrast, a bonus point for scoring four or more tries was introduced to 

Super Rugby in 1996 to encourage teams to play attacking rugby.  

 

Geographically, Super Rugby franchises are diverse. The time difference between 

New Zealand and South Africa in 10 hours, travelling between New Zealand and 

South African cities can take up to 30 hours, and teams based on South Africa’s 

Highveld are around 2000 meters above sea level while most other teams have coastal 
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headquarters. We distinguish four regions – Australia, New Zealand, South Africa-

coastal and South Africa-Highveld – to capture geographic diversity. 

 

Evidence of strong home advantage is that between 1998 and 2005 home teams won 

61.3% of matches, away teams won 36.6%, and 2.1% of matches were tied. We 

present further evidence of home advantage by reporting average points scored, 

average number of tries scored, and average number of try and loss bonus points 

earned by home and away teams in Table 1. On average, home teams score 6.4 more 

points and nearly one more try per match than away teams. Home teams earn a try 

bonus in 42% of matches while the corresponding figure for away teams is 26%.  

Away teams earn more narrow-loss bonuses on average than home teams (0.18 versus 

0.17) but have a greater propensity to lose. 

 

Table 2 reports average net scores (points scored by the home team minus points 

scored by the away team) for each team when playing at home and indicates each 

team’s regional location. The simple home advantage measure indicates that there is a 

large variation in home advantage across teams. For example, over the sample period 

the Brumbies, Crusaders and Highlanders average home net scores were 17.0, 14.8 

and 11.6 respectively, while corresponding figures for the Bulls and the Cats are -1.5 

and 0.4 respectively.  

 

Home advantage is also likely to depend on distance travelled by the away team. For 

example, South African teams travelling to New Zealand are likely to experience 

greater away disadvantage than other teams playing away fixtures in New Zealand. 

Table 3 presents average home net scores by regional pair. The data reveal that, on 
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average, Australian and New Zealand teams defeat sides from South Africa’s 

Highveld by large margins when playing at home.  

 

3. Modelling framework and results 

The details of many sports ranking/prediction systems are not available to the public 

because of their application to sports gambling and/or for proprietary reasons. In 

ranking techniques in the public domain, most systems are built on the margin of 

victory and rankings are updated on a weekly basis. Leake (1976) and Stefani (1977, 

1980 & 1983) choose rankings to minimise the sum of squared prediction errors, 

while Bassett (1997) minimises the sum of absolute errors. Clarke and Stefani (1992) 

and Clarke (1993) update rankings using exponential smoothing techniques. Zuber et 

al. (1985), on the other hand, generate predictions for the National Football League 

(NFL) by observing a number of team-specific measures (e.g., number of wins, 

number of yards rushed, and total offensive plays etc). Also for the NFL, Harville 

(1980) uses mixed linear models to predict outcomes. Prediction models for 

Australian Rules Football built on individual player data are developed by Bailey 

(2000) and Bailey and Clarke (2004).  Glickman and Stern (1998) use a state-space 

model. Stefani (1987 & 1998) reviews this literature. To our knowledge, no existing 

system is built on competition points. In other related literature, Morton (2006) 

examines home advantage in Southern Hemisphere rugby and Owen and Weatherston 

(2004) investigate the determinants of attendance at Super Rugby matches. 

 

We use the home team’s net score to characterise the outcome of a match and predict 

match outcomes by regressing net scores on location and net strength variables. Let i 

denote the home team, j denote the away team, n and s index regions identified in 
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Table 3, r index rounds and y index years. We specify the following regression 

equation 

 

yrijyrijyrij NSTRNNSC ,,,,,, .0 εβα ++++= 2211 DαDα  (1)

 

where NSCij,r,y is i’s net score against team j in round r in year y; 0α  measures base 

home advantage (applicable to all teams); 1α  is a 1х12 vector of team-specific 

additional home advantage parameters { ),...,( 11
WaratahsBlues αα=1α } 1D  is a 12х1 

vector of binary variables equal to 1 if a team played a home match, zero otherwise 

{ ),...,( ,,,,
Waratahs

yrij
Blues

yrij DD=1D }; 2α  is a 1х16 capturing additional home advantage 

when i is located in region n and j is located in region s 

{ ),...,( ,
2

,
2

HighveldSAHighveldSANZNZ −−= αα2α }; 2D  is a 16х1 vector of binary variables 

equal to 1 if a team from region n hosted a team from region s, zero otherwise 

{ ),...,( ,
,,

,
,,2

HighveldSAHighveldSA
yrij

NZNZ
yrij DD −−=D }; NSTRN is the net strength of team i; β  

captures the influence of NSTRN on NSC, and ε is an error term. 

 

In our estimations described below, we drop one team-specific home advantage 

parameter ( Blues
1α ) and the four regional home advantage parameters for which n = s 

to avoid introducing perfect multicolinearity. NSTRN is defined as 

 

yrjyriyrij STRNSTRNNSTRN ,,,,,, −=  (2)

 

where STRN measures team strength and is a time-varying weighted average of 

competition points earned per-game in years y and y-1. In the first match of each year, 
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the weight on competition points earned in the current season is zero and this weight 

increases by a constant amount after each game. Specifically, STRN is calculated as 

 

yriyriyiyriyri POINTSPOINTSSTRN ,1,,,1,12,,,,, )1( −− −+= λλ  (3a)

 

where POINTSi,r,y denotes competition points earned per-match by team i in year y at 

the completion of round r, and λi,r,y is equal to (11 – gi,r,y )/11 where g denotes the 

number of games played by team i prior to round r in year y. (Even though there is an 

even number of teams in the competition, there is not a direct correspondence 

between the number of games played by a team and the round number as each team 

has one bye each year.) 

 

Noting that competition points are awarded for winning, tieing and losing by seven 

points or less yields the following expression 

 

1,12,1,12,,,,, ( −− += yi
TIE

yi
WIN

yriyri TIEWINSTRN θθλ  (3b)

 
yri

WIN
yriyi

LOSS WINLOSS ,1,,,1,12, )(1() −− −++ θλθ   

 ),1,1,12,,1, yri
LOSS

yi
TRY

yri
TIE LOSSTRYTIE −−− +++ θθθ   

 

where θWIN, θTIE, θTRY and θLOSS are competition points awarded for, respectively, 

winning, tieing, scoring four tries or more, and losing by seven points or less; and 

WINi,r,y, TIEi,r,y, TRYi,r,y and LOSSi,r,y are the average number of matches team i has, 

respectively, won, tied, scored four or more tries in, and lost by seven points or less in 

year y at the completion of round r. We replace r with 12 when referring to the 

average number of wins etc in the previous year as there are 12 rounds in each season. 
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Substituting (2) and (3b) into (1) gives the equation to be estimated, which is 

presented in the appendix as equation (A.1). 

 

As the optimal allocation of competition points is invariant to multiplication by any 

positive scalar, we normalise points with respect to θWIN. That is, we set  θWIN equal to 

one and express values for other events attracting competition points relative to the 

number of competition points awarded for a win.  

 

Our strength measure is well suited to Super Rugby on three grounds. First, there is 

no relegation or promotion so the same teams play each other each year. Second, 

probably because rugby has only been professional for just over a decade, most 

players are local to the province/state they represent and there is not a well-developed 

transfer market. Indeed, most movements between franchises are by players on the 

fringe of selection for their ‘home’ team seeking an opportunity at another franchise. 

Third, as each competition begins with a round-robin, each team plays a balanced 

schedule each year and there is a higher probability that a team has played a schedule 

of average difficulty as the season progresses. Combined, the three characteristics 

indicate that it is appropriate to measure a team’s strength at the start of each year as 

average competition points earned in the previous year and increase the weight on 

current year competition points as the season progresses. 

 

We estimate (A.1) using 528 round-robin Super Rugby matches played during the 

years for which there were no changes in Super Rugby teams, 1998-2005. (Prior to 

1998 South Africa entered the top four teams from its premier domestic competition 

and, as mentioned above, two additional teams were included in Super Rugby in 

2006.) We fix all competition points at (normalised) values currently used in Super 
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Rugby (θWIN = 1, θTIE = 0.5, and θTRY= θLOSS = 0.25) in our first regression exercise. In 

this case all components of NSTRN are exogenous and (A.1) collapses to (1).  We 

eliminate insignificant home advantage parameters using a general-to-specific 

methodology with a single search path. Specifically, we start by including all home 

advantage parameters (except those omitted to avoid introducing perfect 

multicolinearity) and eliminate the parameter with the lowest t-statistic in each 

subsequent estimation until the highest p-value is less than 0.05. We also search for 

structural breaks in home advantage parameters by allowing values for these 

parameters to differ pre and post 2002. 

 

We find that all regional home advantage parameters are not significantly different 

from zero expect those for Australian teams hosting teams from the Highveld 

( HighveldSAAustralia −,
2α ) and New Zealand teams hosting sides from the same region 

( HighveldSANZ −,
2α ). The results also indicate that additional home advantage 

parameters are only significant throughout the sample period for the Brumbies 

( Brumbies
1α ) and Crusaders ( Crusaders

1α ). The additional home advantage parameter for 

the Highlanders ( sHighlander
1α ) was also significant but only until the end of 2002. All 

other home advantage parameters are not significantly different from zero. (The Wald 

test for the joint significance of omitted home advantage parameters has a p-value of 

0.924.) 

 

Results from estimating (1) using ordinary least squares (OLS) and only including 

significant home advantage coefficients are reported in column (a) of Table 4. The 

estimates reveal that most teams experience an advantage from playing at home equal 
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to 3.42 game points. Home advantage for the Brumbies and the Crusaders, however, 

against most teams is equal to 12.14 (3.42 + 8.99) and 10.97 (3.42 + 7.55) 

respectively. Prior to 2003 the Highlanders enjoyed the largest home advantage of all 

Super Rugby teams (13.34). Turning to the regional home advantage variables, when 

an Australian team (except the Brumbies) hosts a team from the Highveld home 

advantage equates to 19.34 (3.42 + 15.92). Meanwhile, New Zealand teams (except 

the Crusaders and the Highlanders prior to 2003) entertaining Highveld sides benefit 

by 11.64 (3.42 + 8.22) points. The impact of location is largest when the Brumbies 

host a Highveld team and assists the Brumbies by 28.33 (3.42 + 8.99 + 15.92) points. 

Interestingly, the Brumbies win-loss record against Highveld teams in our sample 

period is 8-0. Given the geographic dispersion of Super Rugby regions, the large 

impact of location on match outcome is not surprising. As the influence of home 

advantage is consistent across specifications, we do not discuss these parameters for 

other estimations. 

 

The positive and significant coefficient on NSTRN indicates that our strength measure 

is a significant determinant of match outcomes. The value for β implies that, in the 

absence of home advantage, a team that wins every match and a collects a try bonus 

will beat a team that loses every match without earning any bonus points by 16.86 

(1.25*13.49) points. Relative to the impact of where the match is played, the strength 

of the two opponents appears to have a moderate impact on match results. Overall, the 

model is able to explain about 20% of the variation in the sum of squared net scores 

and correctly selects the winning team in around two-thirds of matches. 
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Results from estimating (A.1) using nonlinear least squares (NLS) are presented in 

column (b). The estimate for β indicates that the net average number of wins by the 

home team is a significant determinant of net scores. Estimates for θTIE and θTRY are 

not significantly different from zero, so the average number of ties and the average 

number of times four or more tries are scored are not significantly correlated with 

team strength. The estimate for θLOSS is only different from zero at a 10% significance 

level, indicating that the average number of losses by seven or fewer points is a weak 

determinant of team strength. 

 

The average number of ties may be an insignificant determinant of strength as there 

has not been enough tied matches to accurately gauge the impact of this event on team 

strength (only 2.1% of matches were tied). The appropriateness of the try bonus can 

be questioned on the grounds that it is not uncommon for teams that lose by a large 

margin to earn a try bonus. For example, in round nine of the 1998 competition the 

Stormers earned a try bonus even though they lost 24-74 to the Blues. This could be 

because whether or not a losing team earns such a bonus is largely determined by the 

attitude of the winning team. For instance, a dominant team may decide to bring on 

bench players and/or play with less aggression/enthusiasm. Support for this 

hypothesis is that the average losing margin when defeated teams are awarded a try 

bonus (13.0) is similar to the average losing margin when beaten sides do not earn a 

try bonus (14.7).  We also regress the losing margin on a binary variable equal to one 

if the losing team scored four or more tries (and zero otherwise). The p-value on the 

coefficient for the binary variable is 0.420. 
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Regarding the narrow-loss bonus, perhaps a seven-point margin is not indicative of a 

close game. After all, such a margin implies that the losing team could earn a narrow-

loss bonus if an additional maximum scoring play (a converted try) by this team 

would have tied the game. In the NPC between 1992 and 1995 teams could only earn 

a narrow-loss bonus if an additional maximum score by the losing team would have 

reversed the outcome of the match. So, history suggests that administrators are unsure 

how to define a narrow loss. 

 

We examine the appropriateness of cut-offs or partitions used for bonus points by 

estimating (A.1) for a range of alternative combinations of partitions for try and 

narrow-loss bonuses. Specifically, the minimum losing margin required for a narrow-

loss bonus is varied from 1 to 10 and the number of tries needed for a try bonus is 

altered from 1 to 12. The sum of squared errors is minimised when a try bonus is 

awarded for scoring eight or more tries and a narrow-loss bonus granted for losing by 

five or fewer points. The cut-off for the try bonus makes it very unlikely that a losing 

team will earn such a bonus. (Only winning teams scored eight or more tries in a 

match in our sample.) The cut-off for the narrow-loss bonus indicates that a defeated 

team should be awarded such a bonus if at most two additional goals or a converted 

try by this team are required to reverse the outcome of the match. 

 

Column (c) in Table 4 reports results when these partitions are used. There is a slight 

improvement in the R2 and the number of correct predictions. The point estimate for 

θTIE suggests that a tie should attract more points than a win, but this estimate is not 

significantly different from zero. The estimate relating to the try bonus indicates that 

scoring eight or more tries should attract 1.64 points. Although, unlike the estimate 
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for θTIE, the estimate for the try bonus relative to number of points awarded for a win 

is not illogical, such an allocation may be unpalatable to rugby administrators and 

supporters. In any case, the estimate for θTRY is not significantly different from zero, 

although the p-value for this estimate (0.120) is much smaller than the corresponding 

p-value (0.952) in (b). 

 

Turning to the narrow-loss bonus, the results suggest that losing by five or less points 

should attract almost 90% of the points awarded for a win. Like in (b), θLOSS is only 

different from zero at a 10% significance level but the p-value for this estimate 

improves from 0.059 in (b) to 0.051. The p-value for joint significance of θLOSS and 

θTRY  is 0.098. 

 

Overall, point estimates for competition points awarded for a tie and the two bonuses 

are higher than interested parties would find agreeable. Consequently, we impose the 

following constraints when estimating (A.1) 

 

)(
2
1 LOSSWINTIE θθθ +≤  

(4.1) 

TIETRY θθ
2
1

≤  
(4.2)

  

TIELOSS θθ
2
1

≤  
(4.3)

 

The first constraint places an upper limit on the amount of points awarded for a tie. 

We allow a tie to attract more than half the number of points awarded for a win on the 

grounds that the most likely alternative outcome to a tie is a narrow loss for one team, 

and our specification allows teams that tie to share the competition points awarded for 
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a win and a narrow loss. Constraints (4.2) and (4.3) stipulate that bonuses should be 

less than or equal to half the number of points awarded for a tie, as in the allocation 

currently used in Super Rugby. 

 

As our model now involves constraints that hold with inequality, we set up the model 

as a nonlinear programme using the General Algebraic Modelling System (GAMS). 

The constrained model is solved for alternative combinations of try and narrow-loss 

partitions using the solver CONOPT. The sum of squared errors is minimised when 

(4.1) – (4.3) hold with equality and, as in the unconstrained model, bonuses are 

awarded for scoring eight or more tries and/or losing by five or fewer points. 

 

Results from estimating (A.1) with the appropriate constraints imposed are reported in 

column (d) of Table 4. As expected, a lower R2 and fewer correct predictions are 

associated with the constrained model than the unconstrained model, but the model 

does better on both of these criterion than (a). The p-value for the joint Wald test of 

the appropriateness of the constraints (0.525) indicates that the data cannot reject the 

restrictions. Overall, the results suggest that an allocation that awards three points for 

a win, two points for a tie, one point for scoring eight or more tries, and one point for 

losing by five or fewer points is marginally better at identifying strong teams than the 

current allocation. 

 

There were 361 try bonuses in our sample but only 27 such bonuses would have been 

awarded if eight or more tries were required to earn a try bonus. Consequently, rugby 

administrators may be unhappy with the allocation touted above. We address this 
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concern by specifying a ‘net try’ bonus, where a bonus is awarded when a team scores 

more than a certain number of tries more than its opponent (or net tries).  

 

Choosing partitions to minimise the sum of squared errors indicates that a try bonus 

should be awarded if a team scores two or more tries than its opponent, and a narrow-

loss bonus granted if a team loses by five points or less. Regression results for this 

specification are reported in column (e) of Table 5. As in (c), θTIE and θTRY are 

insignificant. The point estimate for θLOSS (1.05) is unreasonable but this coefficient is 

only significantly different from zero when the level of significance is greater than 

0.075. The p-value for the joint significance test of the two bonus coefficients is 

0.153. 

 

Column (f) presents results when we impose (4.1) – (4.3) in our net try specification. 

All constraints hold with equality and the optimal net try partition is three, which 

results in 151 try bonuses. The p-value for the joint test of the constraints is 0.733. 

There is little difference between our constrained try speciation, (d), and our 

constrained net try specification, (f), in terms of R2 and the number of correct 

predictions. However, the unconstrained counterpart to our try specification, (c), 

produces a higher R2 and lower p-values for all net strength parameters than the 

unconstrained counterpart to our net try specification, (e). 

 

In both specifications (c) and (e) the try bonus is insignificant. This suggests that, 

after controlling for the number of wins and narrow losses in previous matches, the 

number of try bonuses earned by a team does not increase that team’s predicted net 

score. In other words, offering a try bonus encourages teams to play a style of rugby 



 17

that does not increase the probability of winning. Anecdotal evidence also supports 

our assertion that the try bonus is not correlated with team strength. In the 

quarterfinals of the 2007 Rugby World Cup, New Zealand and Australia, two teams 

heavily favoured to advance to the next round, lost to France and England 

respectively. Several rugby experts, including Australian coach John Connolly, 

suggested that the attacking style adopted by the two favourites was partly responsible 

for the unexpected results. In turn, the incentive structures in place in the competitions 

that these teams regularly participate in may influence playing styles. Specifically, 

New Zealand and Australia compete in the Tri-Nations competition where a try bonus 

point is offered, and France and England participate in the Six Nation tournament, 

where a try bonus is not offered. 

 

We report results from estimating (A.1) when the try bonus is dropped in column (g) 

of Table 5. (The optimal narrow-loss partition when the try bonus is dropped remains 

at five points.) The larger estimate for β reveals that the average number of wins has a 

greater influence on net score than in all other specifications except (c). Additionally, 

unlike in other specifications, the point estimate for θTIE is not irrational and the p-

value for the significance of θLOSS is less than 0.05. In specification (h) we drop the try 

bonus and impose constraints (4.1) and (4.3). The data cannot reject the constraints 

(the p-value for the joint test of the constraints is 0.584). This is our preferred 

specification. Interestingly, the data can also not reject the joint test θTIE = 0.5  and 

θLOSS = 0.25 (the p-value for this test is 0.437). This suggests that dropping the try 

bonuses and changing the losing margin required to earn a narrow loss bonus to five 

points will improve strength accuracy while requiring minimum changes to the 

current allocation. 
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Model predictions 

We compare out-of-sample predictions generated by (h) with those generated by an 

exponential smoothing model and other predictors to assess the validity of our net 

strength specification. We examine predictions for 182 round-robin Super Rugby 

matches played in 2006 and 2007. In our exponential smoothing model, matches are 

organised in chronological order and the predicted net score between i and j at time t 

(PNSCij,t) is given by 

 

)( ,,
~~

, 0 tjtitij RRPNSC −+++= 2211 DαDαα  
(5)

 

where Ri,t is the rating of team i at time t and the elements of 1D
~

 and 2D
~

 equal those 

for 1D  and 2D , respectively, except the period identifiers (r and y) are replaced by t. 

 

In the exponential smoothing model, i’s rating is increased (decreased) if i does better 

(worse) than expected. Specifically, i’s rating is updated according to the following 

equation  

 

1,1,, −− += titijti RER δ  (6)

 

where δ is the smoothing constant and Eij,t is the ‘prediction error’. 

 

Following Clarke (1993, p.756) the error function in our exponential smoothing 

algorithm uses a power function “to reduce the relative errors of matches with large 

actual or predicted margins, and to increase the weighting across the ‘win-loss’ 

boundary.” Accordingly,  
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ρρ

tijtijtijtijtij PNSCPNSCNE ,,,,, ).NSCsign().SCsign( −=  (7)

 

where ρ is the chosen power. (We also estimate (A.1) using the error specification in 

(7). The results are similar to those reported in Tables 4 and 5.) 

 

To estimate our exponential smoothing model, we set home advantage parameters not 

significant in our regression analyses equal to zero and choose values for included 

home advantage parameters, δ and ρ to minimise the sum of absolute errors. Clarke 

(1993) also includes a shrinkage factor to allow for team ratings to regress towards the 

mean during the off season. We do not include such a provision in our model as the 

data suggest that the abilities of Super Rugby teams do not exhibit this characteristic. 

This result probably reflects our earlier observation that players tend not to switch 

franchises.  

 

The model is a nonlinear programme with discontinuous derivatives and is coded 

using GAMS and solved using MINOS. Starting values for our exponential smoothing 

model are generated by subjectively choosing ratings at the end of the 1997 

competition and estimating the model using 1998 data. The model is then re-estimated 

for 1999-2005 data using ratings at the end of the 1998 season as initial ratings.  

 

Predictions for several estimators are presented in Table 6. Selecting the home team to 

win by the average home net score between 1998 and 2005 correctly identifies the 

winning team in just over 60% of matches and produces an average absolute error of 

13.2. The home selection approach is less accurate than both our preferred regression 

specification, (h), and the exponential smoothing model, with the latter performing 
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better than the former. As strength indices are updated using a continuous variable in 

our exponential smoothing model but in a discrete fashion in our regression analysis, 

perhaps this is not surprising. (We also employ an exponential smoothing model with 

time-varying home advantage parameters that are team specific. These parameters are 

updated in a similar way to team ratings, but with a different smoothing constant. This 

model produces less correct predictions than exponential smoothing model described 

above.) 

 

We infer bookmakers’ head-to-head selections, which are presented in the final 

column of Table 6, from published odds. Given that bookmakers use a larger 

information set (player availability, team selection etc) than our models, the relative 

performance of our predictions, especially when exponential smoothing is used, are 

pleasing. Overall, the numbers in Table 6 indicate that the predictive power of a 

model that uses competition points to create strength measures is adequate. 

 

4. Conclusions 

We determined the allocation of competition points that most appropriately rewards 

strong teams. We focused on Super Rugby as the allocation of points in this 

competition is relatively complicated and several features of this tournament fit our 

modelling strategy.  

 

We found that the bonus awarded for scoring four or more tries is not significantly 

correlated with team strength and that the bonus for losing by seven or fewer points is 

only a weak determinant of strength. If competition points are allocated solely to 

reward strong teams, a try bonus should not be awarded but a bonus should be 
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awarded for losing by five points or less. In addition to distorting league tables, it 

could be argued that the try bonus encourages teams to play in manner that does not 

increase the probability of winning. The finding that the (modified) narrow-loss bonus 

is a significant determinant of team strength suggests that it may be beneficial for 

other sports competitions to adopt such a bonus, although the different nature of 

alternative sports may give quite different results. 

 

If a try bonus is included to encourage teams to play attacking rugby, governing 

bodies may be willing to trade off entertainment against strength accuracy. If rugby 

administrators wish to continue to offer a try bonus with minimal influence on 

strength accuracy, two competing specifications are offered. Specifically, a bonus 

could be awarded for scoring eight or more tries, or, alternatively, a bonus could be 

granted for scoring three or more net tries. Administrators are likely to prefer the 

second specification as a larger number of try bonuses are awarded. 

 

Before closing we note that an alternative allocation of competition points may 

encourage teams to behave differently to that observed in our sample. Although, given 

the competitive nature of most professional athletes, it seems reasonable to assume 

that teams wish to win and prefer a narrow loss to a large loss, there are several cases 

where shifting the ‘goal posts’ may alter teams’ actions. First, a team awarded a 

kickable penalty near the end of a match and behind by seven points will be more 

likely to attempt to score a try rather than opting for a shot at goal if a bonus is 

awarded for losing by seven or fewer points than if a loss by five or less is required. 

Second, a coach whose team has scored four tries and has a comfortable lead will be 
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less likely to substitute key players if eight or more tries are needed for a try bonus 

than if only four tries are required. 
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Table 1:  Average scores, tries and bonuses, 1998-2005 
 Home Away 
Score 29.7 23.3 

Tries 3.4 2.6 

Try bonus 0.42 0.26 

Narrow-loss bonus 0.17 0.18 

 

Table 2: Average home net scores, 1998-2005 
Team Net-score 
Blues (New Zealand) 9.1 

Brumbies (Australia) 17.0 

Bulls (South Africa-Highveld) -1.5 

Cats (South Africa-Highveld) 0.4 

Chiefs (New Zealand) 4.0 

Crusaders (New Zealand) 14.8 

Highlanders (New Zealand) 11.6 

Hurricanes (New Zealand) 1.8 

Reds (Australia) 6.8 

Sharks (South Africa-coastal) 1.2 

Stormers (South Africa-coastal) 1.4 

Waratahs (Australia) 10.2 

 

Table 3: Average inter- and intra-regional home net scores 
 Away 
Home Australia New Zealand SA-coastal SA-Highveld 
Australia 7.0 6.9 12.0 25.9 

New Zealand 6.9 4.5 8.4 17.8 

SA-coastal 0.3 -1.3 5.6 7.4 

SA-Highveld -3.2 0.1 0.7 1.9 
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Table 4: Regression results 
 (a) (b) (c) (d) 

Estimation  OLS NLS NLS OLS 

Try partition 4 4 8 8 

Narrow-loss partition 7 7 5 5 

Constrained Yes No No Yes 

0α  3.42*** 3.31*** 3.47*** 3.42*** 

 (0.84) (0.85) (0.85) (0.83) 
     

Brumbies
1α  8.99*** 9.49*** 8.32*** 9.09*** 

 (2.64) (2.65) (2.66) (2.61) 
     

Crusaders
1α  7.55*** 7.76*** 7.33*** 7.41*** 

 (2.76) (2.81) (2.85) (2.78) 
     

sHighlander
1α

(1) 9.92*** 10.37*** 9.10*** 9.63*** 

 (2.74) (2.84) (2.85) (2.76) 
     

HighveldSAAustralia −,
2α  15.92*** 15.90*** 16.58*** 15.88*** 

 (3.59) (3.60) (3.62) (3.60) 
     

HighveldSANZ −,
2α   8.22*** 8.31*** 8.87*** 8.27*** 

 (2.46) (2.48) (2.49) (2.45) 
     

β  13.49*** 16.26*** 13.12*** 15.23*** 

 (2.56) (3.32) (3.10) (2.65) 
     

TIEθ  0.50 0.88 1.26 0.67 

 - (0.77) (0.99) - 
     

TRYθ  0.25 -0.02 1.64 0.33 

 - (0.26) (1.06) - 
     

LOSSθ  0.25 0.57* 0.89* 0.33 

 - (0.30) (0.45) - 
     

R2 0.20 0.21 0.22 0.21 

Correct predictions 347 352 356 349 

Note: ***, **, and * denote significance at the 1%, 5% and 10% significance level respectively. Robust 
standard errors are reported in parentheses. (1) only significant between 1998 and 2002. 
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 Table 5: Regression results, try bonus based on net tries 
 (e) (f) (g) (h) 

Estimation  NLS OLS NLS OLS 

Net try partition 2 3 - - 

Narrow-loss partition 5 5 5 5 

Constrained No Yes No Yes 

0α  3.55*** 3.46*** 3.34*** 3.36*** 

 (0.84) (0.82) (0.85) (0.82) 
     

Brumbies
1α  7.93*** 8.74*** 9.24*** 9.36*** 

 (2.74) (2.53) (2.62) (2.51) 
     

Crusaders
1α  7.62*** 7.54*** 7.52*** 7.52*** 

 (2.83) (2.51) (2.81) (2.52) 
     

sHighlander
1α

(1) 10.17*** 9.67*** 10.21*** 9.96*** 

 (2.83) (3.09) (2.83) (3.09) 
     

HighveldSAAustralia −,
2α  15.12*** 15.52*** 15.90*** 15.82*** 

 (3.63) (3.39) (3.60) (3.39) 
     

HighveldSANZ −,
2α   8.03*** 8.21*** 8.47*** 8.29*** 

 (2.50) (2.67) (2.48) (2.67) 
     

β  11.63*** 13.76*** 15.78*** 15.55*** 

 (3.68) (2.54) (2.79) (2.95) 
     

TIEθ  1.21 0.67 0.88 0.67 

 (1.10) - (0.78) - 
     

TRYθ  0.61 0.33 - - 

 (0.51) - - - 
     

LOSSθ  1.05* 0.33 0.71** 0.33 

 (0.59) - (0.36) - 
     

R2 0.22 0.21 0.21 0.21 

Correct predictions 350 349 343 347 

Note: ***, **, and * denote significance at the 1%, 5% and 10% significance level respectively. Robust 
standard errors are reported in parentheses. (1) only significant between 1998 and 2002. 
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Table 6: 2006-2007 predictions 
 Home selection Specification 

(h) 

Exponential 

smoothing 

Bookmakers 

Correct predictions (%) 60.4 63.7 69.2 70.0 

Mean absolute error 13.2 11.9 11.4 - 
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APPENDIX: The equation to be estimated 

 

2211 DαDα ++= 0,, αyrijNSC  

 

(A.1) 

 ))1()1((. ,1,,,1,12,,,,1,,,1,12,,, yrjyrjyjyrjyriyriyiyri
WIN WINWINWINWIN −−−− −−−−++ λλλλθβ  

))1()1((. ,1,,,1,12,,,,1,,,1,12,,, yrjyrjyjyrjyriyriyiyri
TIE TIETIETIETIE −−−− −−−−++ λλλλθβ  

 

 ))1()1((. ,1,,,1,12,,,,1,,,1,12,,, yrjyrjyjyrjyriyriyiyri
TRY TRYTRYTRYTRY −−−− −−−−++ λλλλθβ   

 ))1()1((. ,1,,,1,12,,,,1,,,1,12,,, yrjyrjyjyrjyriyriyiyri
LOSS LOSSLOSSLOSSLOSS −−−− −−−−++ λλλλθβ  

yrij ,,ε+  

 

 


