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A Simple Bayesian Procedure for Sample
Size Determination in an Audit of Property
Value Appraisals
Nathan Berg∗

The article proposes a simple Bayesian technique for auditing property ap-
praisals to determine whether state accuracy guidelines are met. The pro-
posed technique addresses elicitation of appraisers’ prior beliefs, computation
of reappraisal sample sizes and reporting of audit results. To facilitate communi-
cation of quantitative audit findings to nonstatistician stakeholders, the concept
of variance appears nowhere in prior elicitation or reporting. In contrast to clas-
sical frequentist techniques, the Bayesian procedure easily integrates expert
judgment and responds flexibly to the arrival of new information. In addition, the
Bayesian procedure significantly reduces the number of reappraisals required
to regulate appraisal systems when they are functioning well. The technique
can be applied in other settings where government officials audit their own
work and must convince overseers, especially the public, that accuracy re-
quirements are satisfied.

Public-sector property appraisers, whose responsibility is to compute annual
property valuations for use by tax assessors and attest to their accuracy, are
providers of technical expertise and what Walls and Quigley (2001) refer to as
socio-technical services. Socio-technical services are those that require special-
ized communication skills for eliciting statistical information from nonstatisti-
cians and for persuasively explaining quantitative issues to various stakeholders,
in this case taxpayers, users of public services financed by property tax revenue
and other constituencies in the local or regional political economy. The task of
communicating algorithmic detail from the computation of property owners’
tax bills and attesting to the effectiveness of quality control measures clearly
fits the socio-technical label.

The focus of this article is the audit of public-sector property appraisals. Such au-
dits require reappraisal of a relatively small number of properties using costly,
in-depth appraisal methods and, thus, determination of an appropriate reap-
praisal sample size. The goal is to convince state officials and members of the
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public that property appraisals satisfy exogenously given standards of accuracy
such as those required by state law. The auditor, or appraisal authority, must
therefore confront the difficult challenge of communicating to nonstatisticians
about second-moment phenomena, namely, risk and dispersion.

Diverse voices in the scientific community have remarked on the challenges of
risk communication and the benefits of simplicity in a variety of economically
significant settings (Simon 1982, Slovic 2000, Gigerenzer 2002). Psychologists
writing in Science (Hoffrage, Lindsey, Hertwig and Gigerenzer 2000) showed
that logically equivalent descriptions of disease frequencies (e.g., “three in
1,000” as opposed to 0.3%) in medical tests to screen for disease led patients
to choose significantly different courses of treatment. In the design of learn-
ing systems in artificial intelligence, Simon, Valdes-Perez and Sleeman (1997)
demonstrated that algorithmic complexity is often disadvantageous, not just
because of computational costs, but because simple decision rules tend to be
more robust in changing environments. Analyzing how economists construct
persuasive arguments, McCloskey (1985) showed that the role of language
reaches well beyond logical coherence and deductive chains relating axioms to
theorems.

Confronting the communication issue in the context of an audit of property
appraisals means having explanations for strategies used in determination of
sample size, integration of expert judgment and the weighing of statistical bene-
fits against rhetorical costs (in terms of algorithmic complexity) at the end-user
stage. Complexity imposes costs whenever it impedes attainment of the audit’s
ultimate socio-technical goal, which is to quantitatively characterize appraisal
accuracy in language that satisfies the constraints imposed by end-users’ unfa-
miliarity with statistical jargon, including the concept of variance. In contrast to
strictly technical property appraisal issues where few, if any, costs of complex-
ity need be considered (e.g., the inherent statistical challenges of estimating
the market value of infrequently traded real assets with large and correlated
location-specific components), tools designed for socio-technical tasks such as
public-sector audits must deal explicitly with algorithmic complexity and its ef-
fects on end-users. Complexity not only increases skill requirements (possibly
requiring direct expenditures on consultants or additional in-house personnel),
it can also jeopardize the political legitimacy of quantitative decision-making
procedures because of difficulty in justifying in-transparent black-box compu-
tations to nonexperts.

In the United States, United Kingdom and other European nations, legal def-
initions and customs concerning sufficiency of evidence are fundamentally
ambiguous (Steele 1992). In practice, most auditors rely on rules of thumb,
such as “choose n = 30,” apparently with little justification. Some rely solely
on expert judgment with virtually no statistical support.
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In a number of U.S. states, state law specifies accuracy requirements for property
appraisals. Given such exogenous requirements, compliance can be viewed as a
binary outcome determined by comparing the allowable valuation error with the
observed difference between two appraisals of the same property—one from
an in-depth reappraisal regarded as a close approximation to true market value,
the other derived from the standard, more economical appraisal procedure. In
such cases, the main technical component of the audit problem is selecting an
appropriate statistical model for the probability of noncompliance.

The Bayesian probability model proposed here has advantages in terms of both
informational and cost efficiency. In contrast to audit methods based on classi-
cal statistics, it easily integrates the judgments of appraisal experts concerning
local market conditions and information from previous audits. And because
labor-intensive reappraisals are costly, the Bayesian procedure provides prac-
tical benefits by requiring smaller sample sizes in most cases.1 Perhaps most
important, the proposed procedure results in natural-language risk reporting
derived from tail probabilities of the posterior distribution without invoking the
concept of variance or other statistical jargon.2

The article is organized as follows. The next section reviews relevant work in
the fields of property appraisal research, Bayesian audit methodology, Bayesian
sample size determination, elicitation of expert judgment and risk communica-
tion. The third section describes classical approaches to sample size determina-
tion illustrating their limitations and, thus, the need for an alternative approach.
The fourth section describes the article’s main result, an algorithm for com-
puting the minimum number of reappraisals required to achieve user-specified
posterior confidence in the event of compliance. The fifth section presents ex-
amples and numerical results illustrating how the procedure works in practice.
The final section concludes with a discussion of the broader issue of sufficiency
of evidence in quality assurance tasks conducted on behalf of taxpayers and
their representatives in local government.

1 The claim depends on correct model specification.
2 The audit problem analyzed in this article is based on a real-world compliance-
reporting task for which the Dallas Country Appraisal District (DCAD) in Dallas, Texas,
sought the author’s advice. In 2001, DCAD faced the prospect of proving to the State
Comptroller that Dallas County appraisals were within allowable limits for errors in
property valuations. Thus, DCAD had to produce a politically persuasive and statisti-
cally grounded statement attesting to the accuracy of its appraisals. Among other issues,
DCAD sought an answer to the sample size question: How many expensive in-depth
reappraisals should be performed in order to satisfactorily check that the rate of compli-
ance is close to 100%? Unsatisfied with answers provided by classical techniques, the
Bayesian technique presented in this article was developed.
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Background

There is compelling evidence that commercial and public-sector property ap-
praisals are systematically biased (Geltner 1989, Graff and Young 1999, Shiller
and Weiss 1999, Dietrich, Harris and Muller 2000). Some argue that gaps be-
tween statistical moments of appraisal-value and market-value distributions
are rooted in psychological biases, such as anchoring effects (Clayton, Geltner
and Hamilton 2001), although there is disagreement about their magnitude and
economic significance (Diaz 1997). As a rule of thumb, appraisal dispersion
as indicated by standard deviation appears to be approximately 10% (Hansz
and Diaz 2003), although feedback, which enables learning, and experience
(Spence and Thorson 1998) can moderate this dispersion somewhat. Appraisal
bias is important not only for reasons relating to disputes over property tax
collection, but also in eminent domain cases (Adams, Jackson and Cook 2001)
and as a potential predictor of mortgage default (LaCour-Little and Malpezzi
2003). There are also important normative issues relating to appraisal returns
and risk hedging, where overly smooth appraisal-based real estate time series
can unfortunately mask the true covariance structure between real estate and
other asset categories (Geltner 1989, Gau and Wang 1990, Hendershott and
Kane 1995, Lai and Wang 1998, Gunnelin, Hendershott, Hoesli and Soderberg
2004).

The real estate literature on appraisal technique rests largely on several classic
approaches (Isakson 1986, Lusht 1987, Kang and Reichert 1991, Isakson 1998,
Pace 1998). According to Roulac, Adair, Crosby and Lim (2004), however,
most contemporary appraisal research is difficult for real estate profession-
als to put into practice. One reason for the apparent gap between theory and
practice seems to be insufficient appreciation of the simultaneous importance
and difficulty of communicating about risk (O’Hagan 1998, Hoffrage, Lindsey,
Hertwig and Gigerenzer 2000, Gigerenzer 2002). A similar gap between theory
and practice (pointed out by Pham-Gia (1997) and O’Hagan (1998)) applies
both to the Bayesian audit literature (Baker 1977, Menzefricke 1984, Rohrbach
1986, Tamura and Frost 1986, Laws and O’Hagan 2002) and sample size se-
lection literature (Hora 1978, Aigner 1979, Cox and Snell 1979, Laws and
O’Hagan 2000).

Sample size selection models with attractive features that resemble the model
proposed in this article have been put forward (Chaloner and Duncan 1983,
Pham-Gia and Turkkan 1992, Bernardo 1997, O’Hagan 1998, Wang and
Gelfand 2002, Inoue, Berry and Parmigiani 2005). In general, this article’s
procedure differs from previous Bayesian sample size selection procedures in
that it eschews the concept of variance in elicitation and reporting, it does not
rely on normality assumptions or expected utility functions with special forms,
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and it permits updating with small samples that lie on the boundary of sample
space (e.g., those with exactly zero noncompliant observations).

Steel (1992) points out that auditors are hired to provide an opinion. While
courts have held auditors to certain standards of “reasonableness” and required
a “rational basis” for their judgments, there is as yet no uniform standard of
sufficient evidence in support of audit decisions. The proposed appraisal audit
procedure aims to provide a new tool to better integrate quantitative analysis
and judgment. It draws motivation from the unfortunate real-world prevalence
of ad hoc sampling rules (e.g., n = 30).

Classical Approaches

This section reviews classical or frequentist approaches to the sample size selec-
tion problem and, by way of contrast, demonstrates the advantages of Bayesian
techniques in terms of informational, cost and socio-technical efficiency.

Hypothesis Tests

Define

Yi =
{

1 if the i th unit audited is noncompliant

0 otherwise.

Yi =
{

1 if the i th unit audited is noncompliant

0 otherwise.

Let p represent the probability that Y i is noncompliant. All sampled units are
Q1assumed to be independent and have the same noncompliance probability p.

Define B as the number of noncompliant (i.e., bad) units in a sample of n
reappraised properties (so that n − B is the number of compliant units). Under
these assumptions, B has a binomial distribution with parameters p and n.
According to standard Neyman–Pearson methodology, the null hypothesis H0:
p = p0 is tested against the alternative hypothesis H0: p >p0 at the (1 − α)
level by choosing a (minimal) critical value c such that

Pr(B ≤ c) =
c∑

i=0

n!

i!(n − i)!
pi

0(1 − p0)n−i ≥ 1 − α. (1)

Because B is a count statistic, c is constrained to integer values. Noninteger
values of c are required to exactly satisfy the condition Pr (No Type-I error)=
1 − α. Recognizing that the left-hand side of (1) is increasing in c for fixed n, it
is obvious that the best critical value will be the minimal value of c satisfying the
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inequality. Hereα is the probability of incorrectly concluding that the population
error rate is greater than p0 under the null.

Without imposing further constraints, n and c are indeterminate because many
combinations of c and n can be chosen to satisfy (1). For example, (n, c) =
(5, 0), (35, 1) and (82, 2) are all approximate 95% tests of the hypothesis p =
0.01.

A standard way to choose among an infinite list of 95% tests is to consider power
against a particular simple alternative hypothesis. As in the continuous case,
each critical-value/sample-size pair corresponds to a power function. Choosing
the desired significance level and a point that is to intersect with the power
function pins down n and c.

Accordingly, one requires that the power function satisfies:

Pr(B > c) = 0.95 if p = p0 + 0.01. (2)

In other words, when the true noncompliance rate is one percentage point higher
than that specified by the null hypothesis, the test rejects the hypothesis p0 95%
of the time. Other values for the alternative noncompliance probability (perhaps
higher than p0 + 0.01) and the chance of rejection (perhaps lower than 95%)
might also be reasonable and would reduce the required sample size.

The hypothesis test approach requires the user to provide the simple null p0,
the simple alternative p1, the probability of type I error α as well as the power
1 − β at p1. Imposing the power condition (2) simultaneously with the type-I
error condition (1) jointly determines n and c. With p0 = 0.01, p1 = 0.02 and
α = β = 0.05, the solution to the system (1) and (2) is n = 1567 and c =
22. As mentioned above, the solution is only approximate, because n and c are
constrained to be integers. At p = 0.01 and n = 1567, α = Pr(B > 22) =
0.0478. At p = 0.02, Pr(B ≤ 22) = 0.0497.

Thus, hypothesis testing leads to large reappraisal costs. By reducing the strin-
gency of the confidence and power requirements to α = β = 10%, n and c are
reduced correspondingly to n = 945 and c = 13. Different simple alternative
hypotheses also may be substituted. For example, with p1 = 0.05 in (2) rather
than 0.02, the required sample size drops to n = 181 and c = 4.

In all cases, the number of reaudits is unappealingly large. No use is made of the
appraiser’s prior beliefs. And no probabilistic statement about the rate of non-
compliance is possible because the procedure is based on classical methodology
according to which the rate is not a random variable.
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Confidence Intervals

Confidence interval estimation is another standard technique from classical
statistics. The goal is to construct a random interval that covers the true param-
eter p 95% of the time. Because attention is focused on a rare event, p is near
zero, and the one-sided confidence interval [0, d(B, n)] is natural to consider,
where d(B, n) is the random upper endpoint of the interval defined implicitly
by the coverage constraint: Pr(0 ≤ p ≤ d(B, n)) = 0.95.

Unfortunately, explicit solutions for d(B, n) do not exist, and indeterminacy
once again requires additional constraints. A common solution to this problem is
to constrain the length of the interval to a predetermined value. The selection of
interval length is, however, difficult to link to beliefs, priors or expert judgment.
What basis is there, for example, for choosing an interval length of 0.01 as
opposed to 0.02?

Confidence Intervals Based on Normal Approximations

Confidence intervals based on transformations of the discrete variable B to
asymptotic normality are also common. The most well known is:

B − np√
np(1 − p)

a∼ N(0, 1). (3)

From this, it follows that the event { B
n − 2

n

√
np(1 − p) < p < B

n +
2
n

√
np(1 − p)} occurs in approximately 95% of (large) samples drawn. Be-

cause the term
√

p(1 − p) attains a maximum of 0.5, the interval[
B

n
−

√
1

n
,

B

n
+

√
1

n

]
, (4)

asymptotically covers p at least 95% of the time. By requiring (with little justi-
fication) an interval length of 0.02, the necessary sample size for an asymptotic
95% confidence interval is n = 10,000.

Required sample size can be reduced if one is willing to impose an upper bound
φ ≤ 0.5 on p so that

√
p(1 − p) is bounded above by

√
φ(1 − φ). In general,

if λ is the desired length of the confidence interval, φ is the upper bound of p,
1 − α is the desired confidence level and �(.) is the standard normal cumulative
distribution function, the sample size formula is:

n = 4φ(1 − φ)(�−1(1 − α/2))/λ)2. (5)

Setting α = 0.05, φ = 0.05 and λ = 0.02 reduces the sample size to n =
4(0.05)(0.95)(2/0.02)2 = 1,900. As impressive as this 81% reduction in sample
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size is, 1,900 remains unacceptably large in the appraisal audit context, where
as few as 100 reappraisals would vastly outstrip the resources available to most
country appraisal offices in the United States.

A second commonly encountered normal approximation is

arcsin
(√

B/n
)

a∼ N

(
arcsin

(√
p
)
,

1

4n

)
. (6)

Rearranging the equation leads to the approximate 95% confidence interval:[
sin2

(
arcsin

(√
B/n

)
−

√
1

n

)
, sin2

(
arcsin

(√
B/n

)
+

√
1

n

)]
. (7)

Setting the length of this interval equal to 0.02 and solving for n (with numerical
techniques) result in required sample sizes similar to those derived from the
binomial model (e.g., n = 10,000 with α = 0.05).

The Bayesian Approach

The conjugate beta-binomial distributions are well known in Bayesian statis-
tics (Chaloner and Duncan 1983, Calvin 1990, Wolfson and du Berger 1995).
Suppose the noncompliance rate for the population of property appraisals is the
random variable p with beta pdf

f p(p) =
{

�(a+b)
�(a)�(b) pa−1(1 − p)b−1 if p ∈ (0, 1)

0 otherwise,

where a and b are parameters through which prior beliefs influence the distribu-
tion’s shape. It is well known that Ep = a

a+b and the mode of p is (a − 1)/(a +
b − 2) provided a > 1 and b > 1. Assuming that the appraisal compliance
process at the level of individual sample units is i.i.d. with sample-unit non-
compliance probability p, the number of noncompliant units B (the number of
bad ones) in a sample of n reappraisals is binomial.3

The posterior pdf of p given realized values of B and n is

3 The assumption that there is a common probability of noncompliance across all prop-
erty appraisals may appear restrictive. Appraisers are likely to know of local conditions
that could be used to hierarchically model the population by partitioning it into geo-
graphically defined subgroups that vary with respect to rates of compliance. Introducing
additional complexity, however, undermines the goal of simple, transparent and po-
litically robust risk communication. Although additional flexibility of the hierarchical
approach across different stratification schemes would allow for the possibility of achiev-
ing even smaller sample sizes, the subsequent analysis shows that very small samples
are satisfactorily achieved within the simpler framework.
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f p|B,n = �(n + a + b)

�(B + a)�(n + b − B)
pB+a−1(1 − p)n+b−B−1, (8)

which has mean

E[p | B, n] = a + B

a + b + n
(9)

and

Pr(p ≤ t | B, n) =
∫ t

0

�(n + a + b)

�(B + a)�(n + b − B)
pB+a−1(1 − p)n+b−B−1dp.(10)

Additional user-supplied constraints are required to determine sample size.
The next section considers how to formulate those constraints in a manner
that efficiently elicits prior information from appraisal experts and leads to an
intuitive statement about the accuracy of appraisals that is maximally user-
friendly to nonstatisticians.

Prior Elicitation and Statement of Results

According to O’Hagan (1998), there is a surprising dearth of studies that strive
to incorporate realistic priors.4 O’Hagan expresses concern that Bayesian statis-
ticians pay too little attention to elicitation and suggests that, when they do pay
attention to elicitation, they should give more consideration to the importance
of simple, familiar language when mapping stated beliefs (of those who possess
prior information) into parameterizations of prior distributions. O’Hagan and
colleagues rely on a specialized software package that conducts prior elicitation
by asking experts (engineers in O’Hagan’s case) to provide quantiles. Using
visual feedback and a sequence of redundant questions, the software points out
any inconsistencies to users among their responses, allowing for subsequent
correction and continuing in a loop until the user chooses to terminate the elic-
itation process. The software then parameterizes the model based on the last
prior distribution elicited or based on an average of implied parameterizations
derived from multiple elicitations (Garthwaite and O’Hagan 2000).

User-supplied quantiles are not without problems, however. In a laboratory
study, Hogarth (1975) found that interquartile ranges from elicited distributions
contained considerably less than 50% of outcomes, implying that objective

4 Bayesian researchers working on other aspects of the sample size selection problem
also lament the lack of Bayesian field applications, similarly commenting on the high
ratio of theoretical to applied work in the Bayesian paradigm (Pham-Gia 1997). Also see
the opening quote of de Finetti in Hogarth (1975) imploring social scientists to develop
improved techniques of prior elicitation.
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distributions had higher dispersions than subjective priors derived from quartile
elicitation. There is conflicting evidence about whether subject-area expertise
reduces such bias (Stewart, Roebber and Bosart 1979, Christensen-Szalanski
and Bushyhead 1981). O’Hagan (1998) conjectures that particular quantiles, for
example tertiles (i.e., partitioning the support into three equiprobable regions),
are better suited for unbiased elicitation.5

Similar to O’Hagan (1998), the elicitation procedure here focuses on a par-
ticular quantile. The natural quantile to focus on is the lower probability tail
of noncompliance Pr(p < p0) cut off by the expert’s prior point estimate p0.
Because prior p has a beta distribution, its shape is flexible and there seems
to be little gain in averaging over multiple elicitations as in O’Hagan (1998),
Walls and Quigley (2001, 2004) and Chaloner and Duncan (1983). The expert
chooses both the quantile and its probability. The quantile is not abstract, as it
concerns the rate of noncompliance which is the central motivation for the audit.
Additional elicitation questions about upper tails or mid-distribution tertiles are
far less intuitive and distant from the concerns of the expert in the context of the
audit problem. While the one-shot elicitation advocated here may strike some
as crude in comparison to elaborate elicitation techniques that appear elsewhere
in the literature, procedural simplicity, the intuition of the expert and nonuni-
formity of expertise over the range of p argue in favor of a single question about
the lower tail of the rate of noncompliance. Details of the elicitation procedure
are provided next.

Prior Elicitation

The prior distribution is determined by asking the expert two questions:

Q1: “In your opinion, what fraction of property appraisals are currently out
of compliance? Please state your best guess.” [Response denoted p0.]
Q2: “Realizing that the estimated rate of noncompliance you just mentioned
(p0) is uncertain and could actually be higher or lower, what is the chance,
in your opinion, that the actual noncompliance rate is less than or equal to
p0?” [Response denoted k0.]

Rather than asking the expert, who may be less than familiar with the statistical
concept of variance, to state the precision of his or her prior beliefs in terms of

5 Incentive problems may also lead to biased elicitation when state officials are in charge
of auditing their own work. This article assumes, however, that a combination of positive
incentives, reputation effects and reciprocal behavior (Gintis 2000) align the interests of
appraisal officials with the goal of uncovering the objective frequency of noncompliance.
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dispersion, Q2 asks for a confidence level or lower-tail probability k0 measuring
the (subjective) probability that the noncompliance rate is at least as small as
p0.

The elicitation literature raises the question of whether point estimates such as
p0 (elicited in Q1) should be equated with the mean or mode of the parametric
distribution used to represent unknown p. O’Hagan (1998) argues that modes are
more appropriate than means, especially for highly skewed distributions where
the gap between the two can be large. Bernardo (1997) and Chaloner and Duncan
(1983) also advocate elicitation using modes, although a number of classic
articles in the Bayesian sample size literature, such as Pham-Gia and Turkkan
(1992), Kadane, Dickey, Winkler, Smith and Peters (1980) and Bunn (1979),
conduct elicitation by equating point estimates with parameterized means. Of
course, the law of large numbers implies that the empirical noncompliance rate
approaches the expected value of p as the sample size grows large. Because
elicitation is stated in terms of this population characteristic rather than as a
characteristic that applies to a single sample unit, it makes more sense to equate
the point estimate elicited in Q1 with its expected value.

Thus, the expert’s response to Q1 provides an estimate of the prior mean:

a

a + b
= p0. (11)

The response from Q2 may be equated with the parameterized lower tail prob-
ability of the prior distribution:

Pr(p ≤ p0; a, b) =
∫ p0

0

�(a + b)

�(a)�(b)
pa−1(1 − p)b−1dp = k0. (12)

Together, Equations (11) and (12) determine the gamma parameters a and b.6

As an alternative, a multiple choice instrument covering the relevant ranges of
p0, k0 and k1 may be desirable.

The next step is to give symbolic expression to a natural English language
statement about the posterior probability of compliance. Even with the prior

6 Numerical grid search (coded in MATLAB and available from the author upon request)
quickly computes values for a and b given user-supplied values of p0 and k0. The value
of a that comes closest to satisfying Pr(p ≤ p0; a, b) = k0 while satisfying Pr(p ≤ p0; a,
b) ≤ k0 (so that the prior distribution parameters are no more confident than the stated
level k0) is selected. Note that Pr (p ≤ p0; a, b) is not monotonic in b and it is therefore
necessary to search over a large range. Another constraint built into the elicitation setup
is the requirement that prior confidence level k0 is at least 50%. If there is less than a
50% belief that p ≤ p0, then the expert should adjust p0 upward so that there is better
than a coin flip’s chance that the true error rate is bounded above by the prior mean p0.
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distribution completely determined, an additional constraint on the posterior
distribution is needed to solve for sample size. Because it is intuitive for non-
statisticians and avoids the concept of variance, the following lower-probability-
tail form for stating the statistical objective of the audit is proposed:

Pr(p ≤ 0.05 | observed reappraisal sample ) = 0.90, (13)

where the threshold 0.05 and target level of confidence 0.90 are chosen simply
for illustration. This form provides an intuitive statement of the audit’s main
result: “I am 90% confident that the rate of noncompliance is under 5%.” The
remaining issue is what to assume about the observed reappraisal sample before
it is observed. The discussion below makes clear that the remaining constraints
that determine sample size correspond to varying strategies for dealing with
uncertainty about the posterior lower tail probability.

Constraining the Posterior Distribution of p

In choosing a condition on the posterior distribution that targets the auditor’s
goal and provides scientific support for a quantitative statement summarizing
audit results, the social dimension of the socio-technical task becomes criti-
cal. After all, if end-users do not believe, trust or understand the quantitative
statements resulting from the appraisal audit, then the procedure has failed no
matter how desirable its statistical properties.

Given the parameterized prior, the posterior distribution can be expressed as a
function of the observed number of noncompliant units B and sample size n.
Virtually all interesting statistics and probabilities computed from the posterior
distribution will depend on B and n. Constraints must be imposed to determine
n in advance of the observed value of B.

A variety of posterior distribution constraints have been suggested in the
Bayesian sample size literature. One obvious approach is to turn to formal
decision theory by specifying an expected utility function and choosing sample
size as its optimizer with respect to n (Lindley 1997). However, the statistics lit-
erature has shown that special functional forms in the objective function usually
fail to convince others as to their reasonableness compared with more straight-
forward interval or tail-probability constraints imposed directly on the posterior
distribution (Adcock 1997, Joseph and Wolfson 1997, Pham-Gia 1997).

Among the alternatives to expected utility, one of the most commonly referred
to is the average coverage interval, which selects sample size by minimiz-
ing n subject to the constraint that a fixed-length interval (with user-specified
length) covers the posterior mean with average user-specified probability 1 − α.
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When the posterior distribution is symmetric, this is a relatively straightforward
calculation (Box and Tiao 1973), and Joseph, Wolfson and du Berger (1995)
show how to handle the nonsymmetric case. A similar interval constraint that
leads to different choices of sample size requires the average length of the
1 − α coverage interval to equal user-specified l, while the coverage probabil-
ity constraint holds exactly. The difference concerns whether l is fixed and the
coverage probability constraint is imposed under the expectation operator with
respect to possible samples (the first case), or whether the coverage probabil-
ity is fixed and the coverage length constraint is imposed in expectation form
(Joseph, Wolfson and du Berger, 1995).

An alternative to coverage length and coverage probability constraints in ex-
pectation is to require that desired posterior probabilities or interval lengths
hold when the worst possible sample is observed—the so-called worst-outcome
criterion (Pham-Gia and Turkkan 1992). As intuition might suggest, the worst-
outcome criterion leads to more conservative (i.e., larger) sample sizes. Bayes
factors and power constraints on hypothesis tests have also been proposed in spe-
cialized applications with normality assumptions (Spiegelhalter and Freedman
1986, Weiss 1997). Despite the obvious limitations of normality assumptions,
much of the existing sample size selection procedures rely on them (Joseph
and Belisle 1997, Kadane and Wolfson 1998) or transforms to log normality to
handle nonsymmetric distributions (Garthwaite and O’Hagan 2000).

While offering numerous possibilities, existing sample size determination tech-
niques come with serious limitations for the purpose of the appraisal audit
problem. Coverage intervals are ill suited for variables with highly skewed dis-
tributions and are confusing to explain to end-users. Given the asymmetry of p,
normality assumptions are clearly inappropriate. Finally, existing beta-binomial
techniques invoke a number of difficult-to-justify conditions that needlessly
push the limits of the socio-technical constraints.

For example, Cox and Snell (1979) and Moors (1983) require users to provide
two gamma distribution parameters without describing the mapping from sim-
ple language into those values. Bernardo’s (1997) Bayesian sample selection
technique adopts a beta-binomial approach and uses elicitation techniques sim-
ilar to this article’s; however, n is derived from expected utility maximization
employing a difficult-to-justify information-theoretic expected utility objective.
Chaloner and Duncan’s (1983) sample selection procedure achieves admirable
algorithmic simplicity (effectively satisfying the socio-technical constraints) in
both elicitation of priors and specification of posterior constraints, but unfortu-
nately relies on assumptions that rule out samples with exactly zero noncompli-
ant units, a nonnegligible possibility in well functioning appraisal systems with
small reappraisal samples. Pham-Gia and Turkkan’s (1992) sample selection
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procedure also shares similarities with this article’s, including the beta-binomial
setup. They warn, however, about problems when p is close to zero, because
their coverage interval constraint depends on variance which, unlike the lower
tail probabilities used in this article, is highly sensitive to changes in p close to
zero.

In this article, the posterior constraint used to close the model and produce a
minimal sample size derives from the following question:

Q3: “As you know, we are trying to decide how many reappraisals to conduct.
The more the reappraisals, the more confident we can be about our statements
concerning the rate of noncompliance. How confident would you like us to be
about our statements? That is, what probability would you propose that our
statements concerning noncompliance are correct?”

Having decided on a lower-tail-probability constraint (which can be viewed as
a fixed length coverage interval [0, t]), the final question is whether the desired
event p ∈ [0, t] should hold with probability k1 for the average sample, for all
samples or for some sample in particular. When the audit system is functioning
well, appraisal officials may expect to see exactly zero noncompliant units in n
reappraisals (i.e., B = 0). Building on this point of view that the natural default
of the appraisal system is a well functioning state and that minimal checking
is usually required, the procedure computes the minimum sample size required
to achieve the condition

Pr(p < t | B = 0, n) = k1. (14)

Solving Equation (14) in n yields the minimum possible sample size to achieve
posterior confidence k1 given the prior determined by responses to Q1 and Q2.
Thus, the constraint used here to determine n is the opposite of Pham-Gia and
Turkkan’s (1992) worst outcome criterion.

One may question whether it is reasonable to select sample size based on the
assumption that the best possible outcome will occur. Keep in mind, however,
that the ex post statement the procedure delivers to those who ordered the
audit reflects the posterior probability Pr(p < t | B), whether it achieves target
posterior confidence k1 (i.e., if B = 0) or not. After the reappraisal sample is
drawn and B is observed, the appraiser can make the simultaneously rigorous
and intuitive claim that: The Appraisal Authority is Pr(p < t | B) × 100%
confident that the rate of noncompliance is under the allowable limit t.

Happily, the Bayesian procedure allows the user to look at the posterior distri-
bution after any number of reappraisals, make a statistically supported claim
about Ep and Pr(p < t), reset priors at current posterior values and start
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again. Starting again means using the procedure to compute a new minimum n
conditional on the sample, or partial sample, observed to date. If B > 0 occurs,
then, the new, more pessimistic prior is reset and the procedure is simply run
again before drawing a new sample of reappraisals to test compliance.

The best case criterion reflects the outlook of Andrews and Smith (1983,
p. 125) who described the advantages of Bayesian audit technique by noting
that “small samples will suffice when the system is good but large samples are
needed when it is bad.” Indeed, this is precisely what is accomplished within
the present framework, relying on expert intuition about whether the system
is running well informed by prior p0 relative to the exogenous threshold t.
Furthermore, when the expert’s intuition is not borne out by observation, the
Bayesian technique recovers and updates. In contrast, the frequentist position
leaves little room to accommodate intuition and adjust midstream according to
observation.

Summary of the Appraisal Audit Procedure

The user provides:

• Prior expectation p0 for the noncompliance rate, elicited as the response
to Q1.

• Prior confidence k0, the user’s subjective lower tail probability that the
true noncompliance rate p is below p0, elicited as the response to Q2.
If k0 is 50% or less, whoever it is whose prior is being elicited should
be encouraged to adjust p0 and k0 higher so that k0 > 0.50. Note too
that k0 < 1 is required to avoid a degenerate prior.

• t, the threshold defining compliance, exogenously given by law, or pro-
vided by those requesting the appraisal audit. To guarantee 0% non-
compliance requires every property in the district to be reappraised. To
avoid this, it must be that t > 0. Note, too, that the audit is pointless if
t is near 0.50 because, in that case, it guarantees nothing more than a
coin toss’s chance of compliance. Thus, the allowable threshold should
be chosen considerably less than 50%: t � 0.50.

• desired level of posterior confidence k1 associated with the event of
population compliance, p < t , elicited as the response to Q3.

Next, the prior beta distribution of p is parameterized by solving for a and b in
the two equations

p0 = a

a + b
and Pr(p < p0) = k0. (15)
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The minimum sample size n∗ is computed by solving for n in:

isPr(p ≥ t | B = 0; n) = k1. (16)

After n∗ reappraisals have been conducted and rated as compliant or noncom-
pliant, and if the realized number B is indeed zero, the audit concludes with
the statement: The Appraisal Authority is k1 × 100% confident that the rate of
noncompliance is less than the allowable limit t.

For a strictly positive realized value of B, two options are available. First,
by adjusting target confidence k1 downward to the realized level of posterior
confidence Pr(p < t | B = realized B), an analogous statement may be reported
with “Pr(p < t | B = realized B) × 100% confident” replacing “k1 × 100%
confident.” This may be interpreted either as a moderate success, if Pr(p <

t | B = realized B) is fairly close to k1, or as a negative result if the observed
reappraisals reveal that the population is highly unlikely to be in compliance.

A second alternative available anytime a positive number of noncompliant re-
appraisals is observed is to halt the audit. At that point, the appraisal authority
most likely modifies the standard appraisal technique and undertakes costly
measures to move toward compliance. When desired, the prior p0 may then be
reset, either to the last posterior mean or by eliciting a new subjective prior. The
procedure begins again and iterates until a satisfactory audit results.

An easy-to-use MATLAB code takes user-supplied inputs p0, k0, t and k1

and provides the following output: prior distribution beta parameters a and b;
minimal sample size n∗ achieving the condition Pr(p < t | B = 0, n) = k1

and a user query to input the realized value of B so that the actual posterior
probability of compliance Pr(p < t | B) can be computed. The next section
presents several numerical examples illustrating the tremendous sample size
savings possible using the procedure in conjunction with the best case criterion
proposed above. The best case criterion is a formalization of Andrews and
Smith’s (1983) assertions about low sample auditing requirements for well-
functioning systems. As argued above, the costs of being wrong about the well-
functioning system are mitigated by the procedure’s flexible response should
noncompliant units in the initially small reappraisal sample be discovered.

Examples

Suppose the user’s threshold for noncompliance is 5% (t = 0.05). Suppose
also that the user believes the population is compliant (p0 = 0.05), but only
weakly so, reflected in the choice of prior probability k0 ≡ Pr(p < 0.05) =
0.60. The user wants to justifiably claim she is 90% confident (k1 = 0.90) that
the noncompliance rate is less than 5%. How many units must be audited?
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Figure 1 � Prior and postaudit posterior pdfs, f (p) and f (p | n), for the rate of
noncompliance p. The prior mean p0 and exogenously given threshold t are set at 0.05.
Prior weight on the event of compliance, k0, is assumed to be 0.60. The target posterior
weight on the event of compliance, conditional on n = 33 compliant observations, is
k1 = 0.90.
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The prior beliefs p0 and k0 completely determine the prior beta distribution
of p with parameter values a = 1.52 and b = 28.88. The posterior confidence
requirement Pr(p < 0.05 | B = 0, n) = 0.90 requires n = 33 reappraisals. If
indeed all 33 are compliant, the appraiser may state, with rigor and simplicity,
that, “I am 90% confident that the rate of compliance is above 95%.” The
MATLAB code quickly provides the mapping from beliefs into required sample
sizes along with the graph depicted in Figure 1 containing an overlay of the
prior (solid line) and posterior (dotted line) distributions of p (conditional on
B = 0).

Obviously, the required sample size is sensitive to user-supplied inputs. Table 1
demonstrates this sensitivity. Its first row tabulates results of the numerical
example described above that led to n = 33. Changing one user-supplied input
at a time, Table 1 attempts to describe the sensitivity of n to p0, k0, t and
k1 in the neighborhood of that parameterization (p0 = t = 0.05, k0 = 0.60
and k1 = 0.90). Setting the prior mean more pessimistically (p0 from 5% to
10% noncompliant) only costs the auditor 10 additional reappraisals (required n
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Table 1 � Required number of reappraisals (n) as a function of user-supplied inputs.

Required n p0 t k0 k1

Increasing prior rate of noncompliance p0

33 0.05 0.05 0.60 0.90
37 0.06 0.05 0.60 0.90
40 0.07 0.05 0.60 0.90
41 0.08 0.05 0.60 0.90
42 0.09 0.05 0.60 0.90
43 0.10 0.05 0.60 0.90
Decreasing target noncompliance threshold t
33 0.05 0.05 0.60 0.90
49 0.05 0.04 0.60 0.90
75 0.05 0.03 0.60 0.90
128 0.05 0.02 0.60 0.90
285 0.05 0.01 0.60 0.90
Increasing prior confidence k0

33 0.05 0.05 0.60 0.90
14 0.05 0.05 0.70 0.90
5 0.05 0.05 0.80 0.90
1 0.05 0.05 0.90 0.90
Decreasing prior confidence k0

33 0.05 0.05 0.60 0.90
37 0.05 0.05 0.59 0.90
41 0.05 0.05 0.58 0.90
47 0.05 0.05 0.57 0.90
55 0.05 0.05 0.56 0.90
65 0.05 0.05 0.55 0.90
Increasing posterior confidence k1

33 0.05 0.05 0.60 0.90
35 0.05 0.05 0.60 0.91
38 0.05 0.05 0.60 0.92
41 0.05 0.05 0.60 0.93
44 0.05 0.05 0.60 0.94
48 0.05 0.05 0.60 0.95

Note: The user-supplied inputs in the column headings are defined as follows. The prior
rate of noncompliance is p0; the exogenously given allowable limit for noncompliance
is t; k0 is the prior probability of the event p < p0 and k1 is the posterior probability
that p < t .

ranging from 33 to 43). The second block of Table 1 demonstrates that changes
in threshold t have a more dramatic effect. Aiming for p < 0.01 as opposed to
p < 0.05 increases n from 33 to nearly 300. The third block of Table 1 shows,
as one would expect, that increasing prior confidence k0 reduces the number of
required reappraisals. The last block of entries in Table 1 shows that increasing
the required level of posterior confidence increases n, but not dramatically so:
changing k1 from 0.90 to 0.95 increases n from 33 to 48.
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Apart from the question of sensitivity is the issue of what to do should noncom-
pliant units appear in the reappraisal sample. If a noncompliant unit is observed
at any time, the number of observed B out of n0 re appraisals drawn so far can
be fed back into the software as inputs, returning three quantities: the updated
distribution of p (characterized by new values of a and b) with updated mean
p0, the updated value of Pr(p < p0) and the new minimum sample size required
to achieve Pr(p < t | B = 0, n) = k1.

For example, if after beginning with the same starting values as above, the 10th
reappraisal is found to be noncompliant, the updated distribution of p has a
larger mean, 0.0624. In this case, 80 additional reappraisals (as opposed to 33
before the first 10 reappraisals were observed) must be drawn in order to satisfy
the posterior confidence condition.

Conclusion

This article argues that currently available audit methodology is not readily
adaptable to the specific needs of government-appointed officials charged with
auditing property appraisals and persuasively communicating the results to
government overseers and the general public. The article develops a Bayesian
procedure that is superior to classical hypothesis testing in terms of informa-
tional and economic efficiency. The proposed procedure systematically incor-
porates appraisal experts’ prior beliefs. The procedure’s final output enables
auditors to issue a rigorous statistical statement about the rate of noncompliance
and the degree of confidence ascribed to it. The procedure provides additional
cost savings because its required sample sizes are small relative to those based
on classical sample size determination formulas.

The article demonstrates how to compute the minimum number of reappraisals
required to achieve a target level of confidence (i.e., posterior probability) for
the event that the rate of noncompliance is below the mandated threshold.
If noncompliant reappraisals are observed, the procedure easily updates and
recomputes the required number of reappraisals. Priors may be updated and
sample sizes may be recomputed at any time because the procedure is Bayesian
and therefore immune to classical problems associated with data mining and the
distributional consequences of recomputing models multiple times in variant
forms.

This article intentionally eschews the generality of elaborate parameterizations
in favor of context specificity and simplicity. Given the socio-technical nature
of the task, algorithmic complexity and statistical jargon tend to undermine the
ultimate goal of persuading overseers and the public that appraisals comply with
accuracy guidelines. The sample size determination procedure maps intuitively
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articulated notions of accuracy and precision into the appropriate statistical
concepts, and it maps quantitative audit results back into natural English lan-
guage statements. Beyond the appraisal audit problem, it should be clear that
the technique may be applied to similar situations in which government officials
must audit their own work and convince overseers, especially the public, that
exogenous standards of accuracy are met.

Thanks to James Murdoch for posing the reappraisal sample-size problem and
helping in the development of its solution. Feedback from two anonymous ref-
erees is gratefully acknowledged. Valuable research assistance was provided
by Yu Xue.
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