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Abstract—Facing various constraints, software developers are
forced to make trade-off decisions during the software develop-
ment process. Technical debt management aims to acknowledge
and govern these trade-off decisions, the debt’s payoff, in the
process optimizing the efficiency and sustainability of the project
for the long-run. Core to successful technical debt management
is delivering up-to-date and accurate information to correct
project stakeholders, so that technical debt may be properly
accounted for in the project’s decision making. Whilst solutions
exist for identifying technical debt there are very few solutions
that maintain accumulated technical debt information. Noting
the overwhelming speed during software development, and par-
ticularly in environments where rapid delivery is the norm, the
lack of accumulated technical debt information could result in
ineffective management. We introduce technical debt propagation
channels in this paper to advance software maintenance research
on two accounts: (1) We describe the fundamental components
for the channels, allowing identification of distinct channels, and
(2) we describe a procedure to identify and abstract technical
debt channels in order to produce technical debt propagation
models. Our propagation models pursue automation of technical
debt information maintenance with program analysis results, and
translation of the maintained information between existing—and
currently disconnected—technical debt management solutions. We
expect the immediate technical debt information to enhance
applicability and effectiveness of existing technical debt man-
agement approaches.

I. INTRODUCTION

A software development method describes a set of prac-
tices, processes, and roles that are suitable for producing
software in a particular environment. Common environment
characteristics include requirement-change-volatility, resource-
availability-confidence, and level of regulation. From the early
2000’s a number of software development methods were
introduced that targeted environments with high requirement
change rates and scarce resources [1]. The commonality of
these methods is the application of iterative and incremental
development. These approaches define cycles of development
(i.e. iterations) during which no requirement changes are
accepted, and the end result of a cycle is a functional addition
(i.e. increment) to the software product [2]. The iterations
remove volatility for a short period of time while the increment
allows the client to base his/her feedback on the actual product.

In the wake of iterative and incremental software develop-
ment methods (many of which are referred to as the agile
or the lean methods) becoming more frequent, technical debt
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management has arisen to address the issue of maintaining
efficiency [3]. This is particularly necessary, as successive
software iterations depend on the completeness and qual-
ity of prior iterations in order to deliver new functionality
with set resources. However, inoptimalities do emerge due
to trade-offs, oversight, or environmental changes, and they
persistently affect future iterations until seen to [3]. Technical
debt management pursues introducing structure and order into
these, often ambiguous, inoptimalities so as to resolve them
adequately to the software development project [4], [5], [6].

Technical debt management consists of three phases [7]:
identification, estimation, and decisions making. Identification
captures technical debt instances, and estimation produces
effort estimates for the instances based on upcoming changes
and historical data. Knowledge regarding the propagation of
existing technical debt within the project is core to this phase’s
success [8]. The decision making phase applies suitable eval-
uation process in creating estimates to determine handling for
technical debt instances.

It can be noted that technical debt identification is context-
dependent as an inoptimality consists of deviations in imple-
mented artifacts, and, hence, the implementation technology
defines the context (e.g. the Python programming language or
UML for design descriptions). Similarly, estimation requires
context-dependent information in order to properly evaluate
how technical debt has and will propagate in these contexts,
and thus, accumulate or dissipate effort [9].

While the decision making phase, arguably, does not require
technology context related information, the information need
it imposes on to the estimation phase is project-context de-
pendent. Notably, for current software development methods
and practices, the project’s required frequency and diversity of
information can be notable. For example, the Scrum method
[2] sees decision making events both daily and every few
weeks in the form of daily stand-ups and Sprint reviews and
retrospectives. Concluding, the estimation phase’s ability to
serve technical debt information as frequently and as appro-
priately as possible enables technical debt related decision
making, even at the level of a single developer making multiple
decisions a day regarding work carried out.

Prior research on technical debt has successfully introduced
technical debt identification, estimation, and decision making
approaches (e.g. [6], [10], [11], [12]), or described how



solutions from other domains can be adopted for these phases
(e.g. [8], [13]). However, the majority of the solutions come
with preset technology or project contexts which is problem-
atic. Indeed, Holvitie et al. [14] have noted that technical debt
is capable of propagating between components that exist in
different phases of the software development life-cycle. That is
to say, the same technical debt instance may affect design and
implementation phases of the software development. Based on
this they have further postulated that technical debt is capable
of leaving its original technology context [15]. Since both
the identification and estimation phases are context dependent,
research on how technical debt propagates within and between
these contexts is required, but currently absent.

Hence, in this paper we make the proposal for technical debt
propagation models, which are abstractions from technical
debt propagation channels observed during software develop-
ment undertakings. The models contribute to technical debt
management by explaining how technical debt information
transforms from one context to another. This insight paves
way for the translation of information between technical
debt management solutions and identifies gaps in the current
information flow. For instance, our models can be seen to
link source code and documentation elements so that technical
debt identified in one context could be assessed while taking
into account the effort associated with elements in the other
(e.g. linking God Class implementation debt solutions [8],
[16], [17] to maintenance debt solutions [18], [19]).

Furthermore, given that software development can grow
in complexity over time, the models’ capability of being
programmatically assessed should be highlighted, as manual
maintenance is not feasible for busy developers. Qualitative
analysis is required to identify technical debt [8], but as long
as the identified elements remain static the contexts’ available
semantics can be used to maintain this information. Hence,
tools that allow documenting instances of technical debt could
(and should) be superimposed with this maintenance feature
(e.g. [20] provides a platform for combining these features).

The rest of the paper is constructed as follows. Section II
reviews related work on technical debt propagation and estima-
tion, and software entity interconnections. Section III describes
the characteristics of technical debt propagation as channel
properties. Section IV defines a method for identifying and
abstracting the technical debt channels to produce technical
debt propagation models. Discussion on the implications and
threats is given in Section V. Section VI concludes the paper.

II. RELATED WORK

To provide a basis for our research, we review existing work
on technical debt propagation and estimation in Section II-A,
and on software entity relations modelling in Section II-B.

A. Technical Debt Propagation and its Estimation

McGregor et al. [21] hypothesized that there are two ways
for technical debt to propagate within ecosystems. Firstly, they
noted that the technical debt for a newly created asset is “the
sum of technical debt incurred by the decisions made during

the asset’s development and some of the technical debt from
the assets that were integrated to it”. Regarding this, they
also noted that multiple implementation layers can diminish
debt. Secondly, they established that the user of an asset did
not accumulate technical debt directly, but the effects of the
technical debt were felt indirectly by the user as implications.
Regarding both assessments, they note that the compound debt
may become larger than the sum of its sources [21].

Along similar liners, as part of his work, Schmid [22]
provides a formal definition for technical debt accumulation.
Here, an evolution step is defined as an externally observable
behavior change that introduces a characteristic to a system.
This includes both addition of new functionality as well as
quality modifications. Technical debt accumulation (which we
interpret as the cumulative effect of technical debt propaga-
tion) is described as the difference in costs to implement a
sequence of evolutionary measures in the current system, in
comparison to an optimal system; where both systems are
considered behaviorally equivalent.

Regarding, especially value, estimation of identified tech-
nical debt, Zazworka et al. [23] note from their case-study
that principal and interest characteristics of technical debt are
not bound to the type of technical debt. Eisenberg [24] notes
that threshold based management approaches require defining
the cost associated with reducing each type of technical debt.
Falessi et al. [25] collect requirements for technical debt tool
support. For valuation of the debt’s interest, they note that a
single debt may affect diverse quality characteristics differ-
ently. Falessi et al. work also acknowledges the compound
property as discussed previously by McGregor et al. [21].
Finally, Zazworka et al. [16] consider refactoring cost and
impact on quality characteristics as the two prioritization
dimensions for managing specific types of design debt.

From this short literature review we note that previous work
has described technical debt propagation capabilities, even
exhaustively, but what is lacking is a method for capturing
the different ways and forms with which technical debt can
propagate within software projects. Noting that the reviewed
work has also argued for the importance of acknowledging dif-
ferences in the value generation of different types of technical
debt, the authors believe that it is timely to develop technical
debt propagation models. In fact, these would contribute
greatly towards the realization of managing technical debt
propagation capabilities for particular settings.

B. Software Entity Interconnections

Kim et al. [26] discuss an approach for classifying software
changes. In their approach, they first extracting change history
for projects from the projects’ software configuration manage-
ment systems. From this history, the bug-introducing changes
are identified and feature extraction is applied for them in
order to produce a classifier. Notably, bug-introducing changes
are identified by back-tracking from the bug-fixing change.
Further, feature extraction takes into account not only the
program implementation but also the associated log messages
[26].



The Software Process Engineering Metamodel (SPEM) [27]
can be seen to extend the inter-connectivity of software entities
beyond the software implementation. The SPEM pursues for-
malization of software processes via definition of their process
components, component relations, and the impulses flowing
within. Effects of the interconnections are not described by
the model, however the work of Rochd et al. [28] can be
seen explaining this via superimposing synchronization for the
modeled components. Synchronization events are all modifica-
tions that affect the process structure or the process contents.

III. TECHNICAL DEBT PROPAGATION CHANNELS

This section provides the theoretical rationale for capturing
technical debt propagation as channel descriptions. Facilitation
is given as a definition of technical debt channels’ common
features in Section III-A and information properties in Section
1I-B.

A. Channel Features

Our objective is to describe technical debt propagation chan-
nels capturing the effects of inoptimal software entity alter-
ations, or their possible implications on the hosting organiza-
tion (implications are discussed as realization probabilities in
Section III-B3). Software entity alterations correspond to soft-
ware changes as argued by Holvitie et al. [15]. These changes
(entity alterations) are captured here as Entity-Relationships
(ER) aligned with Kagdi et al.’s [29] definition of software
change as “the addition, deletion, or modification of any
software artifact such that it alters, or requires amendment
of, the original assumption of the subject system”.

As a technical debt channel captures a particular, distinct,
instance of technical debt accumulation, the channel’s defini-
tion is always comprised of a single entity-entity-relationship.
Their combination would correspond to an instance of a
synchronized SPEM (describing the technical debt propaga-
tion process for—i.e. the channels available to—instances of
technical debt in the project’s specific set of contexts).

Fig. 1. Software entities and their relationships (red) and technical debt
channels (blue; dotted lines)

Figure 1 demonstrates a collection of software entities
(e.g. variable and method declarations and calls in the imple-
mentation technology’s context and object’s describing these
in the documentation technology’s context) and their relation-
ships. Highlighted on top of this dependency graph (red lines)
are the potential channels for software change (dotted lines); a
super-set of the dependency graph. The super-set assumption

holds when one notes that the definition for a software change
also considers assumptions. Section III-A1 describes these
assumptions as implicit channels.

Software
entities

Semantic
relation

Destination
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(Information)
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Fig. 2. Software entity relationship (red; top descriptions) with a super
imposed technical debt channel (blue; bottom descriptions); the semantic
relation is not a requirement for the channels existence

Figure 2 depicts one instance of a potential software change
(from Figure 1). As per the previous description of a software
change between software entities, this directed relationship
corresponds to a technical debt channel. From the viewpoint
of technical debt accumulation, the entity which invokes a
potential software change is the source of technical debt
(entity on the left), the relation which delivers the invocation
corresponds to a channel medium, and the entity in which the
potential change will take place is the destination of technical
debt. The following sections will further define these parts.

1) Mediums: A medium is “a system with the capability of
effecting or conveying something” [30]. Herein, a medium is
described in the technical debt context through the information
that is carried and through the system capable of conveying
the information. The information that is carried (1) describes
changes within the source, and (2) indicates changes in the
destination (or implies them as per Section III-B3).

The system that is capable of carrying this information is
context dependent, and Suovuo et al. [31] have argued that
the system is either explicit or implicit (see Figure 3). An
explicit system relies on pre-existing context semantics which
define operations for other systems (e.g. dependency invoca-
tion or inheritance for common implementation contexts, and
UML notation conventions or standardized logging structures
for documentation contexts). Note that channel direction is
generally opposite to dependencies.

Implicit channels do not have a formal counterpart and may
thus expand to areas that formality disallows, especially in
relation to unions of software contexts, such as developer’s
conceptualization that takes place between design documenta-
tion and component implementation. Due to their unobtrusive
nature, implicit channels are difficult to observe [31].

2) Sources and Destinations: The sources and destinations
of a technical debt channel capture the information producers
and consumers of the medium respectively. A source is an
entity that exists in a context. It produces information re-
garding changes in the entity. The information regarding the
change must be observable from outside the entity in order
for the information to ever reach the medium. Hence, for



a source entity, a valid type is a declaration type that can
be referred. Thus, the source entity types correspond to the
hosting software entity’s context’s referable type definitions.
Similarly, the destination exists in a context and is capable
of receiving and consuming information regarding the source
entity by way of being connected to it through a medium.
Hence, valid channel destination entity types are the software
entity’s context’s definitions capable of making references.
The source and destination entities can exist in different
contexts (a feature noted especially for implicit channels).
The source entity can not be the destination entity. As in
these scenarios, the information is consumed where produced
with no outside observable effects, and this deviates from the
definition provided for software change(s) (c.f. [29]).

B. Information Properties

Following the definition of a medium [30], a channel
interacts with the environment in which it exists. Section
III-A1 established the general process for this as the two
capabilities of the delivered information: (1) description of
changes within the source, and (2) indication of changes in
the destination (or, in certain cases, implication of changes).
This section describes how the channel’s interaction adheres
to the technical debt management environment by describing
properties of the delivered software change information.

Technical debt research has reached adequate consensus
regarding the properties that an instance of technical debt has
[71, [13], [16], [32], [33]: a location, a principal, an interest,
and an interest realization probability. A technical debt propa-
gation channel conveys information that realizes technical debt
instances for an evolving software project (i.e. the instance
accumulates or dissipates value as its propagation path ex-
pands or contracts via the available technical debt propagation
channels [22]). From this perspective, the instance’s location
property is directly related to the entities forming the sources
and the destinations of the technical debt channels which form
the instance’s propagation path. The rest of the properties are
related to the details in the following three subsections.

1) Principal: A technical debt instance captures the in-
crease in effort caused by inoptimalities in a particular lo-
cation within a software development project. The increase
corresponds to the effort difference between retaining the
location’s current state and making adjustments to achieve
its optimal state. The principal is the portion from the effort
increase that corresponds to bringing the root cause (initial
accumulation point for the difference) to optimum [7], [13].
Schmid’s formalization [22] (see Section II) explains that tech-
nical debt is accumulated when software evolution consumes
more resources than the optimal evolution would. Hence, the
information carried by the technical debt channel accumulates
principal, for the instance, in this entity if 1) the software
change indicates additional resource consumption and 2) the
entity hosts the technical debt instance’s root cause.

2) Interest: The interest of a technical debt instance cap-
tures the extra resources that are spent due to the principal’s
existence, but in entities that do not host the principal [3].

Thus, the definition for the channel information that accu-
mulates interest in entities is analogous to the one given
for principal (refer to Section III-B1). However, the second
condition is inverted: the information carried by the technical
debt channel accumulates interest, for the instance, in this
entity if (1) the software change indicates extra resource
consumption, and (2) the entity does not host the root cause
of the technical debt instance.

3) Realization Probability: The realization probability of
a technical debt instance corresponds to the chance that
further resource consumption is initiated by the instance’s
existing debt. This can be seen to take place either in the
principal or the interest locations, or in locations connected to
them [21]. From the perspective of capturing technical debt
propagation channels, the realization probability becomes a
special measure of an entity-entity-relationship’s existence. In
this, the source entity hosts technical debt from the instance,
the destination is an entity wherein currently observed resource
consumption has not yet taken place, and the relationship
describes a relation between these entities. The realization
probability measure indicates the chance of this system be-
coming a technical debt propagation channel.

By the definition of principal and interest information, when
the observed realization probability is lower than one (i.e. cer-
tainty) the channel is not a technical debt propagation channel
as no technical debt information is delivered yet. Rather, it
is a potential future technical debt channel. Project manage-
ment can, however, acknowledge these potential channels and
strategize to account for their impact prior to realization.

IV. TECHNICAL DEBT MODELLING

This section describes the method for locating technical debt
channels, classifying them, and abstracting the classes into
technical debt propagation models. Section IV-A describes the
tripartite process for this method, while Section IV-B provides
initial validation in assessing its usefulness.

A. Process

Technical debt channels describe systems for accumulating
technical debt. Operationalizing such a system should hence
dissipate technical debt: as a system evolves, an instance
of technical debt propagates through technical debt channels
forming a propagation path for the instance. The software
development life-cycle contains multiple implementations of
these systems (e.g. refactoring, rearchitecting, review, and so
forth) that produce historical data. This can be used in order
to identify technical debt dissipation, and thus, be inverted in
order to produce technical debt channels.

1) Fixing the Observation Level: Technical debt describes
impaired software evolution for which technical debt chan-
nels describe the system responsible for this evolution in
single software entities (see Sections II and III-A). Fixing
the observation level of the historical software change infor-
mation is a prerequisite for identifying the channels, as we
must pinpoint, for each software entity, the specific pieces
of change information that describe evolution solely for this



entity. Formally, the observation level must provide such time
and partition granularity for the change information that it
allows identifying each software entity’s e € E evolution as a
sequence of states e : (S1, 82, ..., S).

2) Identifying Technical Debt Channels: Observing tech-
nical debt instances’ propagation, from historical data, cor-
responds to identifying cause-and-effect relations for the soft-
ware changes observed for the entities [15]. These relations are
captured for the entities’ state sequences (see Section IV-Al)
as identified pairs

r = ((61,81'), (SQ,Sj)) €R | (61,57;) — (62, Sj) (1)

Pair r indicates that entity e;’s state s; has caused a state to
change to s; in another entity es. Further, let d(e, s) be the
time stamp that relates to entity e’s state s, and D, 4, = {s |
d(ey, s) > do} be entity e1’s group of states for which the time
stamp is greater than or equal to dy. Hence, the prerequisite
for pair r’s causality in Eq. 1 is that s; € D, g(c,,s;)-

As Section III-A2 describes the source and destination enti-
ties of a technical debt channel as the information producer and
consumer respectively, we find the components of a technical
debt channel capturing r as follows. The channel’s source
entity es produces the information in r = ((e1, s;), (€2, 5;5))-
Hence, from Eq. 1 we get e; = e;. Analogously for the
destination, e = es. Last, the channel’s medium is described
(see Section III-A1) via the carried information and thus
corresponds to the information realizing (es, s;) — (eq, s;).

Example of the previous is identification of a technical debt
instance’s removal through observing a series of consecutive
version control entries wherein comments, tags, or other meta-
information can be used to associate the entries’ contents to
the instance. The comments justify associating changes to
the instance’s removal, while the chronological ordering of
the entries allows forming cause-and-effect relations for the
changed entities. An entity which describes a cause for a
change corresponds to a technical debt information producer,
while an entity for which an effect is observed corresponds
to the information’s consumer. Also, only one producer and
consumer should be found for a single piece of information.
If multiples are found, the cause-effect-relationships between
entities are not evident, and the observation level must be
lowered by way of decomposing the information further [15].

It should also be noted that Section III-B describes the
properties for information that corresponds to technical debt
propagation. In associating the information to entities, pres-
ence of these properties should be ensured in order to only
capture technical debt propagation channels, and not software
change propagation caused for example by feature additions
that are part of normal development efforts.

Finally, as this process step describes identification of
technical debt propagation channels from historical data, it is
evident that technical debt can exist without related software
changes. For example, if an entity is created with principal
for a new technical debt instance. No changes yet record alter-
ations for this debt. Hence, arguably, identification of technical
debt propagation channels requires historical—technical debt

inclined change—data as it is the only system capable of
recording how the debt has been realized.

3) Abstracting Channels to Models: Having identified the
technical debt channels, modelling technical debt propagation
corresponds to identifying a class 7" of technical debt channels
t € T which demonstrate identical technical debt propagation
capabilities P, and abstracting this class to form a model M.

Technical debt channel ¢ has a source source; = type(es),
a destination dest; = type(eq), and an information type
info, = type((es,s;) — (eq,s;)) which capture its prop-
agation capabilities P; = (source;, dest:, info;). Hence,
teT <= P, = Pr.For the software entities, the type was
their context dependent definition (either reference-making-
capable or referable; see Section III-A2), while the content
forms the type for the information (see Section III-A1l). Ob-
servation level fixing has ensured that the types observed for
the entities and the information adhere to these requirements.

Using the Java Language Specification! as an example
context, we may form a class of technical debt channels
as follows: the sourcer is a “Method Signature” which is
defined to be a referable type in this context. The destr, in
this case, could be the “Method Invocation Expression” as
it is capable of referring the source entity type. Regarding
infop, for explicit channels, the semantics of the context
describe the types of systems that may deliver change between
the previously typed source and destination entities (e.g. the
Method Invocation Expression refers to the Method Signature
either through direct dependency or through reflection). For
implicit channels, a similar identification process is lacking,
but fixing the source and destination entity types should reduce
the number of information types to inspect. We demonstrate
these processes in the next section.

Abstracting the model corresponds to removing all project-
context information 6 (e.g. names of specific Method Signa-
tures) from the technical debt channels forming a class (i.e.
Vvt € T') to make the model applicable for all scenarios where
the observed propagation capabilities P 7 are identical. Hence,
the abstraction of M corresponds to a reduction:

T =d’] M (2)

B. Applying the Process

We provide initial validation for the technical debt mod-
elling process described in Section IV-A by applying it to a
technical debt instance captured in Figure 3. A bug from the
Eclipse IDE (ID no. 73950 examined in [15]) covers multiple
implementation entities, and it has been artificially expanded
to highlight other possible areas of expansion from ongoing
software development.

According to the previous process description in Section
IV-A, the first phase of processing technical debt channels is
observation level fixing (see IV-Al). This requires identifying
the historical information and decomposing it so as to reveal
the depicted software entities and changes between them. For

Thttps://docs.oracle.com/javase/specs/jls/se8/jls8.pdf



the Eclipse bug, we identify historical data and software enti-
ties via the bug report? and the corresponding fix commit®. The
commit describes changes at the source code level, and this
allows us to observe evolution sequences e : (s1, Sa, ..., Sp,) at
the level of single software entities.

EXPLICIT
‘/_ N \’
¥ T ¥ T ¥
<reference> <dependency> <dependency>
Design Implementation ‘ Test
Entities Entities : Entities
Bug #73950

<conceptualization>
A

T T
IMPLICIT EXPLICIT

L ) J

Principal + Interest = TDI

' <dependency> *
A

Fig. 3. A technical debt instance; the software entities associated to it, and
the underlying technical debt propagation channels.

The second phase of the process identifies technical debt
channels. Here, having ensured that software change in-
formation dissipates technical debt, the change information
is decomposed and associated to producers and consumers.
Figure 3 depicts a collection of possible associations for a
single technical debt instance (a closer view, in the same
color scheme, is provided in Figure 4). Backtracking the
dissipation, the iterative process of finding producers and
consumers should stop when software entities that produce the
information about changes which overcome the root cause, the
principal of the instance, are found. For the Eclipse bug 73950
in question, we associate the bug report’s call for disposing
MemoryBlockAction properly into changes in the fixing
commit. Figure 4 is a transcript of the fixing commit, and
it can be seen as a magnification into the implementation
elements present in Figure 3. Lines in green and starting with
a plus sign indicate addition, while the ones in red and starting
with a minus sign indicate deletion. Numbered arrows indicate
identified technical debt propagation channels—forming the
propagation path for a technical debt instance—while the
arrow colors indicate classes of channels with possibly similar
propagation capabilities.

The Java context' (see
for technical debt channel four (4).
((es,si), (eq,sj)) where for
addMemoryBlockAction.dispose ()

Section IV-A3) applies
This is a pair
source entity e,

the type

T =

Zhttps://bugs.eclipse.org/bugs/show_bug.cgi?id=73950
3https://git.eclipse.org/c/platform/eclipse.platform.debug.git/commit?id=
9d0372b5e5159743ef53b2ecOddaf1bfbb58alce

@@ -344,4 +344,8 @@ public class AddMemoryBlockAction
extends Action implements IselectionListener (5)

-
+
-
+

temqveDebugEventListener (this) ;

@e -75,7 +75,7 @@ public class MemoryView

extends PageBookView implements IDebugView, IMemoryEslock
private TabFolder emptyTabFolder; N
protected Hashtable tabFolderHashtable; 2 ™ 4

1) '[r\\ ate Action adc T

emoryBlockAction; " ¢’ v:

pgivate AddMemoryBlockAction emoty]}ﬁ(‘.«f\c't ion; /

learo Action removeMemoryBlockAction; 3
/rivate Action resetMemoryBlockAction;

/ private Action copyViewToClipboardAction;

@@' -621,6 +621,7 @@ public class MemoryView ,-°~

extends PageBookView implements IDebqulew, IMemoryBlock

3“. public void dispose() {
removeListeners () ;

+ addMemoryBlockAction.dispose ()

// dispose empty folders (6)
emptyTabFolder.dispose () ;

Fig. 4. Transcript from an Eclipse version commit, demonstrating implicit
and explicit technical debt propagation channels with directions

source; = type(es) is a method invocation. The state
s; Statement creation 1is likely the first one for eg,
and it has invoked another statement creation state s;
for the destination entity ey dispose (), whose type
dest; = type(eq) is a method declaration. The information
type info, = type((es,si) — (eq,s;)) is invocation of a
non-existent method declaration as the method is created in
the commit. Noteworthy is also that channels from one (1)
to three (3) are implicit channels in Figure 4, and manual
analysis is required to indicate these relationships [31]. In
particular, the commit transcript alone cannot be solely used
to decide e, and e, for channel three (3).

The final, third phase, of the process identifies a class of
channels to abstract into a technical debt model. As discussed,
this process relies on identifying similar types for the source
and destination entities, and the information (see Section
IV-A3). If we consider the channel four (4) to be the sole
representative for its class, the abstraction results to a technical
debt propagation model displayed in Table I (where the context
removal 6 disregards naming for e, and ey).

TABLE I
A TECHNICAL DEBT MODEL
Part Definition
Source entity Method Invocation’
Destination entity | MethodDeclaration!
Information Invocation of a non-existent method declaration

Lastly, we may review the information properties described
in Section III-B for the captured technical debt model (see
Table I). The common property for technical debt channel
information (i.e. either principal or interest) required that the
software change indicates additional resource consumption.
The information of the model adheres to this as the imple-
mentation of a method declaration is indicated. The unique



property of the information described if it accumulated either
principal or interest for a technical debt instance. This required
identifying if the additional resource consumption occurred in
an entity that hosted the instance’s root cause. The model’s
instances, the unique technical debt propagation channels,
must be consulted for this. In the case of channel four (see
(4) in Figure 4), an argument for interest accumulation can be
made, if we interpret channels one through three with their
entities to precede it in the instance’s propagation.

V. DISCUSSION

Below, we evaluate the strengths and implications of our
solution in SectionV-A, and discuss potential challenges that
may result from the implementation of our approach in Section
V-B. We look to draw comparisons from our propositions, and
the works of others introduced in Sections II and III.

A. Strengths and Implications

The most important strength of the proposed approach is
the aspect that features the accumulated library of technical
debt propagation channel classes. Through this mechanism
models can be easily applied to estimate the technical debt
propagation capabilities of new projects (i.e. we may as-
sess models like the one in Table I for newly encountered
similar components). This allows the project to: (1) expose
possible propagation paths for newly developed entities by
relating them to known source types, (2) provide enhanced
explanation for problem targets by relating the target entities
to known destination types, and (3) expose gaps in project
communication by way of demonstrating the possible ways of
propagation between project entities as the known information
types. These strengths directly contribute to ongoing efforts
of the research community mapping the technical debt cause,
effect, and management landscape [32], [34], [35], and could
have potential implication for practice.

The models also expose an interface that allows program-
matic evaluation of the representations which is especially
important from the perspective of automating information
maintenance for constantly evolving projects. As models
derived from the explicit channels capture technical debt
propagation in contexts where the semantics are known, their
evaluation can be implemented by means of static program
analysis. For implicit channels, while the semantics can be
unattainable and thus posing a challenge to full automation, the
proposed approach collects the possible source and destination
types which should allow for programmatic identification of
their instances. This has the potential to produce a set of
possible entry and exit points for technical debt propaga-
tion. The possibility of automating technical debt information
maintenance has be recognized in previous works [9], [23],
[25], [36], [37]. Such automation would arguably increase
the effectiveness of technical debt management frameworks
[71, [13]]. Furthermore, automating technical debt information
maintenance would pave way for applying more established
evaluation methods [8], [11] to manage accurately tracked
technical debt instances.

In fact, while the approach proposed in this work is de-
scribed somewhat disconnected from valuation efforts, there is
no foreseeable obstacle to associating the models with value
production (e.g. return-on-investment for expedited reparation
of instances of the model in Table I). However, in order to
associate the model with a cost value, the historical data needs
to include value information (i.e. effort to overcome debt,
such as hours-spent in refactoring an entity) and it must be
decomposable together with the software change information
(as described in Section IV-A).

B. Potential Challenges

Firstly, determining directions for, especially implicit, tech-
nical debt propagation channels can be difficult. In Figure 4,
direction of the implicit channel depends on if the change
is initiated by the type modification or invocation of the
dispose () method. As technical debt channels are directed
by definition, it is possible to model these cases from both
directions. We anticipate that this could be a potential issue.

Second, the identification of classes as channels is based
on type libraries. Given that the amount of type defining
contexts (even when measured merely as the number of tech-
nologies available for implementation, design, and so forth) is
remarkable, the amount of possible channel classes, combining
source, destination and information type definitions, can be po-
tentially numerous. To overcome this, arguably, a hierarchical
channel taxonomy is required where the grouping dimensions
exploit the pre-existing taxonomies available.

Third, two challenges relate to analyzing historical data
in order to produce technical debt channels. Firstly, channel
identification relies on distinguishing technical debt inclined
change from the decomposed information. While the for-
mal description of technical debt provides a basis for this,
practical identification can be seen to rely on relating items
to previously described instances of technical debt which
is not exhaustive. Suovuo et al. have previously proposed
examination of common change inducers as a partial solution
to overcome this [31], and so this approach may reduce
this burden. Secondly, historical data can only be used to
reconstruct channels from where there is information regarding
dissipation of technical debt. Hence, there can be channels
that accumulate debt, but for which no data exist or the debt
is never acted upon. The latter, arguably, captures debt that
is almost invisible to the software project, but the former
should be captured. Tracking of software projects’ efficiency
and addition of suitable documentation procedures to capture
the missing evolution characteristics are fruitful avenues for
research to overcome this issue.

Finally, Section II provided a review of existing research
on technical debt. Whilst two approaches, one formal [22]
and one hypothetical [21], address technical debt propagation,
we note that neither of these could be seen to capture the
various forms and ways of technical debt propagation. Rather,
the approaches focus largely on the propagation’s general
characteristics and capabilities. We find this lack of differing
approaches to technical debt modelling to be a challenge,



as it affects us properly benchmarking solutions in aiding
meaningful comparisons.

VI. CONCLUSION AND FUTURE WORK

This paper provided a theoretical description for technical
debt channels as information mediums with producers and
consumers. We also presented an approach for capturing
technical debt channels, and identifying classes of channels,
in order to abstract them into technical debt propagation
models. In addition to advancing the technical debt research by
providing theoretical basis for technical debt accumulation, the
proposed method should be capable of delivering programmat-
ically assessible models that allow automatic maintenance to
be applied for manually identified technical debt information.

A most notable avenue for extending this work includes ex-
ploring mechanisms for identifying taxonomies and ontologies
that describe types of technical debt information producers and
consumers. Such mechanisms would facilitate the production
of an accurate technical debt channel classification scheme.
A direct application for such a classification scheme is the
identification of previously overlooked technical debt man-
agement areas, and indication of enhancements for existing
management solutions.
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