Modelling Electric Hot Water Cylinders for Demand Management

Jefferson Dew and Michael Jack Department of Physics | University of Otago

Peak Demand P=IV, V=IR, P=I²R

Figure Source: Transpower

A more flexible load allows more renewables

- Solar PV- Daytime, Summer, No Clouds
- Wind Turbines- Windy Weather
- Hydroelectric- rainfall/snowmelt conditions
- Geothermal- Constant
- Coal On demand, Longer running times
- Natural gas On demand, Fast startup

Demand Management

- Large User Demand Response/AUVLS
- Dynamic pricing incentives
- Embedded generation/storage capacity
- Residential Hot Water Ripple control
- Increase flexibility
- Allows greater renewable energy utilisation
- Reduce network stress
- Flexibility from all sectors

Which appliances to choose?

- ~30% of household energy usage
- Up to 50% of household demand during peaks
- Storage capability (>10 kWh)
- Widespread ownership nationwide (>90%)
- Autonomous thermostat operation
- Ripple outdated and varied use across networks

Physical Model

- Hot Uniform
 Temperature
- Lose Heat through walls
- Dynamic model of temperature

Physical Model

- Flow out=Flow in
- 2 separate uniform temperatures
- Separate heat loss terms
- Dynamic model of thermocline height and temperatures

Validating- Raw Signal

Average Load Profiles

Demand Management Experiments

- Time Scheduling
 - Avoid peak periods (7am-9am, 5pm-9pm)
 - Maximise Solar PV Utilisation (10am-4pm, Midnight boost)
- Variable Element Power
 - Set household threshold for heating element to operate below.

Control scenarios: minimise peaks

Control scenarios: maximize solar

Control scenarios: Load smoothing

How do control scenarios impact service?

Average minutes per month with less than 0L or 15L remaining.

ID	Baseline		Min Peaks		Max Solar		Smooth	
	OL	15L	OL	15L	OL	15L	OL	15L
29	0	0	0	16	0	18	0	1
32	16	247	39	459	128	584	31	815
35	0	71	12	608	312	590	16	218
37	0	0	0	0	0	0	0	0
42	0	0	8	80	8	48	2	39

Legionella also considered, All control regimes forced to comply with building code

Summary/Discussion

- Demonstrated simulation of hot water electricity demand
 - Explored some simple control scenarios/many more possibilities
 - Impact on service can be evaluated
 - Can also use model to explore different cylinder parameters (size etc..)
- Possible to compare peak reduction potential with other technology:
 - Heat Pump Water Cylinders
 - Batteries
- Other appliances can be modelled to build full household simulation.

Thank you to the supporters of the GREEN Grid programme.