
Working towards a vaccine for Strep A

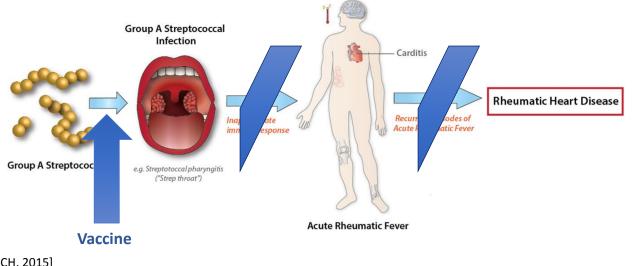
Nikki Moreland, University of Auckland Jonathan Carapetis, Telethon Kids Institute

12th February 2019

The case for a StrepA Vaccine *Disease Burden*

- StrepA is a leading cause of infectious disease burden
 - ~600 million incident cases of pharyngitis and ~160 million cases of impetigo each year
 - 18 million new cases of severe disease each year
 - >30 million people living with RHD
 - StrepA disease causes **500,000** annual deaths
- Disease burden is not limited to LMIC or high social deprivation
 - UK witnessing huge surge in **scarlett fever outbreaks**
 - Invasive disease increasing in UK, US, Canada and NZ

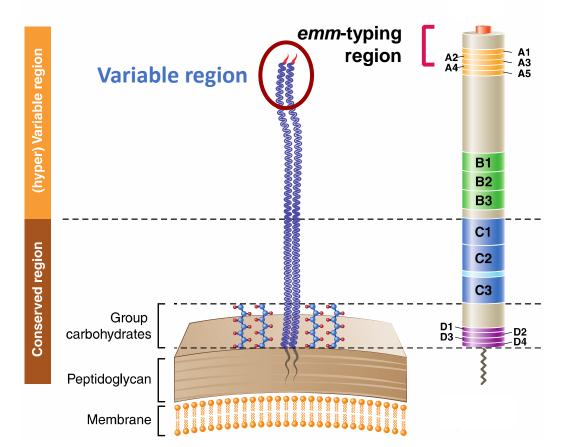
Carapetis et al., Lancet 2005 Watkins et al., NEJM, 2017 Moreland et al., Vaccine 2014 Vekemans *et al.*, CID 2019



The case for a StrepA Vaccine *Penicillin and AMR*

- StrepA is sensitive to penicillin, yet the burden of GAS diseases remains high
 - Delivery and access to care difficult in LMIC settings
 - Delay in recognizing severity and initiating treatment
- StrepA skin and throat infections are important drivers of antibiotic use
 - Many sore throats are viral yet broad-spectrum antibiotics prescribed
 - Exposure of the commensal flora to penicillin may contribute to emergence of antibiotic resistance, a global health threat

Are StrepA diseases vaccine preventable?

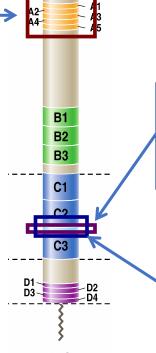

- StrepA skin and throat infections are more common in children than in adults suggesting exposure generates immunity
 - Adults have higher levels of anti-StrepA antibodies than children

Vekemans *et al.*, CID 2019 Tsoi SK *et al.*, J Immunol Res, 2015 Brandt ER *et al.*, Immunology, 1996 Mortensen R *et al.*, J Immunol, 2015

[Image: Steer, J PCH, 2015]

- The most "clinically advanced" vaccine candidates are based on the M-protein
 - Antibodies that bind the N-terminal HVR are type specific & protective
 - Antibodies that bind conserved C-repeats are less protective but cross-reactive

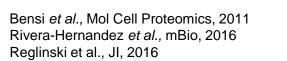
The Vaccine Pipeline I: M protein


M protein based vaccines

30-Valent Vaccine: Jim Dale/PREVENT Phase I, 2017, Canada Based on 30 most prevalent strains in US/Europe

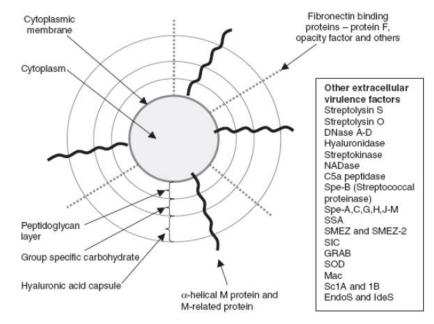
Coverage estimates (NZ ARF) Williamson *et al.*, JCM 2015

- 31% strains in the vaccine
- 70% theoretical protection with *in vitro* cross-opsonisation

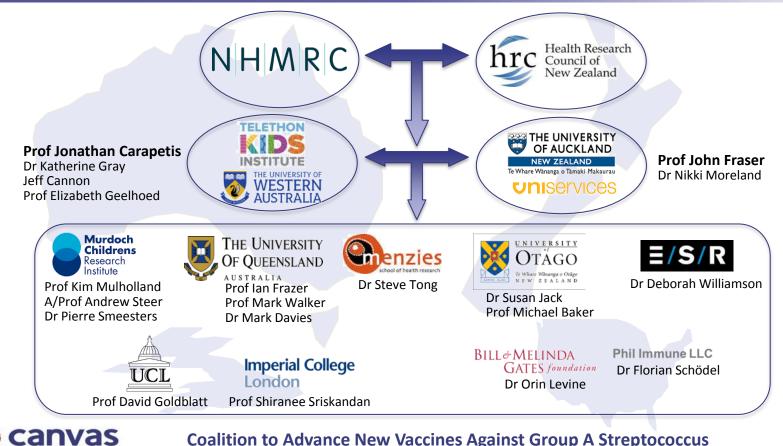

Dale JB et al., (2011) Vaccine Good MF et al., (2013) HVI Pandey et al., (2015) JI Sekuloski et al., (2018) PloS One Guilherme et al., (2011) JBC

J8-DT Vaccine: Michael Good/UQ 12 AA peptide from C-repeat region Phase I, 2014, Australia; safe and well tolerated, now being reformulated with peptide from SpyCEP

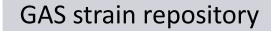
StreptinCor: Luiza Guilherme/InCor Phase I planned, Brazil 55 AA (discontinuous) peptide from C-repeat region



The Vaccine Pipeline II: Conserved


Conserved multi-antigen Vaccines

- GSK "Combo"
 SLO, SpyAD, SpyCEP and GAC
- Other "Combo" vaccines
 - > Walker Lab (UQ), Combo5
 - Sriskandan Lab (London), Spy7



CANVAS: international collaboration to accelerate development of a GAS vaccine (2014-2017)

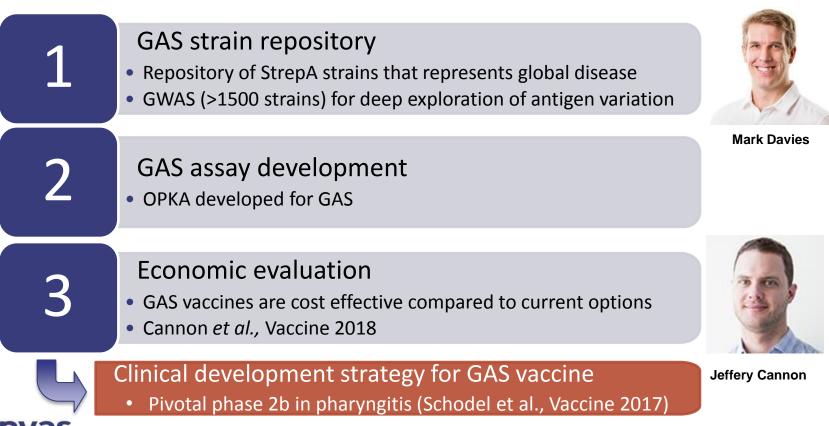
Coalition to Advance New Vaccines Against Group A Streptococcus

Preparing for a GAS vaccine: 3 key deliverables

• Comprehensive assessment of regional GAS strain epidemiology (*emm*-typing, whole genome sequencing)

GAS assay development

• Development of a robust assay to assess GAS vaccine efficacy


Economic evaluation

Health economics analysis of GAS vaccine cost

Clinical development strategy for GAS vaccine candidate

Preparing for a GAS vaccine: Outputs

GAS Assay Development: Deliverable II

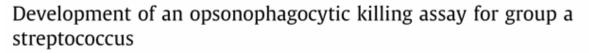
- Critical lack of robust bactericidal assays to measure protective immunity in vaccine antisera
- Indirect bactericidal test (Lancefield assay) is most frequently used
 - Uses human donor whole blood
 - Not amenable to high throughput analysis
 - Relies on single serum dilution

GAS assay development

Deliverable II

- Opsonophagocytic killing assays using HL-60 cells
 - Neutrophil cell line, not whole blood
- Robust assessment of killing
 - Generate titration curve
 - Calculate opsonisation index (OI)
 - Colony counter and 96-well plate format enables high throughput

Plating Colony counting Plating Platin



David Goldblatt

OPKA for GAS Established in London and Auckland

Scott Jones ^{a,*}, Nicole J. Moreland ^b, Marta Zancolli ^{a,1}, Jeremy Raynes ^b, Jacelyn M.S. Loh ^b, Pierre R. Smeesters ^{c,d}, Shiranee Sriskandan ^e, Jonathan R. Carapetis ^f, John D. Fraser ^b, David Goldblatt ^a

^a Immunobiology, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom

^b Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand

^c Molecular Bacteriology Laboratory, Universite' Libre de Bruxelles and Academic Children Hospital, Brussels, Belgium

^d Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia

e Faculty of Medicine, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 ONN, United Kingdom

^fTelethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, Australia

Reuben McGregor Auckland OPKA

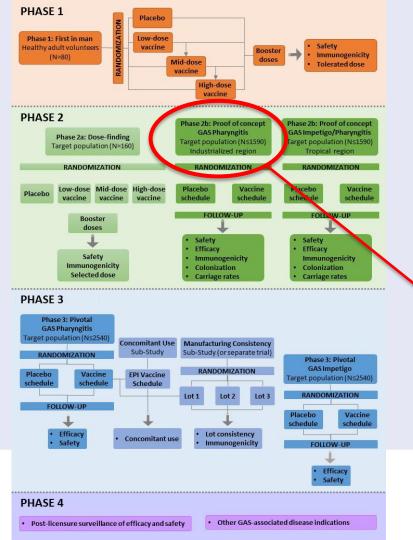
Obstacles

- Safety concerns
- Incomplete understanding of immune protection in humans
- Lack of reliable disease models
- Inadequate epidemiological data
- Minimal development of combination antigen vaccines
- ? Market
- Competing priorities

Reluctance of Big Pharma to invest

Opportunities

- WHO re-prioritization
 - Preferred Product Characteristics
 - Technical R&D roadmap
- WHO workshops
 - Seoul Dec 2016, London May 2018
- WHO Global Resolution on RF/RHD
 - May 2018


52	5	SS
2)) }}	33
((((

Key strategic areas	Proposed priority activities	
Research	Improve global estimates of disease burden and better characterize the epidemiology of GAS infections	
	Further describe the spectrum of natural disease history	
	Drive improved understanding of GAS-related secondary immune-mediated diseases	
	Define the consequences of GAS-associated antibiotic use, and estimate the impact of vaccine use on antibiotic use and antimicrobial resistance-related morbidity and mortality	
Vaccine	Pursue antigen discovery efforts, increasing the number of pipeline vaccine candidates	
	Develop consensus guidance about the appropriate use of safety monitoring tools in candidate vaccine trials	
development	Characterize immunological surrogates / correlates of protection	
	Define appropriate pivotal clinical trial design adapted to near-term and long-term strategic goals	
Key Capacities	Define appropriate use of available and future animal models for GAS vaccine safety and efficacy	
	evaluation according to their relevance for human responses	
	Develop clinically relevant human GAS experimental infection model(s) to support early vaccine proof of concept evaluation	
	Establish GAS expert research centers in low- and middle-income countries with Good Clinical Practices (GCP) trial research capacity and appropriate regulatory and ethical oversight; establish baseline rates of efficacy and safety outcomes	
	Access low cost vaccine manufacturing under current Good Manufacturing Practices (cGMP) for late stage development and commercial production	
	Develop standardized immune assay platforms that meet quality requirements	
Policy, commercialization and delivery	Establish cost-effectiveness and develop research and implementation financial investment scenario(s) to support appropriate funding and policy decision-making at the global and national	
	level, considering the full scope of costs and benefits	
	Ensure availability, affordability, and acceptability of a functional, cost-effective delivery platform for immunization	
	Develop effectiveness and safety vigilance platforms for post-implementation surveillance.	

http://dx.doi.org/10.1093/cid/ciy1143

Clinical development schematic

The phases of development required for registration of a candidate GAS vaccine indicated for GAS pharyngitis, GAS impetigo and other GAS-associated diseases

Proof of Concept Phase 2B – pharyngitis- Critical study to demonstrate safety and efficacy

Shodel et al., Vaccine 2017