Economic Considerations in RF and RHD Prevention

Richard Milne Hon. Associate Professor University of Auckland

Synopsis

- Opportunity cost: the basis of economic comparisons
- Combining mortality and quality of life: QALYs
- Linking cost to outcomes: cost utility analysis (CUA)
- Criteria for a school-based RF prevention programme in CMDHB
- Economic evaluation of school clinics: what is the answerable question?
- Lifetime disease progression model
- If a reduction in incidence rate was attributable to the school clinic programme
 - Would this intervention be cost effective?
 - By whose criteria?
- Inputs to the economic model: cost pcpa, incidence, deaths, quality of life, effectiveness
- Economic outcomes: linking costs to clinical outcomes via CUA
- Uncertainties
- Criteria for a school clinic programme in CMDHB: fulfilled?
- Directions for future research

Opportunity Cost

- Whatever we spend on programme A, we can't spend on programme B
- Annual cost of RFPP in CMDHB (*ManaKidz* programme):
 - 25,000 kids age 5-12y at \$280 pcpa = \$7.0m p.a.
- Some potential alternative uses of these funds:
 - 14 new houses in south Auckland, at \$500K each
 - 145 hospital admissions,
 - 14,000 outpatient appointments,
 - 100,000 district nurse visits,
 - 100,000 GP consultations,

- at \$4800 each
- at \$500 each
- at \$70 each (e.g. secondary prevention)
- at \$70 each (incl. Govt subsidy)

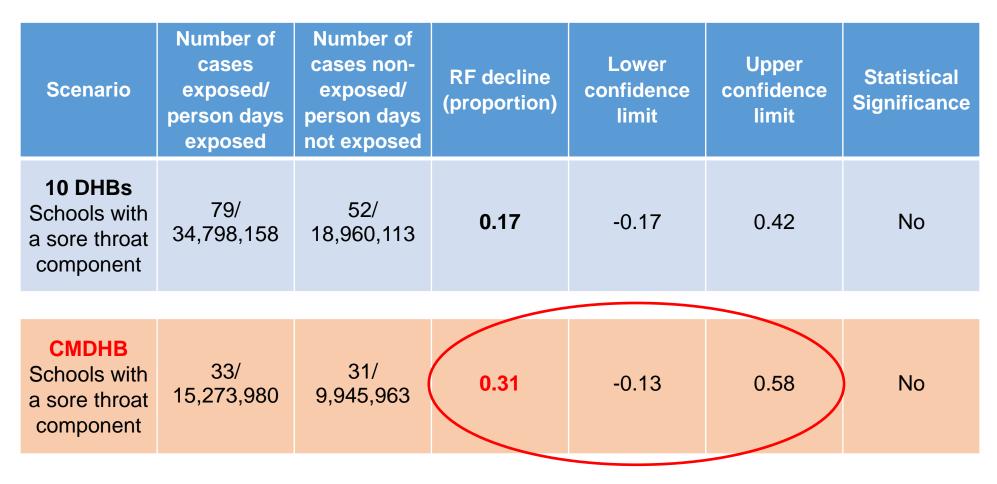
Quality adjusted life years (QALYs) gained

- A measure of the value of a programme or intervention
- Combines gains in life expectancy and quality of life
- One QALY = one year of life, adjusted for quality of life
- One year at 50% of full health = 0.5 QALYs
- One year at 80% of full health = 0.8 QALYs
- Advanced breast cancer: 5y at 65% health = 5x0.65 = 3.25 QALYs
- Post valve surgery: 10 years at 95% full health = 10x0.95 = 9.5 QALYs
- Used by PHARMAC to estimate the non financial value of new medicines

'Cost utility' analysis

- Used internationally to evaluate new interventions
- Cost per QALY gained (= ICER or ICUR)
 - E.g. a new oncology medicine costs \$10,000 per patient more than the older medicine and provide 0.1 more QALYs per patient
- ICUR (cost per QALY) = \$10,000/0.1 = \$100,000
- The WHO would consider that this is good value in NZ
- PHARMAC would consider this is *not* good value in NZ

Criteria for a school clinic programme in CMDHB

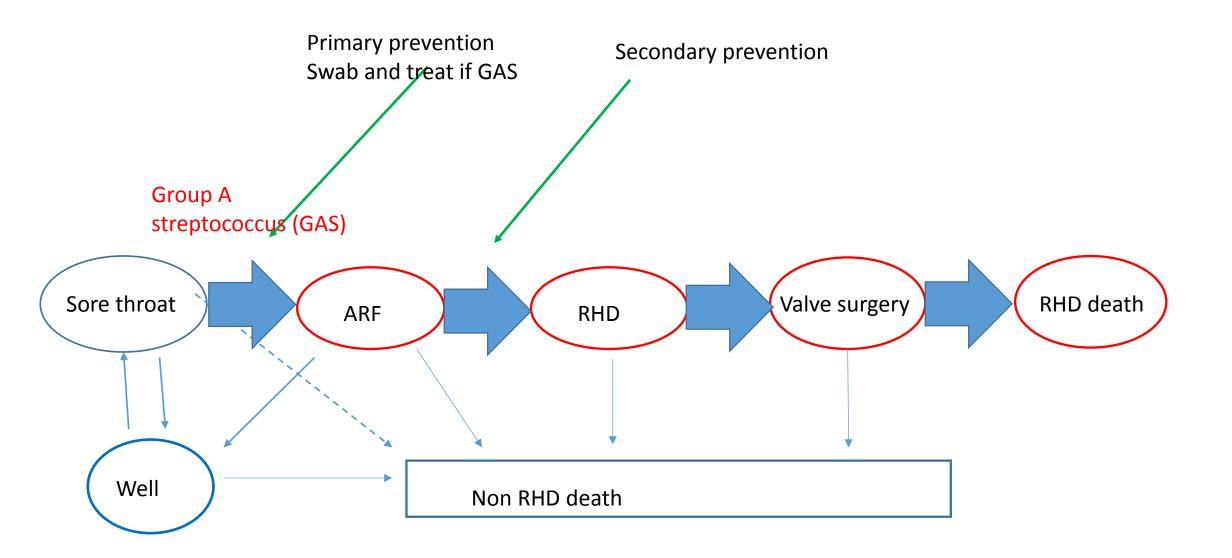

- CRITERION PARAMETER
- Clear need?
- Practical?
- Measurable outcomes?
- Effective?
- Affordable?
- Value for money?

- High RF incidence rate in the target group
- Yes
- Yes: ARF admissions or notifications
 - Likely, but still unproven

Economic evaluation of school clinics

- Is the school clinic intervention cost effective compared to usual primary care delivered by GPs?
- In high risk primary/intermediate schools
 - Age 5-12y
 - Baseline incidence rate 50 to 100 per 100,000
- Mostly Māori and Pacific children
- Annual cost >= \$160 to \$300 ppy
 - Depends on other services provided, e.g. treatment of skin disease
 - Focus on RF/RHD excludes other benefits [e.g. treatment of skin disease]

Effectiveness analysis findings



Source: Interim Evaluation of the Sore Throat Management Component of the New Zealand Rheumatic Fever Prevention Programme: Quantitative Findings (MoH)

School intervention

- No clear evidence that it was more effective than usual care by GPs.
 - Underpowered and/or small effect?
 - Data collection ended June 2015
- The school intervention:
 - Doubled the annual number of throat swabs (increased cost)
 - Increased % of children treated with penicillin
 - Cost much more than GP visits (e.g. school nurse; training of lay workers)
- SO: under what conditions could it be cost effective?
 - Cost? Effectiveness? Incidence rate?

Lifetime disease progression model based on health states

Methods

- Lifetime economic Markov model of disease progression
- Patient-level linked data sets of ARF and RHD admissions and deaths
 - RF, RHD & surgery, deaths by underlying cause
- Follow individuals for 10 years after index (first) RF admission
- Costs from multiple sources
- Transition probabilities (between health states) from survival analyses

Our question: if the school clinic programme reduced admission rates, would it be cost effective?

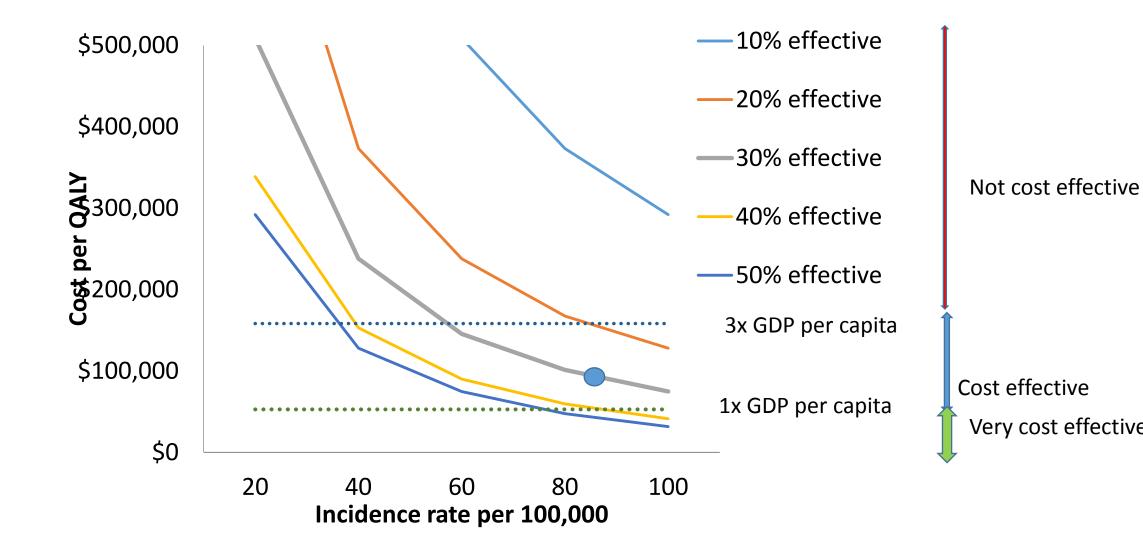
Analysis of Counties Manukau DHB:

- Cost = \$200 per child per year (conservatively)
- ARF incidence = 87.1 per 100,000 (measured in target schools)
- Assumed effectiveness of 30% (wide confidence intervals)
- Cost per QALY gained would be about \$90,000
 - 11 QALYs per \$m expenditure

Cost effectiveness thresholds

The MoH does not have a threshold to determine cost effectiveness of interventions

PHARMAC uses cost utility analysis as one of nine criteria to base funding decisions


Weighted average for funded new pharms = \$35,714 per QALY = 28 QALYs per million dollars spent on a medicine

WHO criteria:

- < 1 x GDP per capita = 'very cost effective' [GDP per capita = \$52,735]
- 1 to 3 x GDP per capita = 'cost effective'

Annual cost	Effectiveness of school-based service				
per child	10%	20%	30%	40%	50%
	Cost per case averted				
\$150	\$761,013	\$335,128	\$174,816	\$96,951	\$52,124
\$200	\$1,316,491	\$629,204	\$367,097	\$239,788	\$168,387
\$250	\$1,871,969	\$923,281	\$559,378	\$382,625	\$284,649
\$300	\$2,427,447	\$1,217,357	\$751,659	\$525,462	\$400,912
	Cost per RHD death averted				
\$150	\$3,424,560	\$1,899,057	\$1,136,306	\$678,655	\$373,555
\$200	\$5,924,210	\$3,565,491	\$2,386,131	\$1,678,515	\$1,206,771
\$250	\$8,423,861	\$5,231,924	\$3,635,956	\$2,678,375	\$2,039,988
\$300	\$10,923,511	\$6,898,358	\$4,885,781	\$3,678,235	\$2,873,205
	Cost per QALY gained				
\$150	\$195,689	\$81,388	\$42,879	\$24,066	\$12,735
\$200	\$338,526	\$152,807	\$90,043	\$59,522	\$41,140
\$250	\$481,363	\$224,225	\$137,206	\$94,978	\$69,545
\$300	\$624,201	\$295,644	\$184,369	\$130,434	\$97,950

Cost per QALY as a function of ARF incidence rate and service effectiveness assuming a cost of \$200 per child per year

Criteria for a school clinic programme in CMDHB

- CRITERION PARAMETER
- Clear need?
- Practical?
- Measurable outcomes?
- Effective?
- Affordable?
- Value for money?

- High RF incidence rate in the target group
- Yes
- Yes: ARF admissions or notifications
- Likely, but still unproven
- Yes, but high opportunity cost
- Maybe: depends on effectiveness and cost (better information needed)

CONCLUSIONS

- The school RFPP is costly, so the opportunity cost is high
- It is likely to be moderately effective
 - More research is required
- There is much uncertainty in costs and effectiveness
- If it is 30% effective
 - it would be 'cost effective' but not 'very cost effective' by WHO standards
 - it would not be cost effective by PHARMAC's standards
- Future directions (if funded!)
 - Re-measure effectiveness over a longer time period
 - Obtain more accurate costings
 - Repeat the analysis