

Informing the Energy Debate

Sam Thornton – Senior Energy Analyst

Modelling and Sector Trends

Infrastructure and Resource Markets

The plan for today...

- The role the New Zealand Government plays in the Energy Sector
- 2. The role of Energy Information and Modelling
- 3. Key insights from New Zealand's Historical Energy Information
 - "Energy in New Zealand" today
 - "Changes in Energy Use" since 1990
- 4. What does an Energy modeller do and how do we do it?
 - What is New Zealand's Energy Outlook?
 - How do we "model" the future?
- 5. Some Key Insights from our Modelling
 - New Zealand's Energy Outlook Electricity Insight
 - · Oil and gas supply modelling
- 6. Working for the state

Disclaimer

- This is stuff the team does
- I'm not an expert on everything
- If there is something I don't know I can put you in touch with the right person.

About me

- Grew up in Canterbury
- Studied Energy Studies at Otago
 - Research on Energy use at Fonterra Clandeboye (supervised by Zhifa) - 2007
 - Sitting where you are 7 years ago
- Energy Analyst for three years
 - Energy data. Electricity and prices
- Senior Energy Analyst
 - Energy modelling. Energy Outlook

The NZ Government and the Energy Sector

What areas does the Govt cover in the energy space?

Policy

- Policy analysis
 - Strategic
 - Allocate government funds e.g. "Vote energy"
 - Legislation e.g. The Electricity Act 1992

Operations/Regulations

Implementation of government policy

- Market regulators (usually Crown Agency's)
- In general deal with technical details that may be subject to frequent change.

Statistics/Information

- Official Statistics. Statistics New Zealand
- Sometimes outside Stats NZ as need for

Energy Policy Across Government

Energy Policy Within MBIE

Economic Development

- Energy markets
- Energy efficiency
- Fuels and Resources
- NZ Petroleum and Minerals

Building and Housing

- Weather-tight homes
- Social housing policy

Science and Innovation

- PBRF
- National Science Challenges

Labour

- Worksafe
- Immigration

Grow New Zealand for All

Energy market regulators

- Electricity Authority
 - The Electricity Authority promotes competition in, reliable supply by, and the efficient operation of, the New Zealand electricity industry for the long-term benefit of consumers.
- Gas Industry Company/MBIE
 - Ensure gas is delivered safely, efficiently and reliably to new and existing customers.
 - GIC strategy is to optimise the contribution of gas to New Zealand.
- Commerce Commission
 - Lots of natural monopolies in the energy sector

Other Agencies

- Environmental Protection Agency
 - ETS
 - Major infrastructure projects of national significance
 - manages the environmental impact of activities in the EEZ, including prospecting for petroleum and minerals, seismic surveying and scientific research.
- Regional Councils
 - Resource Allocation hugely important for renewable energy development

The Role of Energy Information and Modelling

Informing the Energy Debate – the role of Energy Information and Modelling

- 1. What energy information do we produce?
- 2. What is energy modelling? (short intro)
- 3. How is our information used?

What Energy Information do we produce?

- Our team produces base energy statistics on national
 - Energy supply
 - Energy demand
 - Prices
 - Associated greenhouse gas emissions
- National reporting government, industry, public
- Fulfil international reporting requirements IEA, APEC, EAS
- Aid domestic policy development

What is Energy Modelling?

- Projections of energy supply, demand and GHG emissions
- Principal tool used is our SADEM + GEM and VFM
- Do scenarios and sensitivities with a Reference Scenario which assumed no significant changes policy settings, technologies and culture.
- Provide analysis of impact of energy sector policies and scenarios, e.g. emissions trading
- Skills include financial and economic analysis.
- This supports development of energy and climate change policies.

Modelling and Sector Trends – EIM Publications

Who uses our stuff?

- Within govt.
 - Energy and emission forecasts critical to many energy policy issues, e.g. ETS, electricity market review, Kyoto protocol position, petroleum exploration
 - Highlights emerging policy issues, informing policy development process
- Outside govt.
 - Energy industry and commerce, investment banks, media, researchers, general public...

Keeping an eye out...

- Ensuring information is comprehensive by monitoring energy sector developments
 - Solar PV
- Ensuring we are geared up to provide analysis of emerging energy technologies/policy developments
 - Biofuels
 - Transport mode

Energy in New Zealand Today

New Zealand's Energy Resources

- Fossil fuels
 - Gas and oil currently limited to Taranaki
 - Most gas used for electricity in the past. Now Methanex?
 - Oil production in 2012 equated to 31% our oil product demand.
 - Coal. Large lignite (largely undeveloped) and other coal reserves.

Renewables

- World class hydro the backbone of our electricity system
- World class wind and geothermal energy resources. Back of the envelope enough already consented to cover 30 years of electricity demand growth at 1% per annum.
- Large biomass resources Use currently restricted to wood processing sector and smaller niche applications e.g. ¼ of the Dunedin Energy Centre.
- Ok solar in the scheme of things (better than Germany)

Primary Energy Supply

Hydro the backbone of electricity supply...

Consumer Energy Demand

What's happening to Transport fuel demand?

Observed Oil Products Consumption

What about electricity demand?

What about Energy Sector GHG Emissions?

FIGURE 1A: Energy Emissions by Sector 2012 (kt CO2-e)

Energy emissions over time

FIGURE 3: Energy Emissions by Fuel Type (kt CO₂-e)

Explaining Changes in Energy Use since 1990

Changes in Energy Use: 1990 – 2011

- Changes in Energy Use New Zealand 1990-2011: report was released September 2012 which explores what has driven energy use since 1990
- Four 'sectors' with a common activity measure: Business; Residential; Freight Transport and Passenger Transport

Method is to use Logarithmic Mean Divisia Index (LMDI) to isolate:

- the effect of energy efficiency from
- economic, demographic and technical driver

 Δ Energy = Δ Activity + Δ Structure + Δ Fuel Switching + Δ Efficiency

The more you move, the more you use...

67% of tonne-km freight was by road in 2011)

Energy intensity improving for road and rail

- more on the vehicles
- more efficient vehicles

Freight energy-use changes by effect

Freight mode intensity comparison

Demand pushed up by:

 Activity (i.e. more 'passengerkilometres' travelled)

Demand pushed down by:

 Big energy intensity improvements in domestic air travel and passenger rail due to operational efficiencies and better load factors

Interesting fact: in 2011 the energy intensity of domestic air travel was slightly less than that of car travel

Passenger energy-use changes by effect

Passenger mode intensity comparison

Changes in Energy Use

Business

Demand pushed up by:

Economic activity

Demand pushed down by:

- Structural change in the economy
- Improvements in the energy intensity of many of the industries within the business sector

Business sector energy-use changes by effect

Changes in Energy Use

Residential

Demand pushed up by:

- Population growth
- Fewer people per dwelling
- Bigger dwellings

Demand pushed down by:

- Fuel switching
- Intensity improvements due to technology improvements in household appliances, improved housing stock, and conservation due to increased energy prices

Residential energy-use changes by effect

