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Abstract

This paper models and estimates students’ decision to guess/attempt or skip the

question in a multiple choice test in order to understand the role that student charac-

teristics play. We do this using data from the Turkish University Entrance Exam, a

highly competitive, high stakes exam. In particular, we investigate students’ behavior

according to their gender, predicted score and experience in the exam. Our results

show that students’ attitudes towards risk differ according to their gender, predicted

score and exam experience: female students behave in a more risk averse manner rel-

ative to male students, and high scoring students are more risk averse. However, our

counterfactual analysis suggests that although different testing regimes can lead to dif-

ferent score distributions, the relationships between exam score percentiles and student

characteristics are relatively invariant.
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1 Introduction

The multiple choice test structure is commonly used to evaluate the knowledge of candidates

in a wide variety of situations. Its main advantages are to allow more broad evaluation of

candidate’s knowledge in a short time, it is easy to grade, and there is no subjective effect

of the grader in the evaluation. Because of these properties, it is preferred in both high

and low stake exams in many countries. Examples include the University Entrance exam in

India, Turkey, Japan, China, and the SAT exam in the US. A disadvantage of such exams

is that candidates may attempt to guess the answer without having any knowledge on it.

In other exam types, such as short answer based exams, such uneducated responses are

unlikely to reap any benefit. As a response to this problem, test administers may apply

negative marking for wrong answers. Grading methods in multiple choice tests may be

designed in such a way that the expected score from randomly guessing a question is equal

to the expected score from skipping the question. This grading method is fair only under

the assumption that candidates either know the answer, or they do not. However, if they

have partial knowledge about the question, the candidate’s decision to guess/attempt or

skip the question will not only depend on their knowledge, but also on their degree of risk

aversion. This problem may undermine the validity and the fairness of test scores, reducing

the efficacy of the testing mechanism.

The multiple choice test results are used to allocate students to colleges, to measure

effectiveness of schools, teachers, or to allocate an open position.1 Baker et al. [2010]

criticize the use of test results of students to evaluate the value-added of teachers and

schools, among other reasons, because of the measurement error that will be generated

by random guessing. Baldiga [2013] shows in an experimental setting that conditional on

students’ knowledge of the test material, those who skip more questions tend to perform

worse. In light of this finding, if certain groups are favored in multiple choice tests, analysis

made by using these scores will be upward biased towards these groups.

In this paper we model and estimate students’ multiple choice test taking behavior

in order to understand the effects which characteristics of students have on test scores by

1In Turkey, public sector jobs are allocated according to the score obtained in a multiple choice central

exam, called KPSS.
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using data from Turkish University Entrance Exam (ÖSS). The ÖSS is a highly competitive,

centralized examination that is held once a year. 2 In Turkey, college admission depends

only on the score obtained from the ÖSS, and the high school GPA.3 However, the ÖSS score

has the highest weight.4 In the ÖSS, for each correct answer the student gains one point,

and for each wrong answer 0.25 points are deducted, while no points are awarded/deducted

for skipping a question. As it is a very competitive and high-stake exam, students expend

significant time and effort to get prepared for this exam. Therefore, we assume that they

are aware of the scoring method. These properties of the ÖSS exam provide us with a

convenient environment in which to investigate the exam taking behavior of students.

Psychology and education literature have long been interested in multiple choice tests

to characterize optimal test designs that generate fair results, with a valid measurement

method. Burgos [2004] investigates the score correction methods that will award partial

knowledge by using prospect theory. They model the behavior of a representative agent,

so they assume away the heterogeneity in risk aversion and ability of agents. Similarly,

Bernardo [1998] analyzes the decision problem of students in a multiple choice exam to

derive a fair grading rule. Espinosa and Gardeazabal [2010] model the students’ optimal

behavior in a multiple choice exam to find the optimal penalty that will increase the validity

of the test, i.e., increase the correlation between students’ knowledge and the test score by

simulating their model under distributional assumptions on students’ ability, difficulty of

questions and risk aversion. Any of these papers attempt to test their results empirically.

Espinosa and Gardeazabal [2005] tests students’ rationality with an experiment by using

equivalent scoring rules, but while one punishes the wrong answer, and the other one awards

skipping.5 They find evidence that students are expected utility maximizers.

Risk attitudes of students are an important factor in the decision to attempt whenever

there is uncertainty associated with the outcome. In the literature, females are shown to be

more risk averse than males (see Eckel and Grossman [2008]). To test the hypothesis that

female students skip more question than males since they are more risk averse, Ben-Shakhar

2Every year only one third of the students are assigned to colleges.
3This GPA is normalized at the school year level
4ÖSS score has at least 75% weight in scores used to allocate students to colleges.
5Essentially testing for the Framing Effect
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and Sinai [1991] investigates test taking strategies of students in Hadassah and PET tests in

Israel and find that females do, in fact, tend to skip more questions. Baldiga [2013] explores

the gender differences in skipping/guessing behavior when students are uncertain about

answers. They conduct an experiment to disentangle whether a gender gap in the tendency

to skip questions exists, and if so, whether this gap is driven by differential confidence in

knowledge of the material, differences in risk preferences, or differential responses to high

pressure testing environment. Tannenbaum [2012] also investigates the effect of gender

differences in risk aversion on multiple choice test results. Tannenbaum [2012] shows that

female students are more risk averse, so they skip more often than male students. He finds

that risk aversion is able to account for the 40% of the gender differences in performance

in multiple choice exams. Tannenbaum [2012] is the closest paper to ours. However, our

conclusions conflict somewhat: we allow risk aversion to differ between various groups

(gender, predicted scores) whereas he estimates a unique risk aversion for each gender.

We contribute to the literature by using a structural model to estimate students’ exam

taking behavior. We investigate the effects of different characteristics of students on their

exam performance. Particularly, we investigate students’ behavior according to their gender,

expected score and experience in the exam. Our model allows us to run counterfactual

analysis to investigate the predicted change in score distributions in a variety of situations.

Our results show that students’ attitudes towards risk differ according to their gender,

expected score and experience in the exam. Female students behave in a more risk averse

manner relative to male students, and we see a similar pattern for the first time takers

relative to second time takers. While students differ in terms of how they approach the

exam, our counterfactual analysis suggests that under different testing regimes there are

little differences in aggregate outcomes.

In the next section, we present an overview of the data and testing environment. The

particular patterns of the multiple choice tests are discussed in more detail in section three.

In the fourth section, the model is presented. Section five details the estimation strategy

with results in section six. Sections seven and eight contain counterfactual experiments and

a discussion of an extension, respectively. Section nine concludes.
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2 Background and Data

In Turkey, college admission is based on an annual, nationwide, central university entrance

exam governed by the Student Selection and Placement Center (ÖSYM). High school seniors

and graduated students can take the exam. There is no restriction on retaking, i.e., students

are allowed to take the exam repeatedly over the years. However, they are not allowed to

carry over their scores: the score obtained in a year can be used only in that year. All

departments, with the exception of those that requires special talent (such as art schools)

accept students based on a weighted average score of university entrance exam and high

school grade point average.

The university entrance exam is held once a year all over the country at the same time.

It is a multiple choice exam with four tests, Turkish, social science, math, and science.

Students are given 180 minutes for 180 questions. Each test includes 45 questions, and each

question has 5 possible answers. Students get one point for each correct answer, and they

lose 0.25 points for each wrong answer. If they skip the question, they receive 0 points.

Students’ raw test scores are calculated by deducting 1
4 of the number of incorrect answers

from the number of correct answers. The university entrance exam is a paper-based exam.

All students receive the same questions, and they do not receive any feedback on whether

their answer is correct or not during the exam.

Students choose one of the Science, Turkish-Math, Social Science, or Language tracks

at the beginning of high school.6 Students’ university entrance exam scores are calculated

as a weighted average of their raw scores in each test.

Table 1 shows the test weights according to each track. For the social science track

students, the Turkish and social science tests have the highest weight, while math and

science have a relatively low effect on the ÖSS-SÖZ score.7

Students are required to pass the threshold of 105 points to submit preferences (submit

an application) to 2-year college programs, while they need 120 points to apply to 4-year

6For more detail on track choice in high school in Turkey see ?
7In the calculation of ÖSS scores, firstly raw scores in each field are normalized to mean 50 and stan-

dard deviation 10 by using mean and standard deviation of scores in the corresponding field. Then these

normalized scores are multiplied by the weights presented in Table 1.
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college programs. Students’ allocation score (Y-ÖSS) is calculated based on their high

school and exam performance as follows

Y ÖSS Xi=ÖSS Xi+αAOBP Xi

where X∈{SAY,SÖZ,EA,DIL}, and α is a constant that changes according to the stu-

dent’s track, preferred department and whether the student was placed (accepted) into a

regular program in the previous year or not. ÖSYM publishes the lists of departments open

to students’ according to their tracks. When students choose a program from this list, α

will be 0.5, while if it is outside the open list, α will be 0.2. If the student has graduated

from a vocational high school, and prefers a department that is compatible with his high

school field, α will be 0.65. If the student was placed in a regular university program in

previous year, the student is punished and α will be equal to either 0.25, 0.1, or 0.375. For

those students, the α coefficient is equal to half of the regular α. This punishment structure

gives students an incentive to stay in their track, and to accept a position when offered.

The data used in this study comes from multiple sources. Our main source of data is

the institutional data of the 2002 university entrance exam takers. This data set includes

students’ raw test scores in each test, weighted test scores, high school, track, high school

GPA, gender, and number of previous attempts.

The second source of data is the 2002 university entrance exam candidate survey. This

survey is filled by all students while they are making their application for this exam. This

data set has information on students’ family income, education level, and expenditure on

preparation.

We received a random sample of around 40,000 students from each track (Social Science,

Turkish-Math, Science). In this study we focus on the social science track students (from

both regular high schools and Anatolian high schools). This is due to the unique patterns

seen in these tests that enable identification of key parameters, patterns which do not exist

in the science and math tests. This arises due to the style of questions being asked.8 As

8In particular, math and science exams have many questions where the student must solve the problem

to find the answer: either the student successfully solves the question or they fail to solve the question and

have no information regarding what the correct answer is likely to be.
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a result we focus on the students for whom these tests matter the most: the social science

track students.

Table 9 presents the summary statistics.

We observe substantial differences in test outcomes between first time takers and second

time takers. Figure 1 shows that second time takers achieve much higher scores, for the

entirety of the distribution. An aim of this paper will be to examine whether or not this is

due to the second time group having a better distribution of ability compared to first time

takers, or if is simply due to a change in test taking behavior, for example their willingness

to guess when uncertain.9

In addition, we see the difference between male and female students’ scores in Figure 2.

Males tend to have a wider distribution, with more mass on the upper and lower tails. It is

notable that the difference on the upper tail is more pronounced for second time takers; first

time male test takers differ from their female counterparts mainly by having more students

with low scores.

3 Multiple Choice Exam Scores

In this section we examine students’ scores in each section of the ÖSS exam: the Turkish

, social science, math and science. Recall that each section of the exam has 45 questions.

For each question, there are five possible answers; answering correctly gains the student a

single point, skipping the question (not giving an answer) gives zero points, but attempting

the question and answering incorrectly results in a loss of a quarter point.

The scoring structure results in each multiple of 0.25 between −11.25 and 45 (with the

exception of certain numbers above 42) being a possible outcome of an exam section. For

example, attempting all questions and being incorrect with each question results in a score

of −45
4 = −11.25, while getting everything correct nets the student 45 points.

First, Figures 3 and 4 show the distribution of scores in the social science and Turkish

portions of the exam, for first time takers and second time takers in the social science track.

These histograms use a bin width equal to 1.10It can be seen that the distributions are

9We do not separate learning and selection effects in this paper
10While the data is not rounded to the nearest integer, we do this so that the reader may see the overall
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roughly bell shaped, as would be expected. As noted in previous work (see Frisancho et al.

[2012]), the distributions appear to shift to the right as we move from first time takers to

second time takers.

Next, we show the histograms of scores of social science track students in the math and

science portions of the exam in Figures 5 and 6 . Two facts immediately stand out in these

diagrams. First, there are a lot of scores in the zero region. Secondly, even if the large

spike at zero is removed, the distribution of scores place almost all of the weight at very

low scores, relative to those seen in the Turkish and social science sections of the exam.

There are two explanations for both of the two preceding facts. First, math and science

test scores have relatively little weight in the ÖSS score of social science track students.

These scores are multiplied by 0.4, whereas social science and Turkish scores are multiplied

by 1.8 - a substantial difference. As a result, students have little incentive to expend time

and effort on these questions during the exam. Accordingly, many students opt to not even

look at these sections, resulting in many observations of zero scores. Furthermore, students

are explicitly told that if they are social science track students, they should spend less time

in math and science.11 If they do attempt questions, it will be relatively few, with less

than advantageous results. A second reason is that these students are not well prepared in

math and science - since the ninth grade they have been engaged in the social science track

curriculum, meanwhile their study efforts would optimally be directed towards the exams

that matter most: Turkish and social science.

A score can correspond to a single outcome (by outcome we mean the number of correct,

wrong and skipped questions), multiple outcomes, or none at all. It is clear that there is

only one way that a student could obtain −11.25 or 45; a score of 42.5 could only have

arisen through attempting all questions, getting 43 questions correct and 2 incorrect. A

score of 40 has two possible origins: 40 correct and 5 skips, or 41 correct and 4 incorrect. It

is impossible to achieve a score of 42.25: the student must have at least 43 questions correct,

and at least 3 questions skipped, which is not possible given there are only 45 questions.

distribution of scores - as will be seen shortly, this can be difficult to see when bins are not used.
11In the exam booklet there is a note before the social science/Turkish part of the exam that says: ”If

you want higher score in ÖSS-SÖZ, it may be better for you to spend more than 90 minutes on verbal part

of the exam.”
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There are 46 particular scores that are highly relevant: those which correspond to

attempting all questions. These are spaced 1.25 points apart, starting at −11.25, finishing

at 45 points.

Examining the distributions of actual scores (not placed into bins of width one), we can

see some striking patterns. Figures 7 and 8 show the distributions for the social science

and Turkish portions of the exam, with very prominent spikes along the distribution. It is

no coincidence that the spikes appear evenly placed; they correspond to scores which could

be achieved while attempting all questions. This will be very important in identifying the

behavior, and implies that many students are skipping very infrequently. Additionally, there

is no discernible pattern as to which students obtain such scores - these spikes remain present

when examining the distributions of different groups, for example high income female first

time takers with low GPAs.12

Math and science score distributions do not exhibit this behavior, most students obtain

a score of zero. There are no other apparent patterns to be gleaned from dis-aggregating

the distribution, apart from a small spike at 1 in three of the four curves.13

4 Model

We model the test taking behavior as follows. When a student approaches a question, he

observes a signal for each of the five possible answers. The vector of signals for the question

is then transformed into a belief. This belief is the likelihood that each answer is in fact

the correct answer. The student then decides whether or not to answer the question, and

if so, which answer to choose.

We model the test taking procedure as if each test takes place separately— we do not

allow for outcomes in one section of the test to have any bearing on other sections.14 In

addition, each question is approached simultaneously, so that outcomes (or beliefs regarding

12It is possible that there is some unobserved heterogeneity that determines which students lie on these

spikes.
13This could correspond to students only answering the easiest question in the exam.
14We are explicitly ignoring time restrictions, whereby a quick performance in one section of the exam

might afford the student additional time in another section, allowing the student to more carefully examine

each question
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outcomes) of one question have no impact on other questions.

Signals for each of the five answers depend on whether or not the answer is actually the

correct answer, and are drawn as follows:

• Incorrect answers - draw a signal from a distribution G, where G is Pareto with

support [AI ,∞) and shape parameter β > 1.

• Correct answer - draw a signal from a distribution F, where F is Pareto with support

[AC ,∞) and shape parameter equal to α > 1.

Assumption 1. Both F and G have support [A,∞), where A > 0.

Suppose that the student observes five signals, given by the following vector:

X = (x1, x2, x3, x4, x5) (1)

where xi is the signal that the student receives when examining answer i. What then is the

student’s belief regarding the likelihood that each answer is correct? Using Bayes’ rule, the

probability that answer i is correct can be expressed as:

Prob(Answer i is correct|X) =
Prob(X|Answer i is correct)× 0.2

Prob(X)
(2)

Expressing the numerator in terms of the densities of the two distributions, F and G,

for the case where i = 1:

Prob(X|Answer 1 is correct) =
αAα

xα+1
1

βAβ

xβ+1
2

βAβ

xβ+1
3

βAβ

xβ+1
4

βAβ

xβ+1
5

(3)

In essence, the density of F (·) at x1 (as this is conditional on 1 being correct) multiplied

by the product of the density of G(·) at the other signals.

It follows, by substituting equation 3 into equation 2, that the probability that answer

i is correct, conditional on X, can be expressed as:

Prob(i is correct|X) =

αAα

xα+1
i

∏
j 6=i

βAβ

xβ+1
j∑5

m=1

(
αAα

xα+1
m

∏
n 6=m

βAβ

xβ+1
n

) (4)

where i, j,m, n ∈ {1, ..., 5}.
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This can be further simplified to:

Prob(i is correct|X) =

1
xα+1
i

∏
j 6=i

1

xβ+1
j∑5

m=1

(
1

xα+1
m

∏
n 6=m

1

xβ+1
n

) (5)

Letting γ = β − α, so that 1
xα+1
i

= 1

xβ+1
i

xγi , the expression further simplifies to:

Prob(i is correct|X) =
xγi∑5

m=1 x
γ
m

(6)

Note that the sum of beliefs for each of the five answers adds up to unity. Without loss

of generality, we assume that β ≥ α, which leads to positive relationship between the value

of the signal, and the likelihood that the answer is correct.1516

Proposition 1. The outcome of the model is the same for all A > 0

Proof: Replace A with cA. Now, for any P ∈ [0, 1), the signal generated by the correct

answer, F−1(P ), will be c times as large and similarly for signals generated for the incorrect

answers. Compare this to a situation where the student arbitrary decides to inflate all

signals by c. This will clearly have no impact on the decisions/outcome probabilities of a

rational agent, but mirrors what would be seen when replacing A by cA. �

Proposition 2. The outcome of the model is the same for all (α, β) that satisfies β
α = k ≥ 1

Proof: Let the student transform all signal vectors X to Y , such that yi = (xi)
α. The

correct answer now has a signal distribution of:

F (yi) = 1− B

yi
(7)

where B = Aα. Similarly, the incorrect answers’ signals have the following distribution:

G(yi) = 1−
(B
yi

) β
α

(8)

So this re-scaling of the signals preserves all of information contained in the original

signals, and the resulting signals have a distribution identical to one where the correct

15A higher shape parameter for a Pareto distribution shifts probability mass to the left
16If a student were to draw from distributions with β < α, smaller signals would be associated with the

correct answer.
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answers come from a Pareto distribution with the shape parameter equal to one, and the

incorrect answers have shape parameter equal to β/α. As shown in the earlier proposition,

the scale parameter is irrelevant. �

Accordingly, we can, without loss of generality, take A = 1 for all students, and take

α = 1 for all students. As a result, the structure of a student’s signals can be represented by

the shape parameter of the incorrect answer: β. A higher value of β draws the the mass of

the distribution towards the minimum, A = 1, allowing the student to more clearly separate

the incorrect signals from the signal given by the correct answer. In other words, higher

β students are what would be referred to as high ability students.17 However, they are

high ability in terms of their ability to distinguish correct from incorrect, in this particular

exam. While this should be highly correlated with most reasonable measures of ability, it is

limited to the exam in question. It likely incorporates general aptitude for multiple choice

test.

The effect of a higher β on test outcomes can be decomposed into three effects. First,

the correct answer has a higher probability of generating the highest signal. Increasing β

shifts the CDF of the incorrect answers’ signals to the left, and the student’s best guess

(the answer with the highest signal) will be correct more often. Secondly, when the correct

answer actually gives the highest signal, the probability with which the student believes

that it comes from the correct answer increases as the weighted sum of the incorrect signals

decreases. If the first answer is the correct answer, lowering
∑5

i=2 x
γ
i increases the student’s

belief that answer 1 is correct.

Finally, there is a subtle effect of β on tests. Students with high ability, i.e. a high value

of β, will be more confident in their choices. Even with the same signals, as we increase β,

the student’s belief that the highest signal comes from the correct answer increases. This

is formally stated below:

Lemma 1. Suppose there are two students: one with ability parameter β = b1 and the other

with ability parameter β = b2 > b1. Suppose that the two students receive identical signals

X for a question. Let xmax = max{x1, ..., x5}. The student with the higher value of β has

a higher belief that xmax is drawn from the correct answer.

17Signal distributions for a student with ability β = 3 are shown in Figure 11
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Proof: The belief is given by xγmax∑5
m=1 x

γ
m

. Taking logs, and differentiating with respect to

γ, yields the following expression:

d log(Belief)

dγ
= log xmax −

xγ1 log x1 + xγ2 log x2 + xγ3 log x3 + xγ4 log x4 + xγ5 log x5
xγ1 + xγ2 + xγ3 + xγ4 + xγ5

(9)

Since log xmax ≥ log xi, and xi > 0,

dBelief

dγ
≥ 0 (10)

With the inequality strict unless x1 = x2 = x3 = x4 = x5. Since γ ≡ β − α, the student

with the highest value of β has the strongest belief (α = 1 for both students).�

Once students have observed signals for each of the five possible answers to the question,

they are faced with six possible alternatives: either choosing one of the five answers, or

skipping the question. Skipping the question does not affect their ÖSS score, answering

correctly increases the score by 1, while answering incorrectly decreases the score by 0.25

points. Note that the expected value of a random guess is 0.2 ∗ 1− 0.8 ∗ 0.25 = 0.

If a student were to choose an answer, they would choose the one which was most likely

to be correct. A slightly higher score is clearly preferred. In this model, the answer which is

most likely to be correct is the one with the highest value of xi. Also, this answer trivially

has a probability of being correct (conditional on observed signals and the student’s ability)

greater than or equal to twenty percent.

However, the relationship between ÖSS score and utility need not be linear. It is reason-

able to suggest that there may be a degree of risk aversion present, both student’s general

attitudes towards risk and the structure of the relationship between ÖSS score and univer-

sity admission. On the other hand, certain areas could well exhibit risk loving behavior:

students must score above 120 in order to be qualified to make a preference submission to

a four year college program.

As such, we stipulate that students have a cutoff for the belief. If the student believes

that the best answer (highest signal) has a probability of being correct greater than the

cutoff, they will attempt the question, choosing the best answer. However, if all answers

have a probability lower than this cutoff, then they will skip the question. This cutoff lies in
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the interval [0.2 1].18 A higher value for the cutoff implies a higher degree of risk aversion,

while a cutoff of 0.2 would be supported by risk neutral/risk loving preferences.

Consider a student with ability parameter β and attempt threshold c ∈ (0.2, 1). From

these two parameters, we are able to calculate the probability that they would skip a given

question, the probability of answering correctly, and the probability of answering incorrectly.

In order to answer a question, with answer n, the signal drawn for answer n, xn, must

satisfy two conditions. First, it must be the highest signal. Second, it must be high enough,

given the other signals, so that the belief is greater that the cutoff required to attempt the

question. We define the following function as the minimum signal xn required to attempt

with the nth answer, given the other signals:19

K({xi}i 6=n) = max
(

max{{xi}i 6=n},
( c

1− c
(
∑
i 6=n

xγi )
)1/γ)

(11)

Suppose that answer number 1 is the correct answer. The chance that answer number

2 is selected by the student, that is, provided as the answer, is:

∫ ∞
x5=A

∫ ∞
x4=A

∫ ∞
x3=A

∫ ∞
x1=A

∫ ∞
x2=K(x1,x3,x4,x5)

1dG(x2)dF (x1)dG(x3)dG(x4)dG(x5) (12)

So that the chance of the student submits an incorrect answer is the value of the above

equation multiplied by the four possible incorrect answers. Similarly, the probability that

the student submits a correct answer (in this case, answer number 1) is:

∫ ∞
x5=A

∫ ∞
x4=A

∫ ∞
x3=A

∫ ∞
x2=A

∫ ∞
x1=K(x2,x3,x4,x5)

1dF (x1)dG(x2)dG(x3)dG(x4)dG(x5) (13)

The probability that the student skips the question can be obtained similarly, by finding

for each answer the probability that it gives the highest signal, yet is below the threshold

to attempt.

18As there will always exist an answer with probability of being correct greater than or equal to 0.2, we do

not consider cutoffs below 0.2, as they would result in the same behavior: always attempting the question,

never skipping
19A diagram showing choices conditional on signal observations for a simplified two answer setup is shown

in Figure 12
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These lead to three functions that describe the probabilities of each of the three possible

outcomes of a question, conditional on student ability β, and cutoff c:

Prob(Correct) = PC(β, c) (14)

Prob(Wrong) = PW (β, c) (15)

Prob(Skip) = PS(β, c) (16)

where PS(·) = 1 − PC(·) − PW (·). Table 3 provides these, in addition to the average

points earned per question, for various parameter values.20 Consistent with the literature,

as the probability to skip increases, the average points per question decreases (for a fixed

ability).21

In each exam, the student faces 45 questions, with signals and outcomes independent

across all questions in the exam. From this, we can find the probability that the student

attempts x ∈ {0, ..., 45} questions, skipping 45− x questions:

Prob(Answer x questions) =

(
45

x

)
(PC + PW )x(PS)45−x (17)

Conditional on answering x questions, the probability that y ∈ {0, ..., x} questions are

answered correctly is:

Prob(Answer y of x questions correctly) =

(
x

y

)( PC
PC + PW

)y( PW
PC + PW

)y−x
(18)

A student that attempts x questions, correctly answering y questions, achieves a score

in that exam of:

Score(x, y) = y − (x− y)

4
(19)

Accordingly, we can find the probability that a student with ability β and cutoff c

obtains a score of s. Suppose that there are k possible ways of obtaining such a score: (yj

20A β of 3 is later found to be approximately median.
21Of course the average points per question attempted increases.
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correct, (xj−yj) incorrect, (45−xj) skipped) where j = 1, ..., k. Thus, we obtain a mapping

from (β, c) to the probability of getting score s:

Prob(Score = s) = M(β, c; s) (20)

=

k∑
j=1

(
45

xj

)
(PC + PW )xjP

45−xj
s

(
xj
yj

)
(

PC
PC + PW

)yj (
PW

PC + PW
)yj−xj

5 Estimation Strategy

In our model, students’ scores depend on students’ ability (β) and risk aversion cutoff, c.

In our data set we observe student’s scores, but not the decomposition. In this section we

use our model to estimate the distribution of ability and risk aversion cutoff.

Estimation of the parameters of interest, distribution student ability (βT , βSS) and risk

aversion cutoff c, is conducted jointly for each gender, and attempt number. In addition,

we recognize that the relationship between ÖSS-SÖZ score and utility is not necessarily

constant throughout the range of scores: the degree of risk aversion may be different. In

particular, we could expect that students anticipating low scores would be considerably less

risk averse, since scores below a cutoff result in the same outcome: an inability to submit

preferences/apply to universities. This would result in a jump in the payoff function as

students cross the cutoff score.

As a result, while we allow cutoffs to vary by gender and attempt number, we also

allow cutoffs to depend on the interval in which the student’s predicted ÖSS-SÖZ score

lies, for example 120-130. To accomplish this, we first regress ÖSS-SÖZ on GPA (adjusted

for school)22, education level of both parents, monthly income of parents, and preparation

on the four subject areas. We use the results of the regression to derive fitted values of

ÖSS-SÖZ, predicted exam scores given observable characteristics, for each student. This

estimation is conducted separately for each gender/attempt number.

22To adjust for school quality, we adjust the GPA of student within a school based on the performance

of the school in the exam. We observe normalize GPA for each students, which is able to be converted to

a ranking within the school. As we observe the mean and variance of exam scores for each school, we can

easily convert the GPA to a measure that reflects the quality of the school.

16



We divide students into groups, according to gender, attempt number, and the range into

which their predicted ÖSS-SÖZ score lies: (0, 90), [90, 100), [100, 110), [110, 120), [120, 130),

[130, 140), and [140,∞). For each group, we examine the two subjects jointly.23 While these

intervals may not contain equal numbers of students, it will allow us to make comparisons

across genders and attempt numbers. For each group, we take the cutoff c, and the distri-

bution of ability β within the group. The ability of each student in subject k is given by

1 + eXk , where (XT , XSS) is distributed normally with mean µ = (µT , µSS) and variance

matrix Σ. This ensures that each student has an ability in both subjects greater than 1,

and results in a log normal shaped distribution (shifted 1 unit to the right).

Under the assumptions we made, the probability to get each score is approximated

through simulation. For student s, we take a draw from N(µ,Σ) and label the vector as

Xs. From Xs, we find (βT,s, βSS,s) = (1 + eXs(1), 1 + eXs(2)), the student’s ability vector.

As we now have (βT , βSS , c) for student n, we can find the probability the student obtains

score x in subject k, which is defined as Mn(βk, c;x) in the previous section. By taking a

random draw from the joint distribution of scores, we can generate the simulated student’s

test outcome o: the Turkish score and social science score.

In order to find the relevant parameters for the group (cutoff, means of XT , XSS , vari-

ances of XT , XSS and covariance between XT and XSS), we use simulated method of mo-

ments. We compare simulated scores to those observed in the data. Specifically, we look

at moments related to the intensity of the spikes, and the shape of the distribution. More

specifically, the difference between the mass of students with scores corresponding to at-

tempting all questions (i.e. 45, 43.75,...) and the mass of students with scores corresponding

to skipping a single question (i.e. 44, 42.75,...) captures in the intensity of the spikes. For

example, 0.4 − 0.3 = 0.1. If the spikes are very prominent, this difference will be large;

if they are non-existent, this difference will be minimal. In addition, we use the mean of

scores, and the variances/covariances of scores.

More formally, moments of an outcome o 24 is given by:

23The only tests of interest are Turkish and social science
24o is (Turkish score, social science score)
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m(o) = (o(1), o(2), I(o), o(1)2, o(2)2, o(1) ∗ o(2)) (21)

where I(o) is equal to 1 if the score corresponds to attempting every question, -1 if

skipping a single question, and zero otherwise.

( 1

N

N∑
n=1

g(β, c)
)′( 1

N

N∑
n=1

g(β, c)
)

(22)

Accordingly, the estimates of the cutoff c and ability distribution parameters µ,Σ for

each group are estimated by minimizing the distance between the simulated moments and

the observed moments.

ĉ, µ̂, Σ̂ = θ̂ = arg min
θ

[ T∑
t=1

(
m(ot)−

1

S

S∑
s=1

m(o(ust , θ))
)]′

W−1T

[ T∑
t=1

(
m(ot)−

1

S

S∑
s=1

m(o(ust , θ))
)]

(23)

where T is the number of observations in the data, TS is the number of simulated draws

draws o(ust , θ), and WT is the weighting matrix.

With the identity matrix used as the weighting matrix, we obtain an estimate of the

parameters of each group that is consistent and asymptotically normal. Applying the two

step procedure,(Hansen [1982], Gourieroux and Monfort [1997], Duffie and Singleton [1993])

this estimate is used to generate a weighting matrix. Using the new weighting matrix, the

procedure is repeated, and a consistent and asymptotically normal estimate is obtained.

5.1 Identification

Identification of the risk aversion cutoff, c, is achieved through matching the intensity of

the spikes. For example, if students are risk averse then they will tend to skip. Thus, at low

values of c, students will have a very low probability of skipping a question: it is unlikely

that the answer with the highest signal has a low enough probability of being correct to

be below the risk aversion cutoff. As a result, almost all of the probability mass of a given

student’s distribution will be located on scores corresponding to attempting all questions.
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As the risk aversion cutoff increases, students become more and more likely to skip some

questions, resulting in more mass lying on scores unreachable by attempting all questions

(i.e. some questions must be skipped), while the spikes still remain prominent. Increasing

the risk aversion cutoff further results in enough skipping activity so that spike cannot be

seen.

This is illustrated in figure 13, where the score distribution for a student (with a fixed,

approximately median, ability of β = 3) is shown for various cutoff levels. A cutoff of

c = 0.225 gives virtually all of the mass to the attempt all scores. As the risk aversion

cutoff increases to 0.3, the spikes all but disappear.

The relationship between the intensity of the spikes and the risk aversion cutoff is not

constant. For a fixed cutoff c, as we increase ability, the intensity of the spikes increases.

While low ability students might have a high chance of having a highest belief below the

risk aversion cutoff, it becomes increasingly rare as we move to the high ability students.

The parameters of the distribution of the ability of a group of students, βX and σ2X ,

are identified by the distribution of scores. An increase in the mean parameter βX moves

the score distribution to the right, increasing the mean, while an increase in the variance

parameter σ2X increases the variance of the score distribution. This is due to a strong

relationship between ability and exam scores. Similarly, the covariance between ability in

Turkish and social science is obtained through the correlation of scores.

6 Results

Table 4 contains the estimates of the risk aversion cutoff, the belief regarding probability

of success below which a student will skip a question, for the various groups,25 in addition

to the standard errors of the estimates.

Two facts are apparent. While males and females have roughly similar cutoffs, males

tend to have lower risk aversion cutoffs, especially for students whose predicted score is

above the threshold that allows them to submit a preference list. This is even more so

among second time takers. This is in line with the literature - males are acting in a less risk

25Estimates for the second time takers in the ÖSS score range less than 90 are not obtained due to

insufficient observations.
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averse manner. Secondly, the cutoff rises systematically in the score range below 120. This

matches what we know about the payoff structure. For low scores, students should be much

less risk averse since any score below 105 will not allow the student to submit preferences

for any school, and any score below 120 will not permit the student to submit preferences

for four year college programs. Above 120, the cutoff remains relatively high: a lower score

could see the student forced to attend a much less desirable institution.

Also noteworthy is the observation that the risk aversion cutoffs tend to decrease among

high scoring students between first time takers and second time takers, whereas they tend

to increase among the low scoring students. This pattern may be due to selection; high

scoring risk loving students may self select into taking the exam a second time, while risk

averse poor performing students may have dropped out of the system. However, it goes

beyond the scope of this paper to disentangle the reasons behind this pattern.26

Figures 14 through 17 show the simulated distributions compared to observed distribu-

tions for the various groups. While the estimation procedure was designed only to match

subgroups of the sample, the entire simulated distribution fits the data relatively well, with

some exceptions: it systematically under-predicts scores which correspond to skipping mul-

tiple questions.27 In addition, the skipping behavior is overestimated among low scoring

students - this is likely due to such students correctly anticipating their low expected score

and acting accordingly, whereas in the estimation many of these are restricted to acting

with a (high) cutoff corresponding to their fitted score.

Estimates of the parameters governing the distribution of ability for each group are

presented in Table 5. Recall that ability is parameterized as 1 + eX , where X ∼ N(µ, σ2).

The mean and standard deviation of X in each group are presented.

As predicted, groups that are predicted to have high exam scores have much better

distributions of ability for both Turkish and social science. However, there is significant

variance in the distributions, reflective of the fact that the fitted score is an imperfect

measure of overall student ability. We see that females tend to have higher ability in

Turkish, but lower ability in social science, when compared to males in the corresponding

26Additionally, such a pattern is consistent with a model where students do not perfectly know their true

ability, and update their belief after taking the exam, see Lemma 1.
27This issue is addressed in more detail in a later section.
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group. This implies that males tend to have a comparative advantage in social science.

In addition, we observe that males tend to have higher variance in their distribution of

ability. In fact, the variance is greater for all groups. This has two interpretations. First,

the distribution of abilities is more dispersed among males, which is also implies by the

distribution of exam scores. There is another possibility, that the fitted ÖSS score is not as

accurate for males. There could be a number of causes for this, such as GPA being a poor

predictor of exam scores, etc.

Looking at the distributions of ability across the various groups, we see similar patterns.

As shown in figure 18, second time takers have higher abilities across the distribution, for

both social science and Turkish. However, we can conclude definitively why this is the case.

There are two possibilities for this difference in ability: selection and learning. It is

possible that students tend to learn between their first and second attempts, so that they

increase their ability in the social science and Turkish sections of the exam. However, it

is also possible that the perceived change in the distribution is simply due to a selection

effect. Consider the students who choose to continue. They could very well be different

from students who choose not to retake the exam. It could be that the best students do

not retake the exam: they are admitted into a university program and so have no reason

to take the exam. On the other side of the distribution, the worst students may have very

little incentive to return, as they have almost no chance of meeting the threshold required

to apply to programs. If the second effect is important, selection could very well result in

a better distribution of student abilities among second time takers.

In figure 19, we see how the genders differ the first time they take the exam. The lower

portion of the social science ability distribution is indistinguishable, however males have a

considerably better distribution for the top portion, compared to females. This is not the

case with the Turkish portion - females are much better for all points in the distribution.

This provides an interpretation of the observed differences in ÖSS-SÖZ scores. Males are

overall worse at Turkish, but the best males make up for it in social science.

The second time takers exhibit a similar pattern in figure 20; however the advantage of

males amongst the top social science students is more pronounced, and their disadvantage
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in Turkish decreases at the high end. As seen in the ÖSS-SÖZ score distributions 28,

the comparison between male and female low ability students is similar to that of first

time takers; whereas the high ability males gain a more favorable distribution (relative to

females) in the second attempt.

7 Counterfactuals

Having recovered the parameters regarding the risk aversion exhibited by students in the

multiple choice tests, in addition to estimates regarding the distribution of ability (as mea-

sured by β for each subject, the parameter in the Pareto distribution that governs dispersion

of signals), we are now able to perform counterfactual experiments.

In these experiments, we will compare outcomes of a number of testing regimes, and

student behaviors. For example, how would exam outcomes differ if all students attempted

(answered) every question, as would happen if the penalty for answering incorrectly were

removed? This is relevant because it is fully feasible to change the testing regime, and

there is the possibility that the regime has an effect on the outcomes: males and females,

first and second time takers, act differently. In addition, the rationale behind penalties is

to reduce the amount of random guessing, therefore reducing score variance and improving

the effectiveness of tests.

The objects of interest in these experiments are as follows:

• The relationship between ability in social science (βSS) and social science section exam

score percentile

• The relationship between ability in Turkish (βT ) and social science section exam score

percentile

• The relationship between gender and social science section exam score percentile

• The relationship between attempt number and social science section exam score per-

centile

28See figure 2
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The first two objects are clearly important. The ÖSS exam system is an allocation

mechanism, presumably designed to give the students with high abilities access to the most

desirable institutes of higher education. However, the exam score is an imperfect measure

of student ability. The students who score in the top one percent are not necessarily those

in the top one percent as measured by ability. The testing regime, and restrictions on

behavior, may affect the dispersion of possible scores for students, affecting how precisely

the system identifies the best students.

The third relation of interest, gender vs. exam scores, is also important. It is recognized

in the literature that males are less risk averse than females in test situations (see Eckel

and Grossman [2008]). In support of this, we have found that females tend to have higher

thresholds for attempting to answer a question, i.e. they are more risk averse. Since the

testing regime in question is forcing students to accept an element of risk when choosing

to answer a question, the preferences regarding risk affect the distribution of final exam

scores. This may tend to favor male test takers, leading in essence to a systemic bias in

the testing procedure. In addition, the distributions of abilities are considerably different

across gender; the regime may end up attenuating these differences.

Finally, we also see different observed attitudes to risk across attempt numbers, as well

as vastly different distributions of abilities. As a result, the regime may be able to influence

the proportion of students that are first time takers in a given final exam score percentile.

While this paper does not go into much detail on the topic, the costs/benefits of delaying

entry into university are likely to be important.

The seven possible regimes used in this counterfactual experiment are:

1. The baseline model, as estimated in the previous section

2. Preferences of males and females are switched, so that the cutoff used by a male ith

time taker in exam subject j, with ÖSS-SÖZ score interval k is switched with that

used by a female ith time taker in exam subject j, with ÖSS-SÖZ score interval k,

and vice versa

3. Preferences of first and second time takers are switched, so that the cutoff used by a

male 1st time taker in exam subject j, with ÖSS-SÖZ score interval k is switched with
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that used by a male 2nd time taker in exam subject j, with ÖSS-SÖZ score interval

k, and vice versa

4. All students attempt all questions. This is equivalent to assuming that all students are

risk neutral/loving, and identical to removing the penalty for answering incorrectly.

Both would cause rational students to answer every question. Scores would, however,

need to be rescaled to reflect the absence of such a penalty: instead of ranging from

−11.25 to 45, they would range from 0 to 45.

5. Each question has only 4 answers to choose from, with the penalty for an incorrect

answer adjusted accordingly

6. The penalty for answering incorrectly is increased from 0.25 points to 0.5 points

7. The penalty for answering incorrectly is increased from 0.25 points to 1 point

While the second is clearly eliciting the gender effect on outcomes, and the third the

effect of experience (through test behavior), the fourth counterfactual seeks to examine the

effect of having penalties for incorrect answers, as opposed to the simple, standard approach

of a single point for each question answered correctly.

The fifth requires more explanation. In the default regime, there are five answers, with

a single point for correct answers and a quarter point lost for incorrect answers. This results

in an expected gain of zero from a random guess; accordingly, we set the penalty equal to

one third of a point in the four answer scenario, resulting in a random guess having an

expected gain of zero.

As a result, the cutoffs for attempting a question must be different. To convert cutoffs

from the five answer case, we first assume a CARA utility function, and solve for the risk

aversion parameter that generates a given cutoff. This is repeated for each student. We

then convert the risk aversion parameter to a cutoff in the four answer case.29

The sixth counterfactual is designed to elicit more skipping from students, in order

to increase the impact that differences regarding risk preference have on exam outcomes.

29For example, a cutoff of 0.240 in the five answer case implies risk aversion coefficient of 0.383 (CARA

utility), which results in a cutoff of 0.300 in the four answer case.
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The seventh continues, increasing the penalty even further. Similar to the four-answer

counterfactual, new cutoffs are obtained for both counterfactuals.

For each of the seven possible regimes, we find the resulting distributions of scores for

the entire sample of students, and segment scores into bins of five percent.3031 For each

of the twenty bins, ranging from the lowest scores to the highest, we find four objects of

interest: share of males, share of first time takers, average social science ability and average

Turkish ability.32

Figures 21 through 24 show how the four objects of interest differ across the different

regimes. As expected, given their greater exam score variance, the male fraction is u-shaped,

as shown in figure 21. However, there is no discernable pattern in the differences between

the seven regimes throughout most of the range. While there are some small differences

around the median, all seven are fairly similar. We do see some small differences in the

top performing students: “No Penalty” gives a lower Male fraction (the more abundant

Males are seemingly disadvantaged by the added variance in scores) whereas the “Penalty:

1” regime has a very slightly higher Male fraction, i.e. the small difference in risk aversion

begins to have a small effect. Of course an alternative explanation is that the increased

penalty increases the accuracy of the test, reducing the dulling effect that random guessing

has on the prevalence of males in the top part of the distribution. The increased prevalence

of males at the lowest percentiles when the penalty is equal to 1 supports this notion.

This insensitivity is even more apparent when examining the other graphs. Second time

takers are dominant in the high exam scores percentiles, as would be expected, with the

seven curves lying on top of each other in figure 22.

Figures 23 and 24 have higher ability students in the higher score percentiles, with

no differences across the six cases featuring risk aversion. We do, however, see that the

“Attempt All” regime gives slightly lower average abilities amongst the highest performing

students, consistent with penalties and risk aversion allowing an improved separation of

students by abilities. Similarly, the increased penalty regimes appear to be more effective

30Five percent of the number of students
31The rationale behind segmenting into percentiles, not scores, is to see the effects on the resulting allo-

cation of students to university programs.
32The average of log(β) is used for each subject
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at separating students by ability.

Although the seven regimes can lead to considerable different score distributions, the

relationship between gender, attempt number and ability, and exam score percentiles is

relatively invariant. The reasoning for this is relatively straightforward. While there may

be differences in attitudes to risk, and resulting test taking behavior, the implications of

these differences happen to be rather small due to the characteristics of situations when

these differences are relevant. While a difference in the cutoff of 0.23 versus 0.25 may be

considerable given that the risk neutral cutoff is 0.2, and implies considerably different

attitudes to risk, the effect on scores is small for two reasons. Firstly, there is a relatively

low chance that a student has a belief lying between 0.23 and 0.25 for a given question.

Secondly, if the belief does lay in that region, the expected gain from answering (and hence

that from having a low cutoff) is at most 0.0625 points. Even when the penalty is raised,

leading to more skipping behavior, the total effect on allocations is minor. Essentially,

differences in skipping behavior are not common, and are restricted to certain situations;

in these situations there is little difference between skipping and attempting.

However, a degree of caution should be applied when applying this result to other tests

with different students. Here, the lack of an effect is the result of a relatively low degree

of risk aversion overall, in addition to an exam where students are able to be confident

enough to answer a vast majority of the time. While there is no obvious reason why the

first might be particular to this group of students, it is very reasonable to suggest that the

second depends very much on the style of the exam, questions asked and so on.

8 Conclusions

This paper investigates the factors that affect students’ exam taking behavior in multiple

choice tests. By constructing a structural model of a student’s decision to attempt/skip

a question in a multiple-choice exam, we estimate the risk aversion cutoff and ability dis-

tributions of students. We do so by dividing students into different groups according to

their gender, experience in the exam, and the predicted ÖSS score, which depends on their

background characteristics, high school performance, and the quality of the high school
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which they attended. Crucially, we allow different groups of students to have a different

risk aversion and ability distribution in each part of the test.

Our results suggest that there are significant differences in different groups in the way

they approach the exam. Female students act in a more risk averse manner in all groups

relative to males. We also find that students with low expected scores have a lower risk

aversion cutoff, which is consistent with the pay-off structure.

While our findings suggest that females behave in a more risk averse manner, which

theoretically leads to a disadvantage in tests which impose a penalty, we find that differ-

ences have very little bearing on aggregate outcomes. In fact, imposing penalties primarily

improves the effectiveness of tests: separating the low ability students from the high ability

students.
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9 Appendix

Table 1: Test Weights

Math Science Turkish Social Science Language

Science Track (ÖSS-SAY) 1.8 1.8 0.4 0.4 0

Social Science Track (ÖSS-SÖZ) 0.4 0.4 1.8 1.8 0

Turkish-Math Track (ÖSS-EA) 0.8 0.4 0.8 0.3 0

Language Track (ÖSS-DIL) 0 0 0.4 0.4 1.8

Table 2: Summary Statistics

Variable Obs. Mean Std.Dev. Min Max

Gender (Male=1) 37650 0.567 0.496 0 1

ÖSS-SÖZ 37650 116.737 18.912 0 161.166

Normalized High School GPA 37650 47.550 7.825 30 80

Raw Turkish Score 37650 23.983 9.965 -10 45

Raw Social Science Score 37650 19.229 10.397 -8.75 45

Raw Math Score 37650 1.853 4.061 -9 42.5

Raw Science Score 37650 0.197 1.296 -8.75 25.75

Education level of Dad

Primary or less 37650 0.557 0 1

Middle/High school 37650 0.281 0 1

2-year higher education 37650 0.028 0 1

College/Master/Phd 37650 0.050 0 1

Missing 37650 0.085 0 1

Income Level

<250 TL 37015 0.459 0 1

250-500 TL 37015 0.393 0 1

500-750 TL 37015 0.095 0 1

750-1000 TL 37015 0.030 0 1

(continued on next page)
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Variable Obs. Mean Std.Dev. Min Max

1000-1500 TL 37015 0.012 0 1

1500-2000 TL 37015 0.006 0 1

>2000 TL 37015 0.005 0 1

Number of Attempts

1st attempt 35470 0.261 0 1

2nd attempt 35470 0.250 0 1

3rd attempt 35470 0.242 0 1

4th attempt 35470 0.154 0 1

5th attempt 35470 0.092 0 1

Prep School Expenditure

No prep school 37577 0.262 0 1

Scholarship 37577 0.008 0 1

<1000 TL 37577 0.223 0 1

1000-2000 TL 37577 0.095 0 1

>2000 TL 37577 0.034 0 1

Missing 37577 0.378 0 1

Time Spend in Preparation in 11th Grade

Turkish Preparation 37650 0.439 0.874 0 3

Social Science Preparation 37650 0.465 0.905 0 3

Math Preparation 37650 0.301 0.653 0 3

Science Preparation 37650 0.125 0.393 0 3
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Figure 1: Distribution of OSS-SOZ Scores
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Figure 3: Social Science Test Scores (bins of width one)
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Figure 4: Turkish Test Scores (bins of width one)

0
.0

1
.0

2
.0

3
.0

4
D

en
si

ty

−11 −6 −1 4 9 14 19 24 29 34 39 44
Raw Turkish Score

1st time takers

0
.0

1
.0

2
.0

3
.0

4
D

en
si

ty

−11 −6 −1 4 9 14 19 24 29 34 39 44
Raw Turkish Score

2nd time takers

32



Figure 5: Math Test Scores (bins of width one)
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Figure 6: Science Test Scores (bins of width one)
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Figure 7: Distribution of Social Science Test Scores
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Figure 8: Distribution of Turkish Test Scores
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Figure 9: Distribution of Math Test Scores
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Figure 10: Distribution of Science Test Scores
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Figure 11: Distributions of signals for a student with β = 3, approximately median
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Figure 12: Action conditional on signals for a simple two answer model (parameter values:

β = 3 and cutoff = 0.55
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Table 3: Question outcomes for various parameter values: probabilities of skipping, being

correct, being incorrect, and the average points per question

β Cutoff Prob(S) Prob(C) Prob(I) PPQ

2 0.2 0 0.405 0.595 0.257

2 0.225 0.012 0.403 0.585 0.257

2 0.25 0.085 0.386 0.529 0.254

2 0.275 0.192 0.359 0.449 0.247

2 0.3 0.303 0.328 0.370 0.235

2 0.325 0.403 0.297 0.300 0.222

3 0.2 0 0.535 0.465 0.419

3 0.225 0.003 0.534 0.463 0.419

3 0.25 0.030 0.528 0.442 0.418

3 0.275 0.081 0.515 0.404 0.414

3 0.3 0.143 0.498 0.360 0.408

3 0.325 0.208 0.478 0.315 0.399

4 0.2 0 0.619 0.381 0.524

4 0.225 0.001 0.619 0.380 0.524

4 0.25 0.017 0.616 0.368 0.524

4 0.275 0.049 0.608 0.344 0.522

4 0.3 0.091 0.596 0.314 0.517

4 0.325 0.137 0.581 0.281 0.511
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Figure 13: Distribution of scores resulting from various cutoff levels
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Table 4: Estimates of Risk Aversion Cutoff

Social Science Track Students

Female Male

1st time takers 2nd time takers 1st time takers 2nd time takers

(0,90) 0.2429 0.2100

(0.0269) (0.0026)

[90,100) 0.2322 0.2330 0.2272 0.2388

(0.0023) (0.0373) (0.0019) (0.0658)

[100,110) 0.2396 0.2463 0.2364 0.2363

(0.0009) (0.0027) (0.0010) (0.0016)

[110,120) 0.2546 0.2529 0.2480 0.2456

(0.0017) (0.0013) (0.0016) (0.0012)

[120,130) 0.2612 0.2620 0.2594 0.2529

(0.0037) (0.0022) (0.0043) (0.0016)

[130,140) 0.2763 0.2677 0.2633 0.2562

(0.0062) (0.0043) (0.0036) (0.0020)

[140,∞) 0.2796 0.2773 0.2697 0.2596

(0.0175) (0.0146) (0.0076) (0.0096)

Standard errors are reported in parentheses.
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Table 5: Estimates of Ability Parameters

Social Science Test

Female Male

1st time takers 2nd time takers 1st time takers 2nd time takers

µ σ µ σ µ σ µ σ

(0,90) -2.432 1.660 -3.031 1.775

(0.399) (0.084) (0.211) (0.171)

[90,100) -0.702 0.807 -0.573 0.814 -0.620 0.866 -0.473 1.030

(0.037) (0.031) (0.111) (0.080) (0.039) (0.037) (0.180) (0.111)

[100,110) -0.102 0.619 -0.035 0.777 0.068 0.751 -0.036 1.010

(0.023) (0.018) (0.020) (0.027) (0.011) (0.019) (0.030) (0.032)

[110,120) 0.509 0.549 0.469 0.690 0.694 0.618 0.564 0.944

(0.023) (0.016) (0.023) (0.023) (0.025) (0.017) (0.027) (0.015)

[120,130) 1.035 0.567 1.027 0.632 1.232 0.656 1.265 0.791

(0.032) (0.018) (0.029) (0.015) (0.034) (0.015) (0.031) (0.021)

[130,140) 1.495 0.516 1.409 0.582 1.742 0.644 1.774 0.838

(0.055) (0.034) (0.028) (0.035) (0.053) (0.033) (0.046) (0.040)

[140,∞) 2.020 0.389 1.764 0.424) 2.181 0.449 1.997 0.436

(0.069) (0.073) (0.084) (0.094) (0.055) (0.167) (0.069) (0.025)

Turkish Test

Female Male

1st time takers 2nd time takers 1st time takers 2nd time takers

µ σ µ σ µ σ µ σ

(0,90) -1.263 1.427 -1.726 1.417

(0.245) (0.152) (0.199) (0.105)

[90,100) 0.106 0.618 0.136 0.913 -0.141 0.730 0.128 0.796

(0.027) (0.022) (0.108) (0.099) (0.024) (0.024) (0.091) (0.102)

[100,110) 0.571 0.579 0.684 0.658 0.411 0.640 0.398 0.824

(0.020) (0.014) (0.026) (0.025) (0.016) (0.018) (0.026) (0.024)

[110,120) 1.118 0.514 1.175 0.650 0.909 0.516 0.890 0.817

(0.022) (0.011) (0.022) (0.020) (0.022) (0.012) (0.023) (0.013)

[120,130) 1.681 0.552 1.703 0.583 1.453 0.609 1.511 0.725

(0.033) (0.023) (0.028) (0.016) (0.033) (0.019) (0.029) (0.013)

[130,140) 2.256 0.538 2.104 0.640 2.062 0.666 1.972 0.779

(0.058) (0.043) (0.035) (0.051) (0.055) (0.035) (0.045) (0.048)

[140,∞) 2.978 0.553 2.409 0.618 2.541 0.571 2.368 0.536

(0.135) (0.148) (0.146) (0.091) (0.082) (0.086) (0.077) (0.042)

Standard errors are reported in parentheses.
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Figure 14: Data vs simulated distribution: social science, first time takers
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Figure 15: Data vs simulated distribution: Turkish, first time takers
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Figure 16: Data vs simulated distribution: social science, second time takers
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Figure 17: Data vs simulated distribution: Turkish, second time takers
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Figure 18: Distributions of Social Science and Turkish ability
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Figure 19: Distributions of Social Science and Turkish ability for First time takers
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Figure 20: Distributions of Social Science and Turkish ability for Second time takers
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Figure 21: Counterfactual: proportion of males vs ÖSS-SOZ score quantiles
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Figure 22: Counterfactual: proportion of first time takers vs ÖSS-SOZ score quantiles
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Figure 23: Counterfactual: social science ability vs ÖSS-SOZ score quantiles
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Figure 24: Counterfactual: Turkish ability vs ÖSS-SOZ score quantiles
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