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Part II
Complex Economic Dynamics:
Agent-based and Analytical Models
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2
The Dynamics of Pure Market
Exchange
Herbert Gintis
Santa Fe Institute, USA and Central European University, Hungary

The problem of a rational economic order is determined precisely by the fact
that the knowledge of the circumstances of which we must make use never
exists in concentrated or integrated form, but solely as the dispersed bits of
incomplete and frequently contradictory knowledge which all the separate
individuals possess. (F.A. Hayek 1945: 519)

2.1 Introduction

Adam Smith (2000 [1759]) envisioned a decentralized economy that sustains an
efficient allocation of resources through the ‘invisible hand’ of market competi-
tion. Smith’s vision was formalized by LéonWalras (1954 [1874]), and a proof of
existence of equilibrium for a simplified version of the Walrasian economy was
provided by Wald (1951 [1936]). Soon after, Debreu (1952), Arrow and Debreu
(1954), Gale (1955), Nikaido (1956), McKenzie (1959), Negishi (1960), and oth-
ers contributed to a rather complete proof of the existence of equilibrium in
Walrasian economies. Such economies are particularly attractive because they
capture the basic structural characteristics of market economies, and because
a Walrasian equilibrium is Pareto-efficient (Arrow 1951; Debreu 1951, 1954;
Hurwicz 1960).
The question of stability of theWalrasian economywas a central research focus

in the years immediately following the existence proofs (Arrow and Hurwicz,
1958, 1959, 1960; Arrow, Block and Hurwicz, 1959; Nikaido 1959; McKenzie,
1960; Nikaido and Uzawa 1960; Uzawa 1960). Themodels investigated assumed
that out of equilibrium, there is a system of public prices shared by all agents, the
time rate of change of prices being a function of excess demand. The public price
system was implemented by a single agent (the ‘auctioneer’) acting outside the
economy to update prices in the current period on the basis of the current pat-
tern of excess demand, using a process of ‘tâtonnement’, as was first suggested
by Walras (1954 [1874]) himself.
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The quest for a general stability theoremwas derailed by Herbert Scarf’s simple
examples of unstable Walrasian equilibria (Scarf, 1960). There were attempts
soon after to continue the analysis of tâtonnement by adding trading out of
equilibrium (Uzawa 1959, 1961, 1962; Negishi 1961; Hahn 1962; and Hahn
and Negishi 1962), but with only limited success.
General equilibrium theorists in the early 1970s harbored some expectation

that plausible restrictions on utility functions might entail stability, because
gross substitutability was known to imply global stability (Arrow et al., 1959)
and gross substitutability was known to hold for Cobb–Douglas and many
other utility functions (Fisher, 1999). However, gross substitutability is not a
property of constant elasticity of substitution (CES) and more general utility
functions. Moreover, Sonnenschein (1973), Mantel (1974, 1976), and Debreu
(1974) showed that any continuous function, homogeneous degree zero in
prices, and satisfying Walras’ Law, is the excess demand function for some
Walrasian economy.
However, Hahn and Negishi (1962) showed that if out-of-equilibrium trade

is permitted and the so-called Hahn condition obtains, then the Walrasian
equilibrium is stable under tâtonnement. The Hahn condition says that
markets are sufficiently informationally complete that if there is aggregate
excess demand then no individual experiences excess supply, and if there
is aggregate excess supply, then no individual experiences excess demand.
Fisher (1983) significantly broadened this model and proved stability assum-
ing a expectational condition (‘no favorable surprise’) that should logi-
cally hold in any Walrasian equilibrium, plus a weakened Hahn condition,
according to which lower-price sellers realize their plans before higher-price
sellers do.
Nevertheless, surveying the state of the art some quarter-century after Arrow

and Debreu’s seminal existence theorems, Fisher (1983) concluded that little
progress had been made toward a cogent model of Walrasian market dynam-
ics. More recent studies have shown that the tâtonnement dynamic is stable
only under extremely stringent conditions (Kirman, 1992). Indeed, chaos in
price movements is the generic case for the tâtonnement adjustment processes
(Saari, 1985; Bala and Majumdar, 1992). Saari (1995) and others have shown
that the information needed by a price adjustment mechanism that can ensure
stability include virtually complete knowledge of all cross-elasticities of demand
in addition to excess demand quantities.
It is now more than another quarter-century since Fisher’s seminal contri-

butions, but it remains the case that, despite the centrality of the general
equilibrium model to economic theory, we know nothing systematic about
Walrasian market dynamics in realistic settings. We show that when the mar-
ket system is modeled as a Markov process rather than a system of first-order
differential equations, a powerful analytical dynamic emerges.
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2.2 A Markov process primer

We will model the Walrasian economy as a Markov process, starting for illus-
trative purposes with a very elementary and purely didactic example. Our goal
is to show that even a very simple finite Markov process may have too many
states to permit an analytical solution, yet the global properties of the model
are easily understood.
Consider an economy with k goods, each of which could serve equally well

as a money good for the economy. Suppose there are n agents in the economy,
and in each period, each agent is willing to accept exactly one good as money.
Suppose further that in each period, one agent switches from his own preferred
money to that of another randomly encountered agent. We can describe the
state of the economy as a k-vector (w1. . .wk), where wi is the number of agents
who accept good i as money. The total number of states in the economy is
thus the number of different ways to distribute n indistinguishable balls (the n
agents) into k distinguishable boxes (the k goods), which is C(n+ k− 1,k− 1),
where C(n,k) = n!/(n−k)!k! is the number of ways to choose k objects from a set
of n objects. To verify this formula, write a particular state in the form

s= x. . .xAx. . .xAx. . .xAx. . .x

where the number of x’s before the first A is the number of agents choosing good
1 as money, the number of x’s between the (i−1)th A and the ith A is the number
of agents choosing good i as money, and the number of x’s after the final A is
the number agents choosing good k as money. The total number of x’s is equal
to n, and the total number of A’s is k− 1, so the length of s is n+ k− 1. Every
placement of the k−1 A’s represents particular state of the system, so there are
C(n+ k−1,k−1) states of the system.
For instance, if n= 100 and k= 10, then the number of states S in the system

is S = C(109,9) = 4,263,421,511,271. Suppose in each period two agents are
randomly chosen and the first agent switches to using the second agent’s money
good as his own money good (the two money goods may in fact be the same).
This gives a determinate probability pij of shifting from one state i of the system
to any other state j. The matrix P = {pij} is called a transition probability matrix,
and the whole stochastic system is called a Markov process. The Markov process
is finite because it has a finite number of states.
What is the long-run behavior of this Markov process? Note first that if we

start in state i at time t = 0, the probability p(2)

ij of being in state j in period t = 2
is simply

p(2)

ij =
S∑
k=1

pikpkj = (P2)ij. (1)
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This is true because to be in state j at t = 2 the system must have been in some
state k at t = 1 with probability pik, and the probability of moving from k to
j is just pkj. This means that the two-period transition probability matrix for
the Markov process is just P2, the matrix product of P with itself. By similar
reasoning, the probability of moving from state i to state j in exactly r periods,
is Pr . Therefore, the time path followed by the system starting in state s0 = i at
time t = 0 is the sequence s0,s1, . . ., where

P[st = j|s0 = i] = (Pt )ij = p(t)ij .

The matrix P in our example has S2 ≈ 1.818× 1015 entries. The notion of cal-
culation Pt for even small t is quite infeasible. There are ways to reduce the
calculations by many orders of magnitude (Gintis, 2009, Ch. 13), but even
these are completely impractical with so large a Markov process.
Nevertheless, we can easily understand the dynamics of this Markov process.

We first observe as that if the Markov process is ever in the state

sr∗ = (01, . . .,0r−1,nr ,0r+1. . .0k),

where all n agents choose good r money, then sr∗ will be the state of the system
in all future periods. We call such a state absorbing. There are clearly only k
absorbing states for this Markov process. We next observe that from any non-
absorbing state s, there is a strictly positive probability that the system moves
to an absorbing state before returning to state s. For instance, suppose wi = 1 in
state s. Then there is a positive probability that wi increases by 1 in each of the
next n−1 periods, so the system is absorbed into state si∗ without ever returning
to state s. Now let ps > 0 be the probability that Markov process never returns
to state s. The probability that the system returns to state s at least q times is
thus at most (1− ps)q. Since this expression goes to zero as q→ ∞, it follows
that state s appears only a finite number of times with probability one. We call s a
transient state.
Because state s in the previous argument was an arbitrary non-absorbing state,

it follows that all non-absorbing states are transient. It is also clear that with prob-
ability one there will be some period t such that no transient state reappears
after period t . This means that with probability one the system is absorbed into
one of the k absorbing states, from which it never emerges. Inevitably in this
system one good emerges as the money good for the economy.
We can in fact often calculate the probability that a system starting out with

wr agents choosing good r as money, is absorbed by state sr∗. Let us think of
the Markov process as that of k gamblers, each of whom starts out with an
integral number of k coins, there being n coins in total. The gamblers represent
the goods and their coins are the agents who choose that good for money. We
have shown that in the long run, one of the gamblers will have all of the coins,
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with probability one. Suppose the game is fair in the sense that in any period
a gambler with a positive number of coins has an equal chance to increase or
decrease his wealth by one coin. Then the expectedwealth of a gambler in period
t + 1 is just his wealth in period t . Similarly, the expected wealth E[wt ′ |wt ] in
period t ′ > t of a gambler whose wealth in period t is wt is E[wt ′ |wt ] = wt . This
means that if a gambler starts out with wealth w> 0 and he wins all the coins
with probability qw, then w= qwn, so the probability of being the winner is just
qw =w/n.
We now can say that this Markov process, despite its enormous size, can be

easily described as follows. Suppose the process starts with wr = w. Then in
a finite number of time periods, the process will be absorbed into one of the
states s1∗ , . . .,sk∗, and the probability of being absorbed into state sr∗ is w/n. As
it turns out, this description of a finite Markov process is completely general,
except for a few technical points. In general, however, the process will not be
absorbed into a single state, but rather into what is called an irreducible Markov
subprocess, making transitions among a number of states, called communicating
recurrent states. If the process is aperiodic, the fraction of time it is in each of
these recurrent states state forms a probability distribution called the stationary
distribution of the ‘absorbing’ Markov subprocess. If the process is periodic, it
can be conveniently subdivided into a number of aperiodic subprocesses, each
with a stationary distribution.

2.3 From differential equations to Markov processes

A plausible model of market dynamics should reflect two fundamental aspects
of market competition. First, trades must be bilateral with separate budget
equations for each transaction (Starr, 1972). The second is that in a decentral-
ized market economy out of equilibrium, there is no price vector for the economy
at all. The assumption that there is a system of prices that are common knowl-
edge to all participants (we call these public prices) is plausible in equilibrium,
because all agents can observe these prices in the marketplace. However, out of
equilibrium there is no vector of prices determined by market exchange. Rather,
assuming Bayesian rational agents, every agent has a subjective prior concern-
ing prices, based on personal experience, that the agent uses to formulate and
execute trading plans.
Consider, for instance, the wage rate for a particular labor service. In equi-

librium, this price may be common knowledge, but out of equilibrium, every
supplier of this service must have an estimate of the probability of selling his
service as a function of his offer price. The supplier, if Bayesian rational, will
have a subjective prior representing the shape of the demand function for
the service. This prior will determine whether the supplier accepts a particu-
lar wage offer, or rejects the offer and continues searching for a better offer. The
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information needed to form this prior includes the distribution of subjective
priors of demanders for the labor service, while the subjective prior of each
demander will depend in a similar manner on the distribution of subjective
priors of suppliers of the service. Thus in this case information is not sim-
ply asymmetrically distributed, but rather is effectively indeterminate, since
the supply schedule depends on suppliers’ assessment of demand conditions,
and the demand schedule depends on demanders’ assessment of supply sched-
ules. The conditions under which each agent’s choice is a best response to
the others’, even assuming common knowledge of rationality and common
knowledge of the Markov process (which in this case is the game in which the
players are engaged), are quite stringent and normally not present (Aumann
and Brandenburger, 1995).
In analyzing market disequilibrium, we must thus assume that each agent’s

subjective prior includes a vector of private prices that is modified adaptively
through the exchange experience. The admissible forms of experience in a
decentralizedmarket economy are those that result from observing the behavior
of trading partners. This experience is the sole basis for a trader’s updating his
private price vector, and equilibrium can be achieved only if plausible models
of inference and updating lead private prices to converge to equilibrium prices
(Howitt and Clower, 2000).
In the interest of simplicity in dealing with a daunting problem that has defied

solution for more than a century, we will assume that there are no institutions
other than markets where individuals congregate to exchange their wares, there
are no forms of wealth other than agents’ production goods, all transactions
take place in the current period, so there is no intertemporal planning, and
there is no arbitrage beyond that which can be executed by an agent engaged
in a series of personal trades using no information save that acquired through
personal trading experience.
If we can show stability under these conditions (which we can) we then know

that trader information concerning macro aspects of the economy plays no
essential role in achieving market equilibrium, and indeed may well have a
destabilizing effect (Gintis, 2007).
It follows logically that in so simple a market system with rational actors

but no public institutions, expectations are purely adaptive. The ‘rational expec-
tations’ notion that agents know the global structure of the economy and use
macroeconomic information to form accurate expectations is not plausible in
the decentralized context. This conclusion may, of course, require revision in a
model with an institutional structure that creates public information, such as a
credible government or national bank.
An appropriate candidate for modeling the Walrasian system in disequilib-

rium is aMarkov process. The states of the process are vectorswhose components
are the states of individual agents. The state of each agent includes his holding
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of each good, an array of parameters representing his search strategies for buying
and selling, parameters representing his linkage to others in a network of traders,
and finally his vector of private prices, which the agent uses to evaluate trading
offers.
If state si has a positive probability of making a transition to state sj in a

finite number of periods (i.e., p(t)ij > 0 for some positive integer t), we say si
communicates with sj. If all states in a Markov process communicate with each
other, we say the process is irreducible. We cannot assume a Markov model of
a Walrasian system is irreducible because, as in our elementary example above,
where a good inevitably emerges as money, the states of the system with one
good as money will not communicate with the states where a different good
is money.
The Markov model of a Walrasian economy is finite if we assume there are a

finite number of agents, a finite number of goods, a minimum discernible quan-
tity of each good, and a finite inventory capacity for each good. A strictly positive
probability of remaining in the same state for an agent then ensures that the
Markov process is finite if aperiodic. Assuming for the moment that the Markov
process is irreducible, being both and aperiodic implies the Markov process is
ergodic (Feller, 1950), which means has a stationary distribution expressing the
long-run probability of being in each state of the system, irrespective of its
initial state.
We may not care about individual states of the process, but rather about

certain aggregate properties of the system, including the mean and standard
deviation of prices, and the aggregate pattern of excess demand. As we shall see,
the ergodic theorem ensures that under appropriate conditions these aggregates
have determinate long-term stationary distributions.

The Ergodic Theorem: Consider an n-state aperiodic and irreducible Markov
processwith transitionmatrix P, so the t-period transition probabilities are given
by P(t) =Pt . Then there is probability distribution u= (u1, . . .,un) over the states of
theMarkov processwith strictly positive entries that has the following properties
for j= 1, . . .,n:

uj = lim
t→∞

p(t)ij for i= 1, . . .,n (2)

uj =
n∑
i=1

uipij (3)

We call u the stationary distribution of the Markov process.
Equation (3) says that with probability one, uj is the long-run frequency of

state sj in a realization {st } = {s0,s1, . . .} of the Markov process. Also, this fre-
quency is strictly positive and independent from the starting state s0 = si. By a
well-known property of convergent sequences, (3) implies that uj is also with
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probability one the limit of the average frequency of sj from period t onwards,
for any t . This is in accord with the general notion that in an ergodic dynamical
system, the equilibrium state of the system can be estimated as an historical
average over a sufficiently long time period (Hofbauer and Sigmund, 1998).
Equation (3) is the renewal equation governing stationary distribution u. It

asserts that in the long run, the probability of being in state sj is the sum over i
of the probability that it was in some state si in the previous period, multiplied
by the probability of a one-period transition from state si to state sj, independent
from the initial state of the realization {st } = {s0,s1, . . .}.
A Markov process thus has only a one-period ‘memory.’ However, we can

consider a finite sequence of states {st−l,st−l+1, . . .,st } of the Markov process
of fixed length l as a single state, the process remains Markov and has as an
l-period ‘memory.’ Because any physically realized memory system, including
the human brain, has finite capacity, the finiteness assumption imposes no
constraint on modeling systems that are subject to physical law.
To see this, suppose a Markov process has transition matrix P = {pij} and con-

sider two-period states of the form ij. We define the transition probability of
going from ij to kl as

pij,kl =
{
pj,l j= k
0 j �= k, (4)

This equation says that ij represents ‘state si in the previous period and state sj in
the current period.’ It is easy to check that with this definition the matrix {pij,kl}
is a probability transition matrix, and if {u1, . . .,un} is the stationary distribution
associated with P, then

uij = uipi,j (5)

defines the stationary distribution {uij} for {pij,kl}. Indeed, we have

lim
t→∞

p(t)ij,kl = lim
t→∞

p(t−1)

j,k pk,l = ukpk,l = ukl

for any pair-state kl, independent from ij. We also have, for any ij,

uij = uipi,j =
∑
k

ukpk,ipi,j =
∑
k

ukipi,j =
∑
kl

uklpkl,ij. (6)

It is straightforward to show that pairs of states of P correspond to single states
of {pij,kl}. These two equations imply the ergodic theorem for {pij,kl} because
equation 5 implies {uij} is a probability distribution with strictly positive entries,
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and we have the defining equations of a stationary distribution; for any pair-
state ij,

ukl = lim
t→∞

p(t)ij,kl (7)

uij =
∑
kl

uklpkl,ij. (8)

An argument by induction extends this analysis to any finite number of
sequential states of P.
An important question is the nature of collections of states of a finite Markov

process. For instance, we may be interested in total excess demand for a good
without caring how this breaks down among individual agents. From the case
of two states j and k it will be clear how to generalize to any finite number. Let
us make being in either state j or in state k into a new macro-state m. If P is
the transition matrix for the Markov process, the probability of moving from
state i to state m is just Pim = Pij + Pik. If the process is ergodic with stationary
distribution u, then the frequency of m in the stationary distribution is just
um = uj+uk. Then we have

um = lim
t→∞

Pnim (9)

um =
∑
i

ui pim (10)

However, the probability of a transition from m to a state i is given by

Pmi = uj pji+uk pki. (11)

Now suppose states j and k are interchangeable in the sense that pji = pki for all
states i. Then (7) implies

ui =
∑
r
ur pri, (12)

where r ranges over all states except j and k, plus the macro-state m. In other
words, if we replace states j and k by the single macro-state m, the resulting
Markov process has one fewer state, but remains ergodic with the same sta-
tionary distribution, except that um = uj +uk. A simple argument by induction
shows that any number of interchangeable states can be aggregated into a single
macro-state in this manner.
More generally, wemay be able to partition the states ofM into cellsm1, . . .,ml

such that, for any r=1, . . ., l and any states i and j ofM , i and j are interchangeable
with respect to each mk. When this is possible, then m1, . . .,ml are the states of
a derived Markov process, which will be ergodic if M is ergodic.
For instance, in a particular market model represented by an ergodic Markov

process, wemight be able to use a symmetry argument to conclude that all states
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with the same aggregate demand for a particular good are interchangeable. If
so, we can aggregate all states with the same total excess demand for this good
into a single macro-state, and the resulting system will be an ergodic Markov
process with a stationary distribution. In general, this Markov process will have
many fewer states, but still far too many to permit an analytical derivation of
the stationary distribution.

2.4 The structure of finite aperiodic Markov processes

If a Markov process is finite and aperiodic but is not irreducible, its states can be
partitioned into subsets Str , S1, . . .Sk, where every state s∈ Str is transient, meaning
that for any realization {st } of the Markov process, with probability one there
is a time t such that s �= st+t ′ for all t ′ = 1,2, . . .; i.e., s does not reappear in {st }
after time t . It follows that also with probability 1 there is a time t such that no
member of Str appears after time t . A non-transient state is called recurrent, for
it reappears infinitely often with probability one in a realization of the Markov
process.
If si is recurrent and communicates with sj, then sj is itself recurrent and

communicates with si. For if j does not communicate with si, then every time
si appears, there is a strictly positive probability, say q > 0 that it will never
reappear. The probability that si appears k times is thus at most (1− q)k, so si
reappears an infinite number of times with probability zero, and hence is not
recurrent. If sj communicates with si, then sj must be recurrent, as can be proved
using a similar argument.
It follows that communication of states is an equivalence relation over the

recurrent states of the Markov process. We define S1, . . .Sk to be the equivalence
classes of the recurrent states of the Markov process with respect to this equiv-
alence relation. It is clear that the restriction of Markov process to any one of
the Sr , r = 1, . . .,k is an ergodic Markov process with a stationary distribution.
Moreover, if si ∈ Str , there is a probability distribution qi over {1, . . .,k} such that
qir is the probability, starting in si, the Markov process will eventually enter Sr ,
from which it will, of course, never leave. Thus for an arbitrary finite, aperiodic
Markov process with transition matrix P = {pij}, we have the following.
Extended Ergodic Theorem: LetM be a finite aperiodic Markov process. There
exists a unique partition {Str ,S1, . . .,Sk} of the states S of M , a probability distri-
bution ur over Sr for r = 1, . . .,k, such that uri > 0 for all i ∈ Sr , and for each i ∈ Str ,
there is a probability distribution qi over {1, . . .,k} such that for all i, j = 1, . . .,n
and all r = 1, . . .k, we have

uij = lim
t→∞

P(t)
ij ; (13)

urj = uij if i, j ∈ Sr ; (14)
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urj =
∑
i∈Sr
uri pij for j ∈ Sr ; (15)

uij = qirurj if si ∈ Str and sj ∈ Sr . (16)

uij = 0 if sj ∈ Str . (17)∑
j

uij = 1 for all i= 1, . . .,n. (18)

For a Markov process with few states, there are well-known methods for solving
for the stationary distribution (Gintis, 2009, Ch. 13). However, for systems with
a large number of states, these methods are impractical. Rather, we here create a
computermodel of theMarkov process, and ascertain empirically the dynamical
properties of the irreducible Markov subprocesses. We are in fact only interested
in measuring certain aggregate properties of the subprocess rather than their
stationary distributions. These properties are the long-run average price and
quantity structure of the economy, as well as the short-run volatility of prices
and quantities and the efficiency of the process’s search and trade algorithms.
It is clear from the quasi-ergodic theorem that the long-term behavior of an
any realization of aperiodic Markov process is governed by the stationary dis-
tribution of one or another of the stationary distributions of the irreducible
subprocesses S1, . . .,Sk. Generating a sufficient number of the sample paths {st },
each observed from the point at which the process has entered some Sr , will
reveal the long-run behavior of the dynamical system.
Suppose an aperiodic Markov process M with transient states Str and ergodic

subprocesses S1, . . .,Sk enters a subprocess Sr after t0 periods with high prob-
ability, and suppose the historical average over states from t0 to t1 is a close
approximation to the stationary distribution of Sr . Consider the Markov pro-
cessM+ consisting of reinitializing M every t1 periods. ThenM+ is ergodic, and
a sufficiently large sample of historical averages starting t0 periods after reini-
tialization and continuing until the next initialization will reveal the stationary
distribution of M+. This is the methodology we will used in estimating the
aggregate properties of a Markov model of a market economy.

2.5 Scarfian instability revisited

To assess the effect of passing from differential equation toMarkov process mod-
els, this section revisits Herbert Scarf’s seminal example of Walrasian instability.
Scarf’s is a three-good economy in which each agent produces one good and
consumes some of this good plus some of one other good, in fixed proportions.
Labeling the goods X, Y, and Z, following Scarf, we assume X-producers con-
sume X and Y, Y-producers consume Y and Z, and Z-producers consume Z and
X, where the conditions of production are identical for all three goods. The
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utility functions for the three agents are assumed to be

uX(x,y,z) =min{x,y}, (19)

uY (x,y,z) =min{y,z}, (20)

uZ(x,y,z) =min{z,x}. (21)

It is straightforward to show that utility maximization, where px, py , and pz are
the prices of the three goods and xd , yd , and zd are the final demands for the
three goods, gives

xdX = ydX = px
px+py (22)

ydY = zdY = py
py +pz (23)

zdZ = xdZ = pz
pz+px (24)

These equations allows us to calculate total excess demand for each good as a
function of the prices of the three goods. It is easy to check that the market-
clearing prices, normalizing p∗z = 1, are given by p∗x = p∗y = 1. The excess demand
functions for the economy are then given by

Ex = xdX +xdZ −1= −py
px+py + pz

pz+px (25)

Ey = ydX + ydY −1= −pz
py +pz + px

px+py (26)

Ez = zdY + zdZ −1= −px
pz+px + py

py +pz . (27)

The tâtonnement price adjustment process is given by

ṗi = Ei(px,py ,pz), where i= x,y,z. (28)

It is easy to show that the expression px py pz is constant on paths of the dynam-
ical system, which implies that the equilibrium is neutrally stable, the system
moving in closed paths about the equilibrium at every non-equilibrium point.
Before moving to the non-tâtonnement version of the Scarf economy, we

will implement Scarf’s differential equation solution as a Markov process in
which time t becomes discrete, t = 1,2, . . ., and the differential equations (15)
are replaced by difference equations

pt+1
x = ptx+Etx/� (29)

pt+1
y = pty +Ety/�, (30)

pt+1
z = ptz+Etz/�, (31)
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Figure 2.1 Neutral stability of three-good Scarf Economy, modeled as a Markov process
with public prices and tâtonnement price adjustment

where prices are restricted to a bounded interval of rational numbers, and � is
an integer chosen so that period-to-period price changes are small. Note that �

affects the speed of adjustment of the system, but not the path of adjustment,
provided it is not so small as to lead the system to violate the price bounds.
This system is a deterministic Markov process in which the current state is the

vector of current prices. Suppose we start with disequilibrium prices px = p∗x+δx,
py = p∗y + δy , pz = p∗z = 1, and in each period prices are updated according to the
tâtonnement equations (5). The resulting path of deviations of prices px and py
from equilibrium, with pz = 1 as numeraire, after 5,200 periods with � = 100,
δX =3, and δY = −2 is shown in Figure 2.1, and perfectly replicates the analytical
results of Scarf (1960).

2.6 The Scarf economy without tâtonnement

For the Markov process version of the Scarf economy without tâtonnement, we
maintain the above assumptions, except now we assume 1,000 traders of each
of the three types, each trader endowed at time t = 0 with a set of private prices
randomly drawn from a uniform distribution. We allow 50,000 generations and
10 periods per generation. At the start of each period, each agent’s inventory
is re-initialized to one unit of his production good and zero units of the other
goods. Each agent in turn is then designated a trade initiator and is paired with a
randomly chosen responder, who can either accept or reject the proposed trade.
Each agent is thus an initiator exactly once and responder on average once per
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period. After a successful trade, agents consume whatever is feasible from their
updated inventory.
In the reproduction stage, which occurs every ten periods, 5 per cent of agents

are randomly chosen either to copy a more successful agent or to be copied
by a less successful agent, where success is measured by total undiscounted
utility of consumption over the previous ten periods. Such an agent is chosen
randomly and assigned a randomly chosen partner with the same production
and consumption parameters. The less successful of the pair then copies the
private prices of the more successful. In addition, after the reproduction stage,
each price of each agent is mutated with 1 per cent probability, the new price
either increasing or decreasing by 10 per cent.
The trade procedure is as follows. The initiator offers a certain quantity of

one good in exchange for a certain quantity of a second good. If the responder
has some of the second good, and if the value of what get gets exceeds the
value of what he gives up, according to his private prices, then he agrees to
trade. If he has less of the second good than the initiator wants, the trade is
scaled down proportionally. Traders are thus rational maximizers, where their
subjective priors are their vectors of private prices, and each is ignorant of the
other’s subjective prior.
Which good he offers to trade for which other good is determined as follows.

Let us call an agent’s production good his P-good, the additional good he con-
sumes his C-good, and the good which he neither produces nor consumes the
T-good. Note that agents must be willing to acquire their T-good despite the fact
that it does not enter their utility function. This is because X-producers want Y,
but Y-producers do not want X. Only Z-producers want X. Since a similar situa-
tion holds with Y-producers and Z-producers, consumption ultimately depends
on at least one type of producer accepting the T-good in trade, and then using
the T-good to purchase their C-good.
If the initiator has his T-good in inventory, he offers to trade this for his C-

good. If this offer is rejected, he offers to trade his T-good for his P-good, which
will be a net gain in the value of his inventory provided his subjective terms of
trade are favorable. If the initiator does not have his T-good but has his P-good,
he offers this in trade for his C-good. If this is rejected, he offers to trade half
his P-good for his T-good. If the trade initiator had neither his T-good nor his
P-good, he offers his C-good in trade for his P-good, and if this fails he offers
to trade for his T-good. In all cases, when a trade is carried out, the term are
dictated by the initiator and the amount is the maximum compatible with the
inventories of the initiator and responder.
Figure 2.2 shows that within a relatively few periods, the randomly initialized

private prices move to quasi-public prices, in which the standard error of prices
for the same good across individuals is relatively small. Quasi-public prices are
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Figure 2.2 The Markov process version of the Scarf economy initialized with random
prices quickly transitions to quasi-public prices (private prices with low standard error
across traders)

the closest the Markov process comes to approximating the public prices of
standard Walrasian general equilibrium theory.
The Markov dynamic in this case is a stationary distribution depicted in

Figure 2.3. It is clear that by the time quasi-public prices have become estab-
lished, the Markov process has attained its stationary distribution, which is
a cycle around the equilibrium. This is the only behavior of the stationary
distribution observed, independent of the initial state of the system, so it is
the stationary distribution version of a limit cycle. In all observed cases, the
stationary distribution has approximately the same period and amplitude.
In sum, we have developed a dynamic mathematical model of Scarfian

exchange in the form of a Markov process. The transition probabilities of the
Markov process are specified implicitly by the algorithms for agent pairing, trad-
ing, updating and reproduction. Except for the trade algorithm, for which alter-
native algorithms are plausible, all modeling choices are uniquely determined
by the standard conception of the Walrasian general equilibrium model.
The equilibrium of the Markov process is a stationary distribution that can

be analytically specified in principle, but in practice is orders of magnitude too
large to calculate, even with the fastest and most powerful conceivable com-
putational aids. Thus, as in the natural sciences, we are obliged to investigate
the stationary distribution by running the process on a computer with a variety
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Figure 2.3 The Markov process Scarf economy with private prices exhibits a station-
ary distribution akin to a limit cycle. The average excursion from equilibrium and
the approximate period of the stationary distribution are independent from initial
conditions

of choices of numerical parameters. Such calculations are subject to statistical
error, but our results are so robust that we are virtually certain to have captured
the characteristics of system equilibrium almost perfectly. The most caution
conclusion we can offer is that we have proven, for the first time, that there
exist Scarfian economies that without tâtonnement that exhibit cycles around
the equilibrium price vector, with private prices and a completely decentralized
dynamical system of price adjustment. The long-run average price of each good
in this model is approximately the market-clearing price.

2.7 A multi-good market economy with simple production

Despite its considerable historical value, the Scarf economy’s extreme assump-
tions are uncharacteristic of a normal market economy, and as we shall see,
it is the extreme assumptions that account for the Scarfian economy’s lack
of stability. The remainder of this paper will deal with a canonical case of a
pure market economy with only one institution – the marketplace, but with
highly heterogeneous agents. We assume each agent produces one good, in
fixed amount, using only personal labor, but consumes a variety of goods pro-
duced by others. Agents are endowed with subjective priors concerning the
value of all goods, which we call their private prices. They have no information
about the economy other than that gathered from private experience in trade,
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including periodically discovering the private price vector of another agent they
have encountered and copying it, with some possible mutation, if that agent
appears to be more successful than himself. The only serious design decision is
that of the trade algorithm which, while much more straightforward than in
the case of the Scarf economy, is still in principle somewhat underspecified by
the logic of Walrasian exchange. Happily, the details of the trade protocol do
not affect the dynamical movement to Walrasian equilibrium as far as we can
ascertain.
We assume there are n sectors. Sector k = 1, . . .,n produces good k in ‘styles’

s = 1, . . .,m (we use ‘styles’ to enrich the heterogeneity of goods in the model
without seriously increasing the computational resources needed to estimate
the stationary distribution of the resulting Markov process). Each agent con-
sumes a subset of non-production goods, but only a single style of any good.
In effect, then, there are nm distinct goods gks , but only n production processes
and correspondingly n equilibrium prices, since goods gks and gkt with styles s
and t respectively, have the same production costs and hence the same price in
equilibrium. We write the set of goods as G= {gks |k= 1, . . .,n,s= 1, . . .m}. We also
write g = gk when g = gks for some style s.
A producer of good gks , termed a gks -agent, produces with no inputs other than

personal labor an amount qk of good gks which depreciates to zero at the end of a
trading period. In a non-monetary economy, only the production good is carried
in inventory, but when individuals are permitted to acquire non-consumption
goods, as in later sections of the paper, a trade inventory includes all goods that
are not the agent’s consumption goods.
The Markov process is initialized by creating N agents, each of whom is

randomly assigned a production good gks . Thus, in an economy with goods
in m styles, there are Nnm traders. Each of these traders is assigned a private
price vector by choosing each price from a uniform distribution on (0,1), then
normalizing so that the price of the nth good is unity. Each gks -agent is then
randomly assigned a set H ⊆ G, gks /∈ H of consumption at most one style of a
given good.
The utility function of each agent is the product of powers of CES utility func-

tions of the following form. Suppose an agent consumes r goods. We partition
the r goods into k segments (k is chosen randomly from 1. . .r/2) of randomly
chosen sizesm1, . . .,mk,mj >1 for all j, and

∑
j mj =n. We randomly assign goods

to the various segments, and for each segment, we generate a CES consumption
with random weights and an elasticity randomly drawn from the uniform dis-
tribution on an interval [ε∗, ε∗]. Total utility is the product of the k CES utility
functions to random powers fj such that

∑
j fj = 1. In effect, no two agent have

the same utility function.
For example, consider a segment using goods x1, . . .,xm with prices p1, . . .,pm

and (constant) elasticity of substitution s, and suppose the power of this segment
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in the overall utility function is f . It is straightforward to show that the agent
spends a fraction f of his income M on goods in this segment, whatever prices
he faces. The utility function associated with this segment is then

u(x1, . . .,xn) =

 m∑
l=1

αlx
γ

l



1/γ

, (32)

where γ = (s−1)/s, and α1, . . .,αm > 0 satisfy
∑
l αl = 1. The income constraint is∑m

l=1 plxl = fiM . Solving the resulting first-order conditions for utility maximiza-
tion, and assuming γ �=0 (i.e., the utility function segment is notCobb-Douglas),
this gives

xi = Mfi∑m
l=1 plφ

1/(1−γ )

il

, (33)

where

φil = piαlplαi
for i, l= 1, . . .,m.

When γ = 0 (which occurs with almost zero probability), we have a Cobb-
Douglas utility function with exponents αl, so the solution becomes

xi = Mfiαipi
. (34)

By creating such a complex array of utility functions, we ensure that our
results are not the result of assuming an excessively narrow set of consumer
characteristics. However, the high degree of randomness involved in creating
a large number of agents ensures that all goods will have approximately the
same aggregate demand characteristics. If we add to this that all goods have the
same supply characteristics, we can conclude that themarket-clearingWalrasian
equilibrium will occur when all prices are equal. This in fact turns out to be
the case. If we assume heterogeneous production conditions, then we cannot
calculate equilibrium prices, but we can still judge that the dynamical system
is asymptotically stable by the long-run standard error of the absolute value of
excess demand, which will be very small in equilibrium.
For each good gks ∈ G there is a market m[k,s] of traders who sell good gks . In

each period, the traders in the economy are randomly ordered and are permit-
ted one by one to engage in active trading. When the ght -agent A is the current
active trader, for each good ght for which A has positive demand (i.e, xA∗

h > 0), A
is assigned a random member B ∈m[h, t] who consumes gks . A then offers B the
maximum quantity yk of gks , subject to the constraints yk ≤ iAk , where i

A
k repre-

sents A’s current inventory of good gks , and yk ≤ pAhxAh /pAk , where x
A
h is A’s current

demand for ght . This means that if A’s offer is accepted, A will receive in value
at least as much as he gives up, according to A’s private prices. A then offers
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to exchange yk for an amount yh = pAk yk/pAh of good ght ; that is, he offers B an
equivalent value of good ght , the valuation being at A’s prices. B accepts this offer
provided the exchange is weakly profitable at B’s private prices; that is, provided
pBk yk ≥ pBhyh. However, B adjusts the amount of each good traded downward if
necessary, while preserving their ratio, to ensure that what he receives does not
exceed his demand, and what he gives is compatible with his inventory of ght . If
A fails to trade with this agent, he still might secure a trade giving him gks ,
because A ∈ m[k,s] may also be on the receiving-end of trade offers from
ght -agents at some point during the period. If a gks -agent exhausts his supply
of gks , he leaves the market for the remainder of the period.
The assumption that each trading encounter is between agents each of whom

produces a good that the other consumes could be replaced by the assumption
is that each gks -producer A can locate the producers of his consumption goods,
but that finding such a producer who also consumes gks will require a separate
search. We simply collapse these two stages, noting that when a second search
is required and its outcome costly or subject to failure, the relative inefficiency
of the non-monetary economy, by comparison with the monetary economies
described below, is magnified. Note, however, that while A’s partner is a con-
sumer of gks , he may have fulfilled his demand for gks for this period by the time
A makes his offer, in which case no trade will take place.
The trade algorithm involves only one substantive design choice, that of

allowing A to make a single ‘take-it-or-leave-it’ relative price offer, while oblig-
ing A to accept quantity terms that are set by B, when it is feasible to do so. Such
alternatives as allowing B to make the take-it-or-leave-it offer, and choosing the
mean of the two offers provided that each is acceptable to the other, or using a
Nash bargaining solution, do not alter the market dynamics.
After each trading period, agents consume their inventories provided they

have a positive amount of each good that they consume, and agents replen-
ish the amount of their production good in inventory. Moreover, each trader
updates his private price vector on the basis of his trading experience over the
period, raising the price of a consumption or production good by 0.05 per cent
if his inventory is empty (that is, if he failed to purchase any of the consump-
tion good or sell all of his production good), and lowering price by 0.05 per
cent otherwise (that is, if he succeeded in obtaining his consumption good or
sold all his production inventory). We allow this adjustment strategy to evolve
endogenously according to an imitation processes.
After a number of trading periods, the population of traders is updated using

the following process. For each market m[k,s] and for each gks -trader A, let f
A

be the accumulated utility of agent A since the last updating period (or since
the most recent initialization of the Markov process if this is the first updating
period). Let f∗ and f ∗ be the minimum and maximum, respectively, over f A

for all gks -agents A. For each g
k
s -agent A, let p

A = (f A − f∗)/(f ∗ − f∗), so pA is a
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probability for each A. If r agents are to be updated, we repeat the following
process by r times. First, choose an agent for reproducing as follows. Identify a
random agent inm[k,s] and choose this agent for reproduction with probability
pA. If A is not chosen, repeat the process until one agent is eventually chosen.
Note that a relatively successful trader is more likely to be chosen to reproduce
than an unsuccessful trader. Next, choose an agent B to copy A’s private prices as
follows. Identify a random agent B in m[k,s] and choose this agent with proba-
bility 1−pB. If B is not chosen, this process is repeated until B is chosen. Clearly,
a less successful trader is likely to be chosen this criterion. Repeat until an agent
B is chosen. Finally, endow B with A’s private price vector, except for each such
price, with a small probability µ = randomly increase or decrease its value by
a small percentage ∈. The resulting updating process is a discrete approxima-
tion of a monotonic dynamic in evolutionary game theory, and in differential
equation systems, all monotonic dynamics have the same dynamical proper-
ties (Taylor and Jonker, 1978; Samuelson and Zhang, 1992). Other monotonic
approximations, including the simplest, which is repeatedly to choose a pair of
agents in m[k,s] and let the lower-scoring agent copy the higher-scoring agent,
produce similar dynamical results.
Using utility as the imitation criterion is quite noisy, because utility functions

are heterogeneous and individuals who prefer goods with low prices do better
than agents who prefer high-priced goods independent of the trading prowess.
Using alternative criteria, such as the frequency and/or volume trading success,
with results similar to those reported herein.
The result of the dynamic specified by the above conditions is the change over

time in the distribution of private prices. The general result is that the system
of private prices, which at the outset are randomly generated, in rather short
time evolves to a set of quasi-public prices with very low inter-agent variance.
Over the long term, these quasi-public prices move toward their equilibrium,
market-clearing levels.

2.8 Estimating the stationary distribution

I will illustrate this dynamic assuming n= 9,m= 6, and N = 300, so there are 54
distinct goods which we write as g11 , . . .,g

9
6 , and 16,200 traders in the economy.

There are then nine distinct prices pA1 , . . .,p
A
9 for each agent A. We treat g9 as the

numeraire good for each trader, so pA9 = 1 for all traders A. A gk-agent produces
one unit of good k per period. We assume that there are equal numbers of
producers of each good from the outset, although we allow migration from less
profitable to more profitable sectors, so in the long run profit rates are close
to equal in all sectors. The complexity of the utility functions do not allow us
to calculate equilibrium properties of the system perfectly, but we will assume
that market-clearing prices are approximately equal to unit costs, given that

PROOF



AOKI-V2: “9781137_034205_04_CHAP02” — 2012/7/10 — 14:22 — PAGE 53 — #23

The Dynamics of Pure Market Exchange 53

unit costs are fixed, agents can migrate from less to more profitable sectors,
and utility functions do not favor one good or style over another, on average.
Population updating occurs every ten periods, and the number of encounters
per sector is 10 per cent of the number of agents in the sector. The mutation
rate is µ = 0.01 and the error correction is ∈= 0.01.
The results of a typical run of this model are illustrated in Figures 2.4 to 2.6.

Figure 2.4 shows the passage from private to quasi-public prices over the first
20,000 trading periods of a typical run. The mean standard error of prices is
computed as follows. For each good g we measure the standard deviation of the
price of g across all g-agents, where for each agent, the price of the numeraire
good g9 is unity. Figure 2.4 shows the average of the standard errors for all goods.
The passage from private to quasi-public prices is quite dramatic, the standard
error of prices across individuals falling by an order of magnitude within 300
periods, and falling another order of magnitude over the next 8,500 periods.
The final value of this standard error is 0.029, as compared with its initial value
of 6.7.
Figure 2.5 shows the movement of the average standard error of the absolute

value of excess demand over 50,000 periods for nine goods in six styles each.
Using this measure, after 1,500 periods excess demand has decreased by two
orders of magnitude, and it decreases another order of magnitude by the end of
the run.
It is not surprising, given the behavior of excess demand for this model,

that prices would approach their Walrasian equilibrium values. This process
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Figure 2.4 Convergence of private prices to quasi-public prices in a typical run with nine
goods in 6 sytles each (fifty-four goods)
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Figure 2.5 The path of aggregate excess demand over 50,000 periods
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Figure 2.6 The passage from private to quasi-public prices in the Markovian Scarf econ-
omy. The long-run standard error of prices across traders is rather high, due to the fact
that the system does not tend to Walrasian equilibrium

is illustrated in Figure 2.6. After 50,000 periods, the standard error of the devi-
ation of prices from (our calculated) equilibrium values are about 3 per cent of
its starting value.
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The distinction between low-variance private prices and true public prices
is significant, even when the standard error of prices across agents is extremely
small, because stochastic events such as technical changes propagate very slowly
when prices are highly correlated private prices, but very rapidly when all agents
react in parallel to price movement. In effect, with private prices, a large part
of the reaction to a shock is a temporary reduction in the correlation among
prices, a reaction that is impossible with public prices, as the latter are always
perfectly correlated.
There is nothing special about the parameters used in the above example. Of

course, adding more goods or styles increases the length of time until quasi-
public prices become established, as well as the length of time until market
quasi-equilibrium is attained. Increasing the number of agents increases the
length of both of these time intervals.

2.9 The emergence of money

There is no role for money in the Walrasian general equilibrium model because
all adjustments of ownership are carried out simultaneously when the equi-
librium prices are finally set. When there is actual exchange among individual
agents in an economy, twomajor conditions give rise to the demand for money,
by which we mean a good that is accepted in exchange not for consumption or
production, but rather for resale at a later date against other intrinsically desired
goods. The first is the failure of the ‘double coincidence of wants’ (Jevons, 1875),
explored in recent years in this and other journals by Starr (1972) and Kiyotaki
and Wright (1989, 1991, 1993). The second condition is the existence of trans-
actions costs in exchange, the money good is likely to be that which has the
lowest transactions cost (Foley, 1970; Hahn, 1971, 1973; Kurz, 1974b, 1974a;
Ostroy, 1973; Ostroy and Starr, 1974; Starrett, 1974). We show that these con-
ditions interact in giving rise to a monetary economy. When one traded good
has very low transactions costs relative to other goods, this good may come to
be widely accepted in trade even by agents who do not consume or produce it.
Moreover, when an article that is neither produced nor consumed can be traded
with very low transactions costs, this good, so-called fiat money. will emerge as
a universal medium of exchange.
We now permit traders to buy and sell at will any good that they neither

consumer nor produce. We call such a good a money good, and if there is a
high frequency of trade in one or more money goods, we say the market econ-
omy is a money economy. We assume that traders accept all styles of a money
good indifferently. We first investigate the emergence of money from market
exchange by assuming zero inventory costs, so the sole value of money is to
facilitate trade between agents, even though the direct exchange of consump-
tion and production goods between a pair of agents might fail because one of
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the parties is not currently interested in buying the other’s production good.
The trade algorithm in case agents accept a good that they do not consume is
as follows. At the beginning of each period, each agent calculates how much of
each consumption good he wants to acquire during that period, as follows. The
agent calculates the market value of his inventory of production and money
goods he holds in inventory, valued at his private prices. This total is the agent’s
income constraint. The agent then chooses an amount of each consumption
good to purchase by maximizing utility subject to this income constraint. The
trade algorithm is similar to the case of the pure market, except that either party
to a trade may choose to offer and/or accept a money good in the place of his
production good.
We evaluate the performance of this economy using the same parameters as

in our previous model, including zero inventory costs. Figure 2.7 shows that
the use of money increases monotonically over the first 2,000 periods, spread
almost equally among the remaining goods. From period 2,000 to period 4,000,
one good becomes a virtually universal currency, driving the use of the others
to low levels. It is purely random which good becomes the universal medium of
exchange, but one does invariable emerge as such after several thousand periods.
If we add inventory costs with g1 being lower cost than the others, g1 invariably
emerges as the medium of exchange after 1,000 periods, and the other goods are
not used as money at all. I did not include graphs of the passage to quasi-public
prices or other aspects of market dynamics because they differ little from the
baseline economy described above.
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Figure 2.7 The emergence of money in a market economy. The parameters of the model
are the same as in the baseline case treated previously. inventory costs are assume
absent
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Figure 2.8 The relative efficiency of money in a market economy

As in traditional monetary theory (Menger, 1892; Wicksell, 1911; Kiyotaki
and Wright, 1989, 1991) money emerges from goods trade both because it is
a low transactions cost good and it solves the problem of the ‘double coinci-
dence of wants’ that is required for market exchange (Jevons, 1875). The relative
efficiency of money over direct goods trade increases with the number of goods,
as illustrated in Figure 2.8. While with six goods and one style the relative effi-
ciency of money is only 150 per cent, for nine goods and twenty styles (180
goods), the relative efficiency is 1,200 per cent.

2.10 The resilience of the decentralized market economy

We now show that the above Markov model is extremely resilient in the face of
aggregate shocks when the number of producers per good is sufficiently large,
but becomes unstable when this number falls below a certain (relatively high)
threshold. We illustrate this in the context of a fiat money economy. We take
the non-monetary economy described above, with nine goods in six styles each,
and add a single new good that is neither produced nor consumed, and has
zero inventory storage costs. When such a good is available, it quickly becomes
a universal medium of exchange for the economy, accepted by almost 100 per
cent of market traders. The nature of market dynamics in a fiat money economy
is not noticeably different from the economies described above.
In this fiat money economywith 300 producers per good, every 1,000 periods,

we impose an aggregate shock on the economy consisting of a reduction in the
fiat money holdings of each trader to 20 per cent of its normal level, as shown in
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Figure 2.9 To test the resilience of the Markov economy, we impose a periodic
shock, sustained for 100 periods, that reduces the money supply to 20% of its
normal level
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Figure 2.10 Walrasian equilibrium is reilient to aggregate shocks. With 300 producers per
good, we impose an aggregate shock on the Markov process consisting of halving the
money supply every 1000 periods, and restoring the money supply after 100 periods have
elapsed with the smaller money supply. There is virtually no effect on the passage to a
quasi-Walrasian equilibrium

Figure 2.9. The reduced holding are maintained for 100 periods, after which the
money holdings of each trader is multiplied by two, restoring the money stock
for the economy to its initial level. Figure 2.10 shows the effect of the period
shock on average prices and on the standard error of prices across traders; there
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Figure 2.11 Excess demand is resilient in the face of large macro-level shocks. The param-
eters are as in the previous figure. Note that there is virtually no effect on aggregate excess
demand in any sector of the economy

is no noticeable effect. Figure 2.11 shows that the quantity side of the economy
is also virtually unaffected by the system of aggregate shocks.

2.11 Conclusion

The search for stability of market exchange using differential equations with
public prices, while producing some brilliantmathematical analyses, was doubly
defective. First, no plausible dynamic price and quantity adjustment mecha-
nism was found. Second, such a dynamic, even were it found, would be of
doubtful value because out of equilibrium public prices cannot exist in a decen-
tralized market economy. By modeling market exchange as a Markov process,
we have shown that under plausible conditions we get convergence to a quasi-
equilibrium. However, under the extreme conditions of the Scarf economy (only
three goods, three traders, and fixed coefficients utility functions) we get a
stationary distribution akin to a limit cycle in continuous models. With a plain-
vanilla Walrasian economy with individual production, we find global stability
under a wide range of parameters. Yet we do not have the analytical machin-
ery to ascertain when Scarf instability will hold, when global stability holds, or
whether there are other possible dynamic characteristics of a Markovian market
system.
On the positive side, we have proved that certain Markov models of market

dynamics are globally stable over a wide range of parameters. This is an existence
theorem possibly as informative as the existence proofs for general equilibrium.
Computational proofs, however, are not as powerful as purely analytical proofs.
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Those unused to working with complex dynamical systems may object that
a computational proof is no proof at all. In fact, a computational proof may
not be a mathematical proof, but it is a scientific proof: it is evidential rather
than tautological, and depends on induction rather than deduction. The natural
sciences, in which complex systems abound, routinely use mathematical to
models that admit no closed-form analytical solutions, ascertain their properties
through approximation and simulation, and justify these models by virtue of
how they conform empirical reality. This appears to be the current state of affairs
with respect to Markov processes and general equilibrium theory.
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