

Otago Spotlight Series Infectious Disease Research

New Sequencing Technologies for Infectious Diseases

Dr James Ussher Senior Lecturer, Microbiology and Immunology & Clinical Microbiologist, Southern Community Laboratories

'Antibiotic apocalypse': doctors sound alarm over drug resistance

The terrifying prospect that even routine operations will be impossible to perform has been raised by experts alarmed by the rise of drug-resistant genes

Resistance to the Antibiotic of Last Resort Is Silently Spreading

Just over a year after they were discovered in China, bacteria that can fend off colistin are being found all across the world.

SARAH ZHANG | JAN 12, 2017 | HEALTH

Antibiotics will soon stop working causing 'terrible human and economic cost'

It will soon be too dangerous to perform caesareans, joint replacements and chemotherapy if antibiotics become ineffective, major report warns

NEWS / EBOLA

WHO: DRC Ebola outbreak on a 'knife's edge' as urban cases rise

Efforts under way in Democratic Republic of Congo in bid to prevent Ebola outbreak spreading across borders.

NEW ZEALAND / HEALTH

Drug-resistant bug infects burns patients

6:43 am on 7 February 2018

Share this 🍞 🗗 🔁 🚱 🐻 in

An outbreak of a multi-drug resistant organism at Middlemore Hospital's National Burns Centre has infected three already very sick patients.

Canterbury superbug patients a 'frightening sign'

Antibiotic resistance: a 21st century nightmare

ESBL Enterobacteriaceae

Carbapenem-resistant Enterobacteriaceae

Relative risk of death with ESBL bacteraemia: 1.85

J Antimicrob Chemo 2007

Attributable mortality: 50% Mortality risk ratio: 3.3 Infect Control Hosp Epidemiol 2009

Antimicrobial Agents Antimicrobial Agents and Chemotherapy

Detection of the *mcr-1* Colistin Resistance Gene in Carbapenem-Resistant *Enterobacteriaceae* from Different Hospitals in China

Hua Yu,^a Fen Qu,^b Bin Shan,^c Bin Huang,^d Wei Jia,^e Cha Chen,^f Aiqing Li,^g Minhui Miao,^g Xin Zhang,^a Chunmei Bao,^b Yunmin Xu,^c Kalyan D. Chavda,^h ^(b) Yi-Wei Tang,ⁱ Barry N. Kreiswirth,^h Hong Du,^g Liang Chen^h

Colistin- and Carbapenem-Resistant *Escherichia coli* Harboring *mcr-1* and *bla*_{NDM-5}, Causing a Complicated Urinary Tract Infection in a Patient from the United States

José R. Mediavilla,ª Amee Patrawalla,^b Liang Chen,ª Kalyan D. Chavda,ª Barun Mathema,º Christopher Vinnard,ª Lisa L. Dever,^d Barry N. Kreiswirth^a

Public Health Research Institute Tuberculosis Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA*; Division of Pulmonary and Critical Care Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA*; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA*; Division of Infectious Diseases, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA*

10.4 million new cases of tuberculosis and 1.4 million deaths in 2015 <u>Multidrug resistant (MDR)</u>: ~480,000 cases + 250,000 deaths <u>Extensively drug resistant (XDR)</u>: ~9.5% of MDR cases

World Health Organization "The problem is so serious that it threatens the achievements of modern medicine. A postantibiotic era— in which common infections and minor injuries can kill—is a very real possibility for the 21st century."

TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND RECOMMENDATIONS

THE REVIEW ON ANTIMICROBIAL RESISTANCE CHAIRED BY JIM O'NEILL

MAY 2016

"We estimate that by 2050, 10 million lives a year and a cumulative 100 trillion USD of economic output are at risk due to the rise of drugresistant infections if we do not find proactive solutions now to slow down the rise of drug resistance. Even today, 700,000 people die of resistant infections every year."

TACKLING ANTIMICROBIAL RESISTANCE ON TEN FRONTS

3 billion base-pairs

4 million base-pairs

Cost (2001) Time (2001) \$4,100,000,000 10 years

Cost (2018) Time (2018) \$1,500 1-10 days \$1,000,000 18 months

\$150 1-2 days

Molecular typing

- Identify phylogenetic relationships to identify clusters/outbreaks
 - Hospital
 - Community
- Traditional methods lack resolution and accuracy

Listeriosis

- Listeria monocytogenes
- Foodborne-illness
 - US: 19% of deaths from foodborneillness
- Outbreaks
 - Difficult to solve:
 - Often small
 - Long incubation period
 - High mortality
- Only a small proportion of cases linked to recognised outbreaks
- Molecular subtyping allows identification of clusters
 - PFGE lacks discriminatory ability

WGS detects more clusters sooner and solves more outbreaks

otago.ac.nz/infectious-disease

Enteric fever in Myanmar

- Salmonella enterica serovar Typhi and Paratyphi A-C
 - 53% serovar Typhi
 - 47% serovar Paratyphi A
- Common in Myanmar
 - 498 per 100,000 persons
- Universally ciprofloxacin resistant
- Genetic basis of resistance?
- Phylogenetic relationship?
 - 4.3.1 (H58) clade

Core genome SNP alignment otago.ac.nz/infectious-disease

Tree scale: 0.1

NICU-associated Staphylococcus capitis

- Cause of neonatal bacteraemia
- 40 of 127 (31.5%) CoNS blood culture isolates Jan 2007 -**July 2016**
- Colonisation: 28.5% of neonates become colonised
- Closely related PFGE pattern
- Phylogenetic relationship?

Core genome SNP alignment otago.ac.nz/infectious-disease

-	SOURCE					BAPS				AMR				
Neonatal clinical	Neonatal environment	Neonatal screening	Staff screening	Other	Unknown	BAPS 1	BAPS 2	BAPS 3	BAPS 4	mecA	fusB	aadD	qacA	embp
			99991											

Carter, Ussher et al. Antimicrob. Agents Chemother. doi:10.1128/AAC.00898-18

Increasing prevalence of ESBL-producing *E. coli* in Otago and New Zealand

Multiple different strains of *E. coli* encoding different CTX-M variants

Whole genome sequencing of 67 E. coli from Otago from 2/2015-2/2016

Core genome SNP alignment

* Defined by combination of ESBL gene and insertion sequences

Phylogenetic relatedness of STI3I isolates

olaCTX-M-15

blaCTX-M-27

olaCTX-M-55

Alelle

Evidence of: blaCTX-M-14 Spread of common mobile genetic elements Spread of resistant clones Isolate78 **Repeated introductions** Isolate15 Isolate12 11 SNPs What is the reservoir of resistance and the Isolate69 solate44 source of transmission? Isolate82 Isolate27 Isolate20 Isolate36 Isolate58 Isolate11 Isolate Isolate60 Isolate85 Isolate21 Isolate76 Isolate8 Reference Isolate73 Isolate35 **1 SNP** Isolate40

Treatment of MDR-TB in Myanmar: resistance to 2nd-line drugs associated with poor outcomes

Dr Htin Lin Aung

Table 1. Demographic and clinical outcome of patients with mutations in resistance genes for drugs that are commonly used in the treatment of drug-susceptible and MDR-TB in Myanmar identified by WGS.

	ID	Type of patient	Age	Sex	RIF rpoB	INH katG	STR rpsL	EMB embB	АМК	ETH ethA	PZA pncA	LFX gyrA	Outcome
1	M00001	Cat II failure	55	F	S450L	S315T	K43R	L402V			W119G		Cured
2	M00003	Close contact	28	M	S450L	S315T	K43R	G406D					Cured
3	M00004	Cat II failure	32	M	S450L	S315T	K43R	M306I			FS	A90V	Died
4	M00005	Cat II failure	51	F	H445Y	S315T	K43R	G406A			Q10P		Cured
5	M00008	Relapse after Cat II	75	M	D435V	S315T							Cured
6	M00010	Cat II failure	24	F	S450L	S315T	K43R						Cured
7	M00011	Cat II failure	63	M	S450L	G299C	K43R	M306V				A90V, D94A	Cured
8	M00012	Cat II failure	44	M	H445Y	S315T							Cured
9	M00013	Cat II failure	19	M	S450L	S315T	K43R	M306V		M1R	Y103*		Cured
10	M00016	Cat II failure	48	M	S450L	C-15T inhA				C-15T inhA			Cured
11	M00017	Relapse after Cat II	68	M	S450L	S315T	K43R	E504D	G1484T		Q10P		Died
12	M00018	Cat II failure	63	F	S450L	S315T							Cured
13	M00019	Cat II failure	27	M	S450L	S315T	K43R	M306V		M1R	T142A		Cured
14	M00020	Relapse after Cat II	42	M	S450L	C-15T inhA				C-15T inhA			Cured
15	M00022	Relapse after Cat II	43	M	S450L	S315T	K43R						Died
16	M00023	Cat II failure	33	F	S450L	S315T	K43R	M306V		M1R			Died
17	M00029	Relapse after Cat II	24	M	H445N	S315T	K43R	M306I		D219A*	G17C	D94Y	Died
18	M00040	Cat II failure	28	M	S450L	S315T	K43R						Cured
19	M00042	Cat II failure	33	M	S450L	S315T	K43R				Q10P		Died
20	M00071	Cat II failure	55	M	S450L	S315T	K43R	Q197L		P334A*	S32FS*	D94G	Died
21	M00087	Cat II failure	51	M	S450L	S315T	K43R	M306V		M1R	A146E*		Died
22	M00088	Relapse after Cat II	48	F	S450L	S315T	K43R		V1631* eis				Died
23	M00090	Close contact	24	F	S450L	S315T	K43R	M306I	G1484T rrs		T-11C		Died
24	M00097	Cat II failure	31	M	D435V	S315T	K43R						Cured
25	M00098	Cat II failure	33	м	S431T	S315T	K43R	M306V	G1484T rrs		Q10P		Died
26	M00102	Cat II failure	38	F	S450L	S315T							Died

AMK: amikacin; EMB: ethambutol; ETH: ethionamide; FS: frameshift; INH: isoniazid; LFX: levofloxacin; PZA: pyrazinamide; RIF: rifampicin; STR: streptomycin. *Novel mutation with unknown effects.

Rachel Hannaway Tin Ohn Myat Isuri Hapuarachchi

John Crump

David Murdoch

Xochitl Morgan Ambarish Biswas

Htin Lin Aung

Deborah Williamson Glen Carter

Wah Win Htike Kyu Kyu Win Khine Mar Oo

Khwar Nyo Zin

Funders

University of Otago Collaborative Research Grant William Sherriff Charitable Trust Otago Medical Research Foundation

South African listeriosis outbreak 2017/8

Ready-to-eat processed meat products manufactured at Enterprise Foods' Polokwane production facility

otago.ac.nz/infectious-disease

Department of Health, RSA. Listeriosis outbreak situation report – 26/07/2018

Increased diversity in vaginal microbiome in bacterial vaginosis

otago.ac.nz/infectious-disease

PLoS ONE 2012;7(6): e37818

Shotgun metagenomics

- 14-year-old with severe combined immunodeficiency
- Presented 3 times with fever and headache
- Advanced to intractable seizures
- Routine diagnostic workup inconclusive
- MRI encephalitis-like condition
- Shotgun metagenomics on CSF and serum
 48 hours
- CSF: 475 of 3,063,784 reads (0.016%) matched Leptospira borgpetersenii
- PCR and serology confirmed neuroleptospirosis diagnosis
- Treated with intravenous penicillin
- Improved and discharged

Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples

Antonina A. Votintseva,^a Phelim Bradley,^b Louise Pankhurst,^a Carlos del Ojo Elias,^b Matthew Loose,^c Kayzad Nilgiriwala,^d Anirvan Chatterjee,^d E. Grace Smith,^{e,f} Nicolas Sanderson,^a Timothy M. Walker,^a Marcus R. Morgan,^g David H. Wyllie,^{a,f,h} A. Sarah Walker,^{a,I} Tim E. A. Peto,^{a,I} Derrick W. Crook,^{a,f,h} Zamin Iqbal,^b

L, del Ojo Elias C, Loose M, Nilgiriwala K, Chatterjee A, Smith EG, Sanderson N, Walker TM, Morgan MR, Wyllie DH, Walker AS, Peto TEA, Crook DW, Iqbal Z. 2017. Same-day diagnostic and surveillance data for tuberculosis via whole-genome sequencing of direct respiratory samples. J Clin Microbiol

TABLE 3 Susceptibility prediction at time stamps during 894 run

Hr	% of AMR mutations typed	No. of mutations ungenotyped (total, 175)	Ungenotyped mutation(s)	Drug(s) awaiting results
1	57.1	75	a	All but pyrazinamide
2	88.5	20	katG S700, L141, V633, W191, D142, L704; gid L26, V41, G34, R47, G117, A205, R118, Q125; rpoB H445; embB D328, G406; rpsL K43; pncA T47, K48 ^b	Isoniazid, streptomycin, rifampin, ethambutol
3	97.1	5	embB D328; gid G34, A205; katG W191; pncA T47	Ethambutol, streptomycin, isoniazid
4	98.2	3	gid G34, A205; pncA T47	Streptomycin
5	98.8	2	gid G34; pncA T47	Streptomycin
6-9	99.4	1	pncA T47	
9	100	0		

^aUngenotyped mutations omitted because 75 is too many to list.

^bFurther ungenotyped *pncA* mutations could be ignored, as H57D had already been detected at 1 h. The sample was already predicted to be pyrazinamide resistant; thus, pyrazinamide is not listed.

In conclusion, diagnostic and surveillance information can now be obtained directly from patient specimens in 16/44 h with the otago.ac.nz/infectious-disease Illumina MiniSeq and MiSeq platforms, a considerable step forward. In addition, the

Decontamination DNA extraction Library preparation Enrichment Sequencing Bioinformatics

Transmission

AMERICAN SOCIETY FOR MICROBIOLOGY AND Chemotherapy®

A Prolonged Outbreak of KPC-3-Producing Enterobacter cloacae and Klebsiella pneumoniae Driven by Multiple Mechanisms of Resistance Transmission at a Large Academic Burn Center

Hajime Kanamori,^{a,b} Christian M. Parobek,^c Jonathan J. Juliano,^a David van Duin,^a Bruce A. Cairns,^d David J. Weber,^{a,b} William A. Rutala^{a,b}

Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA^a; Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, USA^b; University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA^c; North Carolina Jaycee Burn Center, University of North Carolina Health Care, Chapel Hill, North Carolina, USA^d

TABLE 2 Summary of the genetic context for *bla*_{KPC} among KPC-producing *Enterobacter cloacae* and *Klebsiella pneumoniae* isolates during a prolonged outbreak

								Composite
				Strain	Plasmid	Tn4401	Flanking	Tn4401/Tn2-like
Strain ID	Organism	KPC	MLST	relatedness	variant ^a	variant ^b	sequences ^c	structure
Ec01	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec02	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec03	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec04	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec05	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Kp06	K. pneumoniae	Ыа _{крс-з}	ST258			Tn4401d	GTTCT/TCTCT	
Kp07	K. pneumoniae	bla _{KPC-3}	ST1593		pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Kp08	K. pneumoniae	bla _{KPC-3}	ST258			Tn4401b**	GTTCT/GTTCT	Partial, identical
Ec09	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec10	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Kp11	K. pneumoniae	bla _{KPC-3}	ST2252		pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec12	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec13	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec14	E. cloacae	bla _{KPC-3}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec15	E. cloacae	Ыа _{крс-з}	ST114	Ec_UNC	pKPC-3_UNC	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec114	E. cloacae	bla _{KPC-3}	ST114		pKPC-3_UNC*	Tn4401b	GTTCT/GTTCT	Complete, identical
Ec149	E. cloacae	bla _{KPC-3}	ST451			Tn4401 novel***	GTTCT/GTTCT	
Kp150	K. pneumoniae	bla _{KPC-2}	ST258			Tn4401a	ATTGA/ATTGA	
Kp152	K. pneumoniae	bla _{KPC-3}	ST258	Kp_UNC		Tn4401d	GTTCT/TCTCT	
Kp156	K. pneumoniae	bla _{KPC-3}	ST258	Kp_UNC		Tn4401d	GTTCT/TCTCT	

^{*a*}Isolates with shared plasmid variants indicate possible plasmid-mediated bla_{KPC-3} transmission among isolates (pKPC-3_UNC). *, Ec114 differed from others by 1 SNV. ^{*b*}All isolates carried Tn4401b (except for one, marked with two asterisks, isolate Kp08 with 1 SNV) and are identical, and all isolates carrying Tn4401d are identical. "Tn4401 novel" (indicated with three asterisks, isolate Ec149) is an isoform of Tn4401 with a 91-bp deletion downstream of bla_{KPC} .

^cFlanking sequences of Tn4401 are shown as 5-bp target site duplications in transposition. There was no evidence of target site duplication for Tn4401d.

Aung et al 2018 unpublished data

otago.ac.nz/infectious-disease

https://era7bioinformatics.com/en/page.cfm?id=510

