Climate change and infectious diseases

Simon Hales

simon.hales@otago.ac.nz

Outline

- Background: climate change and communicable diseases: potential causal pathways, partial understanding of scale and significance
- Modelling climate change impacts on Dengue, Zika
- Conclusions: what do we know?

Climate factor	Pat	thwa	ays			Communicable disease examples
Temperature		plica viror		Foodborne infections		
Drought and flood				ter safety and ilability		Diarrhoea
Climate system thresholds			Ecosystem disturbances		Vector distribution and behaviour	Vector-borne diseases
					Intermediate hosts	Zoonoses
						•••
				Social impacts:	Loss of livelihoods, conflict, migration	Poverty- malnutrition- CD interactions

Climate factor	Pa	thwa	ays		Examples
Temperature	_		ion of pathogens in ronment		Salmonella food poisoning (time series studies)
				Mathematical models: extrinsic incubation period	Malaria, dengue
SST>29°C			Bleaching of coral reefs?		
				Harmful marine algae	
			Other factors?		Fish poisoning

Arboviral diseases

Empirical models for arboviral disease: ecological niche models

- Contemporary global spatial patterns of vector borne disease transmission correlated with climate
- Can include socioeconomic covariates
- Create forecasts (not predictions) for future decades, accounting for scenarios of climate change and development

Observed distribution and modelled risk of dengue in 2010

Dengue base model with GDPpc and specific humidity (year 2000)

GDPpc OR= 0.9 humidity OR= 1.7

Forecast recession of dengue by 2050s, despite more favourable climate, due to assumed socioeconomic development

Subtract baseline risk (no CC) from projection with CC: Despite optimistic forecasts of GDP increase in poor countries, projected ~20% increases in risk of dengue

See: Astrom et al, EcoHealth (2013) DOI: 10.1007/s10393-012-0808-0

Effect of CC on dengue and Zika compared

Carlson et al (2016) PLoS Negl Trop Dis doi:10.1371/journal.pntd.0004968

Conclusions

- Current empirical models of CC and communicable disease are simplistic
- Climate is an important enabling factor for transmission of many infections
- CC likely to make control of several major communicable diseases more difficult
- Need to incorporate social factors at local scale to make more useful forecasts for policy

Gupta V, Mason-Sharma A, Caty SN, Kerry V. Adapting global health aid in the face of climate change. Lancet Glob Health 2017; 5: e133–34.

