Accessibility Skip to Global Navigation Skip to Local Navigation Skip to Content Skip to Search Skip to Site Map Menu

Regenerative medicine

Overview

Tim Woodfield thumbProfessor Tim Woodfield.

Tissue Engineering (TE) and Regenerative Medicine (RM) combine a patient’s own cells with biodegradable scaffolds and growth factors. These therapies may offer considerable advantages over current surgical interventions used to repair or regenerate damaged tissues following trauma or disease.

The CReaTE group (Christchurch Regenerative Medicine and Tissue Engineering Group), consists of a multidisciplinary research team led by Professor Tim Woodfield, and is working at the interface of cell-biology, biomaterials science and engineering.

Using advanced 3D scaffolds and in-vitro culture techniques, combined with adult human stem cells, our group is attempting to identify the complex cellular environments controlling tissue growth in 3D. We are also researching their application in translating cell-based therapies to the clinic.

Contact

Professor Tim Woodfield
Tel +64 3 378 6114
Email tim.woodfield@otago.ac.nz

Visit our Partnerships page for more about our partnerships and collaborations.

^ Top of page

Research

Tissue engineering and regenerative medicine

  • Articular cartilage repair from clinically-relevant human cell sources
  • Novel methods to enhance mesenchymal stem cell differentiation and tissue quality
  • In vitro 3D culture models for mimicking native tissue organisation in vivo
  • CT imaging of cartilage and engineered tissues
  • Guided cell growth for neural / spinal cord regeneration

Advanced scaffold design and bio-manufacturing

  • Solid free-form fabrication of porous scaffolds
  • 3D plotting and tissue assembly
  • 3D extracellular matrix (ECM) hydrogel models to control cell function
  • Pore architecture optimisation and modelling

Orthopaedic medical devices

  • Novel metal alloys for bone interfacing implants
  • Medical device design
  • Total joint replacement and clinical outcomes (NZ National Joint Registry) 
  • ^ Top of page

Our people

The team, led from University of Otago Christchurch campus, consists of mechanical engineers, clinicians, process engineers, mathematicians and surgeons.

Regenerative medicine research lead

Professor Tim Woodfield (Orthopaedics, Christchurch)

Lead researchers

Postdoctoral researchers and Research Assistants

A large number of postgraduate students have worked alongside our researchers to achieve their qualifications.
Visit our Regenerative Medicine students page

^ Top of page

Media

Printing cartilage

Tim Woodfield thumbnailA third of the New Zealand population will be aged over 60 by 2051. This growth, combined with an elderly population living longer and more active lives, means an epidemic of degenerative joint disease is fast approaching. Dr Tim Woodfield, of the Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, is working on a way to address this epidemic.
Printing cartilage, He Kitenga Horizons (University of Otago research publication)

Radio interviews with Professor Tim Woodfield

^ Top of page

Publications

Li, J., Mutreja, I., Tredinnick, S., Jermy, M., Hooper, G. J., & Woodfield, T. B. F. (2020). Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Materials Science & Engineering: C, 109, 110562. doi: 10.1016/j.msec.2019.110562

Cui, X., Soliman, B. G., Alcala-Orozco, C. R., Li, J., Vis, M. A. M., Santos, M., … Woodfield, T. B. F., … Lim, K. S. (2020). Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Advanced Healthcare Materials. Advance online publication. doi: 10.1002/adhm.201901667

Li, J., Cui, X., Hooper, G. J., Lim, K. S., & Woodfield, T. B. F. (2020). Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Journal of the Mechanical Behavior of Biomedical Materials. Advance online publication. doi: 10.1016/j.jmbbm.2020.103671

Alcala-Orozco, C. R., Mutreja, I., Cui, X., Kumar, D., Hooper, G. J., Lim, K. S., & Woodfield, T. B. F. (2020). Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 18, e00073. doi: 10.1016/j.bprint.2019.e00073

Li, J., Mutreja, I., Hooper, G. J., Clinch, K., Lim, K., Evans, G., & Woodfield, T. B. F. (2020). Combined infection control and enhanced osteogenic differentiation capacity on additive manufactured Ti-6Al-4V are mediated via titania nanotube delivery of novel biofilm inhibitors. Advanced Materials Interfaces. Advance online publication. doi: 10.1002/admi.201901963

Chapter in Book - Research

Atienza Roca, P., Cui, X., Hooper, G. J., Woodfield, T. B. F., Lim, K. S., & Khang, G. (2018). Growth factor delivery systems for tissue engineering and regenerative medicine. In H. J. Chun, C. H. Park & I. K. Kwon (Eds.), Advances in experimental medicine and biology: (Vol. 1078) Cutting-edge enabling technologies for regenerative medicine. (pp. 245-269). Singapore: Springer. doi: 10.1007/978-981-13-0950-2_13

Woodfield, T., Lim, K., Morouço, P., Levato, R., Malda, J., & Melchels, F. (2017). Biofabrication in tissue engineering. In P. Ducheyne, D. W. Grainger, K. E. Healy, D. W. Hutmacher & C. J. Kirkpatrick (Eds.), Comprehensive biomaterials II: (Vol. 5) Tissue Engineering and regenerative medicine: Fundamentals. (2nd ed.) (pp. 236-266). Amsterdam, The Netherlands: Elsevier. doi: 10.1016/B978-0-12-803581-8.10221-8

Hutmacher, D. W., Woodfield, T. B. F., & Dalton, P. D. (2015). Scaffold design and fabrication. In C. A. van Blitterswijk & J. de Boer (Eds.), Tissue engineering. (2nd ed.) (pp. 311-346). London, UK: Academic Press. doi: 10.1016/B978-0-12-420145-3.00010-9

Melchels, F., Malda, J., Fedorovich, N., Alblas, J., & Woodfield, T. (2011). Organ printing. In P. Ducheyne, K. E. Healy, D. W. Hutmacher, D. W. Grainger & C. J. Kirkpatrick (Eds.), Comprehensive biomaterials (vol. 5). (pp. 587-606). Elsevier Science.

Hutmacher, D., Woodfield, T., Dalton, P., & Lewis, J. (2008). Scaffold design and fabrication. In C. van Blitterswijk (Ed.), Tissue engineering. (pp. 403-454). London, UK: Academic Press.

Malda, J., Radisic, M., Levenberg, S., Woodfield, T., Bomens, C., Baaijens, F., … Vunjak-Novakovic, G. (2008). Cell nutrition. In C. van Blitterswijk (Ed.), Tissue engineering. (pp. 327-362). London, UK: Academic Press.

Habibovic, P., Woodfield, T., de Groot, K., & van Blitterswijk, C. (2006). Predictive value of in vitro and in vivo assays in bone and cartilage repair: What do they really tell us about the clinical performance? In J. P. Fisher (Ed.), Advances in experimental medicine & biology: (Vol. 5) Tissue engineering. (pp. 327-360). New York: Springer. doi: 10.1007/978-0-387-34133-0_22

^ Top of page

Journal - Research Article

Li, J., Mutreja, I., Tredinnick, S., Jermy, M., Hooper, G. J., & Woodfield, T. B. F. (2020). Hydrodynamic control of titania nanotube formation on Ti-6Al-4V alloys enhances osteogenic differentiation of human mesenchymal stromal cells. Materials Science & Engineering: C, 109, 110562. doi: 10.1016/j.msec.2019.110562

Li, J., Mutreja, I., Hooper, G. J., Clinch, K., Lim, K., Evans, G., & Woodfield, T. B. F. (2020). Combined infection control and enhanced osteogenic differentiation capacity on additive manufactured Ti-6Al-4V are mediated via titania nanotube delivery of novel biofilm inhibitors. Advanced Materials Interfaces. Advance online publication. doi: 10.1002/admi.201901963

Alcala-Orozco, C. R., Mutreja, I., Cui, X., Kumar, D., Hooper, G. J., Lim, K. S., & Woodfield, T. B. F. (2020). Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 18, e00073. doi: 10.1016/j.bprint.2019.e00073

Li, J., Cui, X., Hooper, G. J., Lim, K. S., & Woodfield, T. B. F. (2020). Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. Journal of the Mechanical Behavior of Biomedical Materials. Advance online publication. doi: 10.1016/j.jmbbm.2020.103671

Cui, X., Soliman, B. G., Alcala-Orozco, C. R., Li, J., Vis, M. A. M., Santos, M., … Woodfield, T. B. F., … Lim, K. S. (2020). Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Advanced Healthcare Materials. Advance online publication. doi: 10.1002/adhm.201901667

Parrish, J., Lim, K., Zhang, B., Radisic, M., & Woodfield, T. B. F. (2019). New frontiers for biofabrication and bioreactor design in microphysiological system development. Trends in Biotechnology. Advance online publication. doi: 10.1016/j.tibtech.2019.04.009

Page, M., Baer, K., Schon, B., Mekhileri, N., Woodfield, T., & Puttlitz, C. (2019). Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation. Journal of the Mechanical Behavior of Biomedical Materials. Advance online publication. doi: 10.1016/j.jmbbm.2019.06.029

Lim, K. S., Klotz, B. J., Lindberg, G. C. J., Melchels, F. P. W., Hooper, G. J., Malda, J., … Woodfield, T. B. F. (2019). Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromolecular Bioscience, 19(6), 1900098. doi: 10.1002/mabi.201900098

Lim, K. S., Baptista, M., Moon, S., Woodfield, T. B. F., & Rnjak-Kovacina, J. (2019). Microchannels in development, survival, and vascularisation of tissue analogues for regenerative medicine. Trends in Biotechnology. Advance online publication. doi: 10.1016/j.tibtech.2019.04.004

Mutreja, I., Warring, S. L., Lim, K. S., Swadi, T., Clinch, K., Mason, J. M., … Chambers, S. T., … Gerth, M. L., … Woodfield, T. B. F. (2019). Biofilm inhibition via delivery of novel methylthioadenosine nucleosidase inhibitors from PVA-tyramine hydrogels while supporting mesenchymal stromal cell viability. ACS Biomaterials Science & Engineering, 5(2), 748-758. doi: 10.1021/acsbiomaterials.8b01141

Klotz, B. J., Oosterhoff, L. A., Utomo, L., Lim, K. S., Vallmajo-Martin, Q., Clevers, H., Woodfield, T. B. F., … Gawlitta, D. (2019). A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Advanced Healthcare Materials. Advance online publication. doi: 10.1002/adhm.201900979

Cidonio, G., Alcala-Orozco, C. R., Lim, K. S., Glinka, M., Mutreja, I., Kim, Y.-H., … Woodfield, T. B. F., & Oreffo, R. O. C. (2019). Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 11, 035027. doi: 10.1088/1758-5090/ab19fd

Lindberg, G. C. J., Longoni, A., Lim, K. S., Rosenberg, A. J., Hooper, G. J., Gawlitta, D., & Woodfield, T. B. F. (2019). Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomaterialia, 85, 117-130. doi: 10.1016/j.actbio.2018.12.022

Bateman, C. J., Knight, D., Brandwacht, B., McMahon, J., Healy, J., Panta, R., Aamir, R., Rajendran, K., Moghiseh, M., Ramyar, M., … de Ruiter, N., … Shamshad, M., Anjomrouz, M., Atharifard, A., … Bheesette, S., … Anderson, N. G., Gieseg, S. P., Woodfield, T., Renaud, P. F., Butler, A. P. H., & Butler, P. H. (2018). MARS-MD: Rejection based image domain material decomposition. Journal of Instrumentation, 13, P05020. doi: 10.1088/1748-0221/13/05/p05020

Mekhileri, N. V., Lim, K. S., Brown, G. C. J., Mutreja, I., Schon, B. S., Hooper, G. J., & Woodfield, T. B. F. (2018). Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication, 10(2). doi: 10.1088/1758-5090/aa9ef1

Klotz, B. J., Lim, K. S., Chang, Y. X., Soliman, B. G., Pennings, I., Melchels, F. P. W., Woodfield, T. B. F., … Gawlitta, D. (2018). Engineers of a complex bone tissue model with endothelialised channels and capillary-like networks. European Cells & Materials, 35, 335-349. doi: 10.22203/eCM.v035a23

Parrish, J., Lim, K. S., Baer, K., Hooper, G. J., & Woodfield, T. B. F. (2018). A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. Lab on a Chip, (18), 2757-2775. doi: 10.1039/c8lc00485d

Lim, K. S., Levato, R., Costa, P. F., Castilho, M. D., Alcala-Orozco, C. R., van Dorenmalen, K. M. A., … Hooper, G. J., … Woodfield, T. B. F. (2018). Bio-resin for high resolution lithography-based biofabrication of complex cell laden constructs. Biofabrication, 10, 034101. doi: 10.1088/1758-5090/aac00c

More publications...