
Department of Computer Science,

University of Otago

Technical Report OUCS-2018-03

A neural network model for learning to represent 3D objects
via tactile exploration: technical appendix

Authors:

Xiaogang Yan, Alistair Knott, Steven Mills
Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,

University of Otago, PO Box 56, Dunedin, Otago, New Zealand

https://www.otago.ac.nz/computer-

science/research/publications/reports/index.html

A neural network model for learning to represent 3D objects

via tactile exploration: technical appendix

Xiaogang Yan, Alistair Knott, Steven Mills
yanxg@cs.otago.ac.nz; alik@cs.otago.ac.nz; steven@cs.otago.ac.nz

Abstract

This technical report is to present a neural network model for learning to represent
3D objects via tactile exploration, which complements a paper named “a neural network
model for learning to represent 3D objects via tactile exploration” and published in
the conference CogSci 2018. This report includes the details of the proposed model.

1 Introduction

How brains represent 3D objects remains unsolved though loads of effort has been spent.
Obviously, brains can learn to represent 3D objects via different kinds of sensory infor-
mation, like vision, hearing and touching, etc. Most researchers tend to study this tricky
problem from the perspective of vision, while we aim to investigate such a problem from
touching sensory information for several reasons. Firstly, the tactile information is the
primary and the first source obtained when an infant starts to learn the world. Secondly,
the blind people also can distinguish the objects trough touching. Thirdly, the circuit of
vision about representing objects in brains is far well-established compared with that of
touching. Therefore, it might be possible to use this model to shed light on what the circuit
of touching could be.

Specifically, the model is to learn the topographical feature of the 3D object which a
navigating agent explores. This model is analogous to the navigation model of mammals,
which can learn an allocentric representation of the exploring environment via the ego-
centric movements [Moser et al., 2008]. By assuming the environment as surfaces of 3D
objects and the navigating agent’s movements as hand’s movements, representations of the
environment can be construed as representations of the 3D object. Firstly, the navigating
agent (supposing the hand in this model) takes random movements to explore the object.
Then, the perceptual information during the exploration, such as the texture and associ-
ated temperature information, together with the conducted action movements is inputted
to a neural network. The network is like the neurons in brains, which store the represen-
tations of such an object. Based on the acquired representations, the agent can estimate
its location as well as its orientation with a distributed probability and also guess the next

1

Data: Input dataset, assuming input pattern x(t) ∈ Rm

Result: A convergent MSOM
Initialization: Randomly initialize all regular weights at time instance 0
wi(0) ∈ (0, 1) and set all context weights ci(0) = 0, i = 1, 2, . . . n2;
while feature map is not convergent do

1. Sampling: Draw sample input x(t) ∈ Rm;
2. Competition: Find best matching unit based on a distance discriminant
function:

f(x) = argmin
i

(1− ξ)‖x(t)− wi‖22 + ξ‖c(t)− ci‖22,

where c(t) = (1− κ)w∗(t− 1) + κc∗(t− 1), ξ ∈ (0, 1) κ ∈ (0, 1);
3. Cooperation: Neurons selected by a decreasing neighbourhood function
H(i, f(x))(t) excite;

4. Adaptation: Update regular weights and context weights of all excited
neurons:

wi(t+ 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t)− wi(t)),

ci(t+ 1) = ci(t) + L(t)H(i, f(x))(t)(c(t)− ci(t)),

where L(t) is a time-varying monotonically decreasing learning rate function.
end

Algorithm 1: Description of MSOM

possible action that can be performed. Based on the probability distribution of possible
actions, the adjusted most probable action is chosen as the next action, which then update
the input to the neural network as well as the representation.

2 Modified Self-Organizing Map (MSOM)

Inspired from the biological observation that the information is processed in brains with
a topological fashion, the self-organising map (SOM) is developed in [Kohonen, 1982].
Specifically, a SOM is to learn input patterns like a normal neural network and meanwhile
incorporate the topology feature involved. Apart from its biologically supporting evidence,
the SOM has a lot of other advantages for tricky problems in loads of domains, such as
dimension reduction, stock prediction, data mining and manipulator control [Yin, 2008b,
Kohonen, 1998, 1990, Ritter et al., 1992, Kaski, 1997, Haykin, 1999, Yin, 2002, 2008a,
Leoni et al., 1998], etc.

Though there are some advantages in SOM, it could not include the temporal informa-
tion, while the time-series data are normally encountered in practice. Therefore, a modified
self-organizing map (MSOM) is developed in [Strickert and Hammer, 2005]. Considering

2

that the action sequences are constrained by the object’s geometry feature and implicitly
include the temporal information, the MSOM is employed to learn 3D object representa-
tions via the performed action sequences. The input of MSOM includes two parts: one is
the current input and the other one is the previous state input.

Regarding an input x(t) ∈ Rm at time instance t, the activity of unit i of a n × n
MSOM at that time instance is defined as

ai(t) = exp(−ηdi(t)), (1)

where i ∈ 1, 2, · · · , n2, η > 0 is a design parameter, and di(t) is a distance function
formulated as

di(t) = (1− ξ)‖x(t)− wi(t)‖22 + ξ‖c(t)− ci(t)‖22, (2)

in which ξ ∈ (0, 1) is a weight factor, ‖·‖2 denotes the 2-norm of a matrix or vector, wi(t)
is the regular weight and c(t) is the context weight. The context weight c(t) in (2) is

c(t) = (1− κ)w∗(t− 1) + κc∗(t− 1), κ ∈ (0, 1), (3)

where w∗(t− 1) and c∗(t− 1) denote the regular weight and context weight of the unit in
MSOM with the maximal activity ai(t) at previous time instance t − 1, respectively. In
addition, by norming the activities of all MSOM units shown in (1),

pi(t) =
ai(t)∑n2

j=1 aj(t)
, (4)

which denotes the activity probability of unit i for the current input at time instance t.
During training, the regular weight wi(t) is updated as

wi(t+ 1) = wi(t) + L(t)H(i, f(x(t)))(t)(x(t)− wi(t)), (5)

and the context weight ci(t) is changed as

ci(t+ 1) = ci(t) + L(t)H(i, f(x))(t)(c(t)− ci(t)), (6)

where L(t) is a time-varying monotonically decreasing learning rate function,H(i, f(x(t)))(t)
is a time-varying monotonically decreasing neighbourhood function with f(x) denoting the
index of the unit in MSOM with the maximal activity for the current input x(t). At the
beginning of training, the regular weight wi(0) is randomly selected between (0, 1) and the
context weight ci(0) = 0. For illustration, the process of MSOM is shown in Algorithm
1. Note that MSOM is a convergent algorithm and therefore after the training, the map
becomes to be stable, which makes it usable in implementations.

3

surface cues

MSOM units

Next action distribution

Action selected

Motor system

parietal cortex premotor cortex

Figure 1: The architecture of the model for representing 3D objects

Data: Constrained action sequences of the object to be explored and represented
Result: A representation of the object explored
Initialization: Randomly initialize the exploration starting position and
orientation of the agent;
while training steps are not finished do

1. Input: Input sensorimotor information of the navigation agent perceived at
current time instance, including surface cues and constrained actions;

2. MSOM units: Activate MSOM units to be responsive to the current input;
3. Next action distribution: Predict next possible actions allowed by the
object with a probability distribution;

4. Action selected: Select the most possible action allowed by the object
based on the obtained probability distribution and action selection policy and
then copy to the motor system to execute for updating the agent’s position and
orientation to further explore the object.

end
Algorithm 2: Description of the proposed model

3 Model architecture

In the last section, we have presented MSOM and in this section, we configure the MSOM
to learn 3D object representations based on haptic information. The architecture of the
model is illustrated in Fig. 1, which gets input from perceptual information, such as the
texture and temperature information, and the performed action movements. As illustrated
in Fig. 1, the model consists of several components and the detailed description of the
model is presented in Algorithm 2 and as follows.

3.1 Input

As we can see from Fig. 1, the model gets input from constrained action sequences as well
as some supplementary surface cues. Note that the action sequences include translative
movements (i.e., move directly forward, move directly left, move directly right and move

4

Table 1: Agent state, when exploring a 2× 2× 2 cube, denoted as [surface number, orien-
tation, x, y] at next time instance t+ 1 after being executed translate-directly movements
when its current state at time instance t is (x, y), with N, S, E and W respectively denoting
North, South, East and West

Surface number Orientation
Translate-directly movement

Forward Left Right Backward

1

N [1, N, x, y − 1] [1, N, x− 1, y] [1, N, x+ 1, y] [1, N, x, y + 1]
S [1, S, x, y + 1] [1, S, x+ 1, y] [1, S, x− 1, y] [1, S, x, y − 1]
E [1, E, x+ 1, y] [1, E, x, y − 1] [1, E, x, y + 1] [1, E, x− 1, y]
W [1, W, x− 1, y] [1, W, x, y + 1] [1, W, x, y − 1] [1, W, x+ 1, y]

2

N [2, N, x, y − 1] [2, N, x− 1, y] [2, N, x+ 1, y] [2, N, x, y + 1]
S [2, S, x, y + 1] [2, S, x+ 1, y] [2, S, x− 1, y] [2, S, x, y − 1]
E [2, E, x+ 1, y] [2, E, x, y − 1] [2, E, x, y + 1] [2, E, x− 1, y]
W [2, W, x− 1, y] [2, W, x, y + 1] [2, W, x, y − 1] [2, W, x+ 1, y]

3

N [3, N, x, y − 1] [3, N, x− 1, y] [3, N, x+ 1, y] [3, N, x, y + 1]
S [3, S, x, y + 1] [3, S, x+ 1, y] [3, S, x− 1, y] [3, S, x, y − 1]
E [3, E, x+ 1, y] [3, E, x, y − 1] [3, E, x, y + 1] [3, E, x− 1, y]
W [3, W, x− 1, y] [3, W, x, y + 1] [3, W, x, y − 1] [3, W, x+ 1, y]

4

N [4, N, x, y − 1] [4, N, x− 1, y] [4, N, x+ 1, y] [4, N, x, y + 1]
S [4, S, x, y + 1] [4, S, x+ 1, y] [4, S, x− 1, y] [4, S, x, y − 1]
E [4, E, x+ 1, y] [4, E, x, y − 1] [4, E, x, y + 1] [4, E, x− 1, y]
W [4, W, x− 1, y] [4, W, x, y + 1] [4, W, x, y − 1] [4, W, x+ 1, y]

5

N [5, N, x, y − 1] [5, N, x− 1, y] [5, N, x+ 1, y] [5, N, x, y + 1]
S [5, S, x, y + 1] [5, S, x+ 1, y] [5, S, x− 1, y] [5, S, x, y − 1]
E [5, E, x+ 1, y] [5, E, x, y − 1] [5, E, x, y + 1] [5, E, x− 1, y]
W [5, W, x− 1, y] [5, W, x, y + 1] [5, W, x, y − 1] [5, W, x+ 1, y]

6

N [6, N, x, y − 1] [6, N, x− 1, y] [6, N, x+ 1, y] [6, N, x, y + 1]
S [6, S, x, y + 1] [6, S, x+ 1, y] [6, S, x− 1, y] [6, S, x, y − 1]
E [6, E, x+ 1, y] [6, E, x, y − 1] [6, E, x, y + 1] [6, E, x− 1, y]
W [6, W, x− 1, y] [6, W, x, y + 1] [6, W, x, y − 1] [6, W, x+ 1, y]

directly back; and move forward over the edge, move left over the edge, move right over the
edge and move back over the edge) and rotational movements (i.e., rotate left and rotate
right). After performing a certain movement, the state of the agent (or say, the navigating
agent) is changed. For example, when exploring a 2×2×2 cube, the agent’s state is changed
differently with different movements, which is illustrated in Table 1 and Table 2. Therefore,
starting from a random exploration location and orientation, different constrained action
sequences lead the agent to have different states, which implicitly include the topography
information of the object. More sensorimotor information, such as cues in the vision and
smell, of the object contributes to represent it more accurately, while in this model, we
only consider the tactile information of the object. This part is assumed to simulate the
process executed in the somatosensory cortex for representing a 3D object.

5

Table 2: Agent state, when exploring a 2 × 2 × 2 cube, denoted as [surface number,
orientation, x, y] at next time instance t + 1 after being executed translate-over-the-edge
movements when its current state at time instance t is (x, y) , with N, S, E and W
respectively denoting North, South, East and West

Surface number Orientation
Translate-over-the-edge movement

Forward Left Right Backward

1

N [4, E, 1, x] [6, S, 1, y] [2, N, 1, y] [5, W, 1, x]
S [5, E, 1, x] [2, S, 1, y] [6, N, 1, y] [4, W, 1, x]
E [2, E, 1, y] [4, S, 1, x] [5, N, 1, x] [6, W, 1, y]
W [6, E, 1, y] [5, S, 1, x] [4, N, 1, x] [2, W, 1, y]

2

N [4, N, x, 2] [1, N, 2, y] [3, N, 1, y] [5, N, x, 1]
S [5, S, x, 1] [3, S, 1, y] [1, S, 2, y] [4, S, x, 2]
E [3, E, 1, y] [4, E, x, 2] [5, E, x, 1] [1, E, 2, y]
W [1, W, 2, y] [5, W, x, 1] [4, W, x, 2] [3, W, 1, y]

3

N [4, W, 2, x] [2, N, 2, y] [6, S, 2, y] [5, E, 2, x]
S [5, W, 2, x] [6, N, 2, y] [2, S, 2, y] [4, E, 2, x]
E [6, W, 2, y] [4, N, 2, x] [5, S, 2, x] [2, E, 2, y]
W [2, W, 2, y] [5, N, 2, x] [4, S, 2, x] [6, E, 2, y]

4

N [6, N, x, 2] [1, E, y, 1] [3, E, y, 1] [2, N, x, 1]
S [2, S, x, 1] [3, E, y, 1] [1, E, y, 1] [6, S, x, 2]
E [3, S, y, 1] [6, E, x, 2] [2, E, x, 1] [1, N, y, 1]
W [1, S, y, 1] [2, W, x, 1] [6, W, x, 2] [3, N, y, 1]

5

N [2, N, x, 2] [1, E, y, 2] [3, W, y, 2] [6, N, x, 1]
S [6, S, x, 1] [3, E, y, 2] [1, W, y, 2] [2, S, x, 2]
E [3, N, y, 2] [2, E, x, 2] [6, E, x, 1] [1, S, y, 2]
W [1, N, y, 2] [6, W, x, 1] [2, W, x, 2] [3, S, y, 2]

6

N [5, N, x, 2] [1, S, 1, y] [3, S, 2, y] [4, N, x, 1]
S [4, S, x, 1] [3, N, 2, y] [1, N, 1, y] [5, S, x, 2]
E [3, W, 2, y] [5, E, x, 2] [4, E, x, 1] [1, W, 1, y]
W [1, E, 1, y] [4, W, x, 1] [5, W, x, 2] [3, E, 2, y]

3.2 MSOM units

Then, the units in MSOM are trained to learn input patterns, which are constrained by
the explored object. Regarding an initial exploration position and orientation, the action
sequence corresponds to one particular location on the object. Therefore, each unit in the
MSOM is driven to be responsive to one particular location in the object, which indicates
the geometry property of the object. After training, the learning model is expected to
reconstruct or say predict the agent’s position as accurately as possible due to the obtained
representations of objects. This part is attempting to implement the function fulfilled in
the parietal cortex (as well as premotor cortex).

3.3 Next action distribution

For each input pattern, there is an activity in the MSOM. Then, based on the resultant
activity, the model attempts to predict the next action possibly allowed by the object
based on its learned representation of such an object. Specifically, the MSOM activity
is inputted to a network, which is implemented by the multiple layer perception (MLP),

6

and the output of MLP is the probability distribution of all possible actions predicted to
be allowed to perform for a certain agent’s location and orientation with regard to the
special 3D object. At the start of exploration, since there is no information about the
object, all actions are chosen with the same probability, which means the next actions are
with a uniform distribution. After performing movements, the model comes to obtain the
geography information about the object, which predicts the next actions in a probability
distribution (normally a non-uniform distribution). The MLP is trained by the back-
propagation algorithm.

3.4 Action selected

Based on the obtained actions’ probability distribution, the next action to be performed
is selected, which is implemented by the Boltzmann selection. Note that the selection can
be adjusted by changing the selection decision involved in the Boltzmann selection. For
example, if the agent failed one action for the previous attempt, then the probability of
this action can be changed to be zero, which means that it cannot be selected for the next
action. Plus, to speed up the learning process, the agent is expected to find the boundary
of the object as fast as it can and therefore, the probability of the moving forward action is
added by a bias number. Furthermore, to avoid the agent exploring in a loop, a ‘boredom’
routine is introduced, which increases a defined boredom parameter when the agent travels
the same location again during a time interval. If the boredom parameter is greater than the
previously assigned threshold, the corrected next action’s probability distribution is set to
distribute in a uniform distribution. The next action selection policy is a decision problem,
which needs to balance the accuracy (exploring the same location of the object leads to high
accuracy but lower completeness) and completeness (exploring an unknown location gets
the lower accuracy but higher completeness) for representing an object. Different action
selection policy makes the efficiency of exploration different and therefore a more efficient
exploration algorithm is one of the future work. Note that the part about action selection
is analogous to the function performed in the premotor cortex. The signal of the selected
action is transferred to the motor system to command exploration muscle to execute the
corresponding action, which then results in further exploration of the object.

4 Simulation results

In this section, to test the effectiveness for representing 3D objects, the proposed model
is tested to learn representations of two typical 3D objects. Meanwhile, to evaluate the
performance of the proposed model, three indicators are designed.

7

4.1 Position reconstruction

Firstly, we investigate the underlying theory that guarantees the accuracy of proposed
MSOM for representing a 3D object. To lay a basis for studying the position reconstruction
in a 3D object, the reconstruction in a 2D object is presented.

4.1.1 Reconstruction in a 2D object

With regard to a 2D object, we assume it can be regarded as a surface. The surface,
then, is partitioned as discrete grid locations. Except for unsuccessful movements (e.g.,
attempting to cross a blocking wall), every translative movement except for movements of
translating over the edge leads to the change of agent’s locations in the 2D object. We
assume there are m > 0 discrete locations in the 2D object and location i is denoted as li
with i = 1, · · · ,m.

In terms of the applied learning neural network, the so-called MSOM, we assume there
are n > 0 learning units and learning unit j is denoted as nj with j = 1, · · · , n. When
the agent explores a 2D object, the executed movement combined with encoded surface
information at time instance t − 1 leads to different activities of learning units in the
MSOM. Taking MSOM unit j for example, the activity aj(t) of neuron’s at time instance
t is defined as

aj(t) = exp(−γdj(t)),

where γ > 0 is a constant and function d(t) stands for the previously defined discriminant
function, which is utilized to choose a best matching unit or called winner for a specific
input pattern. By normalizing activities of MSOM units to sum to one, the activity of
whole MSOM map can be interpreted as a probability distribution. Regarding the unit j,
its activity probability pj(t) for an input pattern at time instance t is formulated as

pj(t) =
aj(t)∑n
c=1 ac(t)

, c = 1, 2, · · · , n.

A MSOM activity distribution at one time instance is shown in Fig. 2. In Fig. 2, the
winner is represented with a red frame and corresponding activities of the active MSOM
units are illustrated in the MSOM activity table. Note that at the start of training the
MSOM, the network might not represent the input pattern accurately and some MSOM
units, such as those shown in Fig. 2, may have a similar activity probability. Thus, the
whole MSOM activity generally follows a distribution with a high deviation δ1 > 0. Due
to the self-organising process, after a period of time for training, the MSOM network is
driven to represent input patterns more accurately and the resultant MSOM activity tends
to follow a distribution with a lower deviation 0 ≤ δ2 < δ1. Theoretically speaking, as time
t → +∞, for an input pattern, there is a winner k in MSOM to make dc(t) → 0, thereby
leading to ac(t) → 1. Taking into account that other MSOM units are not active, we can
have pc(t)→ 1.

8

Figure 2: When exploring a 2D object, a MSOM activity distribution at one time instance.

To learn about how much the object’s information represented in MSOM activities, we
use the current MSOM activity to reconstruct the agent’s location as well as orientation.
Apart from the MSOM activity distribution needed for estimating possible agent position
in the 2D object, information about the previously visited location combined with the
corresponding MSOM winner is also required. Therefore, a named hit map is created,
which records traveled position and corresponding MSOM winner. A MSOM hit map at
one time instance is illustrated in Fig. 3. For each MSOM neuron j with j = 1, · · · , n,
the hit map records the agent actual position as well as orientation in a 2D object being
explored when one MSOM neuron acts as the winner at that moment. Note that although
for an input pattern, several MSOM neurons might be active, the hit map only takes care
of the winner corresponding to current agent position. For each MSOM neuron, there is
a counter designed for each position to records how many times the agent visit such a
position. In other words, when a neuron becomes a winner, the counter of such a neuron
for the actual agent position is forced to increase. Thus, it is easy to obtain the conditional
probability p(li|nj), which is described as

p(li|nj) =
T(i, j)∑m

u=1 T(u, j)
, (7)

where T(i, j) denotes the happened times of the agent actual position being i and meanwhile
MSOM winner being neuron j; and T(u, j) is similarly defined.

Considering that the whole MSOM follows a probability distribution, which is shown in
(7), we can reconstruct the probable agent position li based on total probability theorem,
which is described as

p(B) = p(B|A1)p(A1) + p(B|A2)p(A2) + · · ·+ p(B|Ak)p(Ak), (8)

where B is an arbitrary event; A1, A2, · · · , Ak are mutually exclusive events whose proba-
bilities sum to one; and p(B|Ak) is the conditional probability of B assuming Ak happens.

9

Figure 3: When exploring a 2D object, a MSOM hit map at one time instance.

Therefore, given a probability distribution of MSOM neurons, the probability distribution
of reconstructed agent positions is derived as

p(li) =

n∑
j=1

p(li|nj)p(nj), i = 1, 2, · · · ,m. (9)

Apart from such a reconstruction method shown in (9), there are some other approaches to
predict possible agent positions. A typical one is to ignore distribution of MSOM neurons

10

Figure 4: When exploring a 3D object, a part of a MSOM hit map at one time instance.

and just focus on the winner. Based on the winner as well as the obtained conditional
probability shown in (7), the distribution of probable agent positions can be calculated.
Compared with the first approach, this approach is easier and simpler to implement. An-
other approach to reconstruct is only paying attention to the MSOM winner and meanwhile
only focusing on the most probable agent position based on previously gleaned conditional
probability of agent positions. That is to say, it assumes the most probable agent position
to be the reconstructed agent position. Note that the in spite of the fact that the last
approach is simplest, it might reconstruct with an appreciable error, especially when the
training is not enough.

4.1.2 Reconstruction in a 3D object

Regarding a 3D object, different grids in surfaces of the object means distinct positions.
Therefore, reconstruction not only considers different positions in one surface, but also a
position in different surfaces. Differing from the hit map for a 2D object, a hit map for
exploring a 3D object is then modified to incorporate surface information. A part of a hit
map when the agent explores a 3D object is shown in Fig. 4 and different colors stand for
different surfaces. Therefore, for each MSOM neuron, a counter is utilized to record hit
times for each position in each surface. For an input pattern, the MSOM similarly follows
a probability distribution. For simplicity, we assume the number of surfaces in a 3D object

11

is q ≥ 2 and every surface sv with v = 1, 2, · · · , q includes m positions. Therefore, in
total, there are mq positions in the 3D object. Via keeping record of each position in each
surface, the conditional probability p(sv, li|nj) is formulated as

p(sv, li|nj) =
T(v, i, j)∑q

v=1

∑m
i=1 T(v, i, j)

, (10)

where p(sv, li|nj) denotes the probability of the agent in position li of the surface sv, given
the winner being nj . In addition, T (·, ·, ·) is defined as before.

Based on the activity distribution of MSOM units and the recorded conditional prob-
ability p(sv, li|nj) , we can evidently obtain the probability distribution of reconstructed
positions in a 3D object. The probability distribution for reconstructed positions is ex-
pressed as

p(sv, li) =
n∑

j=1

p(sv, li|nj)p(nj), i = 1, 2, · · · ,m. (11)

Similar with estimating probable positions in a 2D object, we can generalize the other
two reconstruction approaches to obtain probability distribution of possible positions in
surfaces in the explored 3D object. If the surface and location of the maximal value in the
reconstructed probability obtained in (11) are the same with the actual agent’s surface and
location, the parameter indicating the times of this event’s occurrence is forced to increase,
which suggests the reconstruction accuracy and the representation ability of the model.

4.2 Distance

Secondly, we introduce the distance between reconstructed positions and the actual agent’s
position to indicate the model’s effectiveness. We first investigate the model exploring a
2D object and then study the situation when the model tries to learn 3D objects.

4.2.1 Manhattan distance in a 2D object

When the agent moves in four orthogonal directions (i.e., North, South, East and West),
we adopt the Manhattan distance M(·) to evaluate the accuracy of the proposed model,
which is defined as

M(x1, y1, x2, y2) = |x1− x2|+ |y1− y2|, (12)

where (x1, y1) and (x2, y2) are two points based on a Cartesian coordinate system in a 2D
space and | · | denotes its absolute value. The reconstructed error e ≥ 0 is calculated as

e =

m∑
i=1

M(pact, li)p(li), (13)

where pact and li denotes agent actual position and estimate position, respectively.

12

4.2.2 Geodesic distance in a 3D object

Considering that all movements of the agent when exploring a 3D object are along the
surface instead of passing through the object, Geodesic distance has an advantage over
Manhattan distance for this case. To find the Geodesic path between two points, which may
exist in different surfaces, a well-studied graph-based search algorithm Dijkstra algorithm
is implemented. Therefore, the model’s reconstruction error e can be estimated based on
the Geodesic distances G(·, ·, ·, ·) between the actual agent position and the reconstructed
agent position, which is calculated as

e =

q∑
v=1

m∑
i=1

G(sact, pact, sv, li)p(sv, li), (14)

where sact and pact denotes agent actual surface and position, respectively; and sv and li
denotes agent estimate surface and position, respectively. Therefore, this indicator defined
in (14) with a smaller value means the model with a better representation ability.

4.3 Uniqueness

To avoid the model exploring a 3D object in a loop, a called uniqueness is defined as
U = τ/ε, where U is the uniqueness rate, τ is the number of unique positions and ε is the
number of exploration steps within a sliding window.

4.4 Results

The simulation results indicate that the model is effective on representing 3D objects
and it is more efficient and accurate for representing an asymmetrical 3D object than a
symmetrical object, which can refer to the CogSci 2018 paper.

5 Conclusion

Benefiting from that the allowed action sequences are constrained by the geometry of a
3D object, this paper investigates a neural network model for representing 3D objects
through tactile exploration. The simulation results demonstrate the model’s effective-
ness for learning 3D objects’ representations. Future work might investigate the multi-
dimensional MSOM for learning representations of more complex 3D objects, such as a
cube as well as a cube in a desk.

6 Acknowledgement

The authors would like to thank Martin Takac for his work of SOM-based navigation model
with Alistair Knott and this help given to this paper.

13

References

Simon Haykin. Neural Networks: A Comprehensive Foundation, 2nd ed. Englewood Cliffs,
NJ: Prentice-Hall, 1999.

Samuel Kaski. Data exploration using self-organizing maps. In Acta polytechnica scandi-
navica: Mathematics, computing and management in engineering series no. 82. Citeseer,
1997.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological
cybernetics, 43(1):59–69, 1982.

Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1):1–6, 1998.

Fabio Leoni, Massimo Guerrini, Cecilia Laschi, Davide Taddeucci, Paolo Dario, and An-
tonina Starita. Implementing robotic grasping tasks using a biological approach. In
Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on,
volume 3, pages 2274–2280. IEEE, 1998.

Edvard I Moser, Emilio Kropff, and May-Britt Moser. Place cells, grid cells, and the brain’s
spatial representation system. Annual review of neuroscience, 31:69–89, 2008.

Helge Ritter, Thomas Martinetz, Klaus Schulten, Daniel Barsky, Marcus Tesch, and Ronald
Kates. Neural computation and self-organizing maps: an introduction. Addison-Wesley
Reading, MA, 1992.

Marc Strickert and Barbara Hammer. Merge som for temporal data. Neurocomputing, 64:
39–71, 2005.

Hujun Yin. Visom-a novel method for multivariate data projection and structure visual-
ization. IEEE Transactions on Neural Networks, 13(1):237–243, 2002.

Hujun Yin. On multidimensional scaling and the embedding of self-organising maps. Neural
Networks, 21(2):160–169, 2008a.

Hujun Yin. The self-organizing maps: background, theories, extensions and applications.
In Computational intelligence: A compendium, pages 715–762. Springer, 2008b.

14

