Application of the principles of organic chemistry to an understanding of why organic compounds react as they do; to develop the ability to predict the course of a chemical reaction to allow for the design of controlled and selective chemical transformations.
CHEM302 Organic Chemistry focuses on how the concepts and techniques of organic chemistry may be applied to interpret chemical reactions and to plan chemical transformations. The principles involved apply equally to reactions performed in the laboratory and to those proceeding in living systems.
Paper title | Organic Chemistry |
---|---|
Paper code | CHEM302 |
Subject | Chemistry |
EFTS | 0.15 |
Points | 18 points |
Teaching period | Semester 2 (On campus) |
Domestic Tuition Fees (NZD) | $1,141.35 |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- CHEM 202
- Schedule C
- Science
- Eligibility
CHEM302 is an important paper for chemistry majors wishing to proceed to a career that involves organic chemistry and for all general degree students requiring knowledge and understanding of organic chemistry to underpin their major subject.
- Contact
Dr Eng Wui Tan
Tel 64 3 479 7926
Location: Science II, 2n9
- More information link
- Teaching staff
Course Co-ordinator: Dr Eng Wui Tan
Lecturers: Professor James Crowley
- Paper Structure
The topics covered in CHEM302 are:
- Frontier molecular orbital theory
and reactive intermediates.
- Examination of the transformations involving carbocations, carbenes and free radicals, including reactions that involve structural rearrangements.
- Pericyclic reactions such as electrocyclic reactions; cycloadditions and 1,3-dipolar additions will also be studied.
- An underlying theoretical basis will be the use of pictorial representations of molecular orbitals to interpret the selectivity of chemical reactions.
- Heterocyclic
chemistry.
- Structure, nomenclature, aromaticity and reactivity of heterocycles.
- Synthesis of heterocycles via condensation and pericyclic reactions.
- Cross-coupling reactions of heterocycles.
- Molecules of living systems.
- Neighbouring group effects: bridged reaction intermediates, rate acceleration, rearrangements, organometallic catalysis and asymmetric induction.
- Frontier molecular orbital theory
and reactive intermediates.
- Teaching Arrangements
- There are three lectures and one 4-hour laboratory class each week.
- Textbooks
Highly Recommended:
Bruice, P.Y. Organic Chemistry, (4th edn), Prentice-Hall
Recommended:
March, J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure, (4th or 5th edn), Wiley
- Graduate Attributes Emphasised
- Interdisciplinary perspective, Lifelong learning, Scholarship, Communication, Critical
thinking, Self-motivation.
View more information about Otago's graduate attributes. - Learning Outcomes
- Expectations at the completion of the paper:
- An attainment of appropriate knowledge of pericyclic reactions, reactions of carbon-centred reaction intermediates, the chemistry of heterocyclic aromatic compounds, synthetic reaction analysis, reagent choice, compound purification and spectroscopic characterisation
- An ability to work efficiently and effectively in a multistep laboratory synthesis while planning ahead to reduce any perceived hazards
- An ability to analyse critically an experimental procedure and write a formal report using standard scientific terminology