Spatial data structures and algorithms, underpinned by spatial databases and programming, including customisation of GIS software.
Geographic Information Systems (GIS) have gained increasing acceptance as important
tools for the organisation, analysis and visualisation of data pertinent to a host
of land/resource management and planning activities. This paper teaches students to
expand their effective use of a GIS by looking "under the hood" of this
technology and science. Firstly, an in-depth grounding in the major spatial data structures
(raster and vector) is provided. In this way, the major aspects of GIS (analysis,
storage, visualisation) are explored from a programmatic (Python) and algorithmic
point of view.
An important aspect to be introduced in this paper is the
customisation of ArcGIS (i.e. adding extra functions) using programming - along with
scripting, these are skills that can be adapted to make the most of the expanding
open-source GIS world (e.g. QGIS). Programming for the web and geostatistical, 3D
model and dynamic model scripting will also be examined. More specifically, the paper
will cover spatial databases being used to store and manipulate different types of
spatial data (e.g. point, line, polygon, grid cell features), as well as an algorithmic
look at the some of the simpler spatial analysis and visualisation. This computational
approach to GIS is essential to support and underpin proficiency in utilising GIS
and is cemented by a major final project in the paper assessment.
Paper title | Spatial Algorithms and Programming |
---|---|
Paper code | SURV319 |
Subject | Surveying |
EFTS | 0.1334 |
Points | 18 points |
Teaching period | Semester 1 (On campus) |
Domestic Tuition Fees (NZD) | $1,173.39 |
International Tuition Fees | Tuition Fees for international students are elsewhere on this website. |
- Prerequisite
- SURV 102 and (SPIN 201 or SURV 208 or SURV 218)
- Restriction
- SURV 519
- Recommended Preparation
- COMP 150
- Schedule C
- Commerce, Science
- Eligibility
- This paper supports the 300-level courses in the BAppSc GIS degree, GIS minor and BSurv degree.
- Contact
- tony.moore@otago.ac.nz
- Teaching staff
Co-ordinator and Lecturer: Associate Professor Tony Moore
Lecturer: Aubrey Miller
Lecturer: Dr. Greg Leonard- Paper Structure
- The paper covers topics on:
- Raster and vector spatial data models and structures
- Spatial algorithms for data analysis, visualisation and processing
- Dynamic modelling techniques based on raster and vector structures
- Programming, scripting and customisation in commercial GIS, open-source GIS, web, geostatistical, 3D modelling and dynamic modelling environments
- Teaching Arrangements
- In general there will be two lectures, one programming tutorial and a 3-hour lab per week, supporting the assessment schedule (consisting of spatial programming labs and a self-defined project).
- Textbooks
- M. Worboys and M. Duckham (2005) GIS: A Computing Perspective, 2nd Edition
- Graduate Attributes Emphasised
- Interdisciplinary perspective, Lifelong learning, Scholarship, Communication, Environmental
literacy, Information literacy, Self-motivation.
View more information about Otago's graduate attributes. - Learning Outcomes
The objectives of this paper are to:
- Establish foundational knowledge of the spatial data models (raster and vector), structures and algorithms that underpin GIS, practically reinforced by activities in the Python programming language with a leading GIS
- Use the same approach to understand and implement simple spatial analysis and visualisation techniques
- Introduce the process of customisation of a GIS, interacting with the GIS with Python code to implement a procedure that currently does not specifically exist in the GIS
- Provide a strong foundation of knowledge in the nature of spatial data as a special, unique and complex resource and its manipulation using programming
- Introduce other geospatial programming and scripting contexts, such as open-source GIS, programming for the web and scripting for geostatistics (e.g. R, Matlab), 3D modelling (e.g. Unity) and dynamic modelling (e.g. NetLogo)
- Provide practical project experience in the development, documentation and demonstration of a spatial processing, analysis or visualisation procedure (which may use collected data) in a commercial GIS (e.g. using Python in conjunction with ArcGIS or open-source GIS), web, geostatistical, 3D model or dynamic model context