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Appendix 1: Simulations with constant density and

single-catch traps

Simulations were performed to validate the simulation and inverse prediction (IP) esti-

mates from the R package ‘ipsecr’ for data from single-catch traps, and for comparison

between methods. Seven density scenarios were simulated that resulted in a wide range

of sample size and trap saturation (Table S1a); these scenarios were identical to those

used by Efford (2004, Table 1).

Maximum likelihood estimates were obtained with the R package secr 4.5.8

(Efford 2022) and IP estimates were obtained with ipsecr 1.4.0, using default settings

in function ipsecr.fit (Efford 2023a). Simulations were managed with the R package

secrdesign 2.8.0 (Efford 2023b). R code for the simulations is provided below. 1000

replicate simulations were performed, reduced to 200 for IP estimates at higher densities.

At the lowest density very few individuals were detected (often n < 10). At the lowest

density, the IP method failed in 51 replicates out of 1000 and the ML method in 13 out of

1000, and at the next lowest density (1/ha) the IP estimator failed in 2 cases; estimation

was otherwise successful.

The number of individuals caught (n) and trap saturation (TS) closely matched

the earlier simulations for each level of population density (Table S1a). ML density

estimates with the model for multi-catch traps were essentially unbiased, as found also

by Efford et al. (2009), but estimates of g0 for moderate to high trap saturation were

highly biased (Table S1b). IP estimates of density showed a slight positive bias that was

mostly negligible (< 1%), but reached nearly 4% when captures were very sparse Table

S1c). Coverage of 95% confidence intervals for D was close to the nominal level for all

scenarios and both methods. The IP estimates of the baseline detection probability g0

were close to the true value (0.1) and showed no trend with trap saturation (Table S1c).

IP estimates of density appeared slightly less precise than the ML estimates
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across all levels of density and trap saturation. Curiously, the IP estimates reported by

Efford (2004) appeared slightly more precise than either the present IP or present ML

estimates. The inverse prediction estimator of Efford (2004) used different proxy vari-

ables (a null closed-population estimate N̂0 and the corresponding probability of capture

p̂, and the mean distance between successive capture locations of each individual) and

simulations were performed in the DENSITY software (Efford, Dawson & Robbins 2004).

Further checking would be needed to determine whether this is attributable to the differ-

ing proxies, or merely a random artifact (noting the 2004 study used only 100 replicates).

The present estimates are otherwise consistent with those from 2004.

R code to run simulations

Each scenario is saved to separate file. In practice, scenarios are run in parallel on a

computer cluster.

library(ipsecr)

library(secrdesign)

grid <- make.grid(12, 12, spacing = 30, detector = "single")

scen <- make.scenarios(D = c(0.5, 1, 2, 5, 10, 20, 50), g0 = 0.1,

sigma = 40, noccasions = 5)

mask <- make.mask(grid, buffer = 200, type = "traprect")

nrepl <- 1000 # later reduced to 200 for IP with density >= 5/ha

for (task_id in 1:7) {

# MLE

sims1 <- run.scenarios(nrepl = nrepl, scen[task_id,],

trapset = grid, xsigma = 5, maskset=mask, seed = 123,

fit = TRUE, fit.function = "secr.fit", fit.args =

list(ncores = 30, detectfn = "HN"))

saveRDS(sims1, file = paste0("originalsimsML", task_id, ".RDS"))

# IP

sims2 <- run.scenarios(nrepl = nrepl, scen[task_id,],

trapset = grid, xsigma = 5, maskset=mask, seed = 123,

fit = TRUE, fit.function = "ipsecr.fit", fit.args =

list(ncores = 15, detectfn = "HN"))

saveRDS(sims2, file = paste0("originalsimsIP", task_id, ".RDS"))

}

Following code imports and tabulates results.

library(secrdesign)

sumone <- function (scenario = 1, prefix = "ML", parm = "D",

stat = "RB", pm = 0.8) {

sims <- readRDS(paste0("originalsims", prefix, scenario, ".RDS" ))

st <- select.stats(sims, parameter = parm)

# exclude estimates less than 20\% or greater than 180\% of true density
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permitted <- outer(st$scenarios[,parm], c(1-pm, 1+pm))

st <- validate(st, "estimate", permitted, "all", quietly = TRUE)

summary(st)$OUTPUT[[1]][stat,]

}

sumall <- function (pfix = "IP") {

sumtab <- t(rbind(

sapply(1:7, sumone, prefix = pfix, parm = "D", stat = "estimate"),

sapply(1:7, sumone, prefix = pfix, parm = "D", stat = "RSE")[2:3,],

sapply(1:7, sumone, prefix = pfix, parm = "D", stat = "RB")[2:3,],

sapply(1:7, sumone, prefix = pfix, parm = "D", stat = "COV")[2,],

sapply(1:7, sumone, prefix = pfix, parm = "g0", stat = "estimate")[2:3,],

sapply(1:7, sumone, prefix = pfix, parm = "sigma", stat = "estimate")[2:3,]

))

sumtab <- apply(sumtab, 2, as.numeric)

sumtab[,4:8] <- 100*sumtab[,4:8]

dimnames(sumtab)[[2]] <- c("repl", "Dhat", "seD", "RSE", "seRSE",

"RB", "seRB", "COV", "g0hat", "seg0", "sigmahat", "sesigma")

sumtab

}

sumall("ML") # Table S1b

sumall("IP") # Table S1c
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Table S1: Comparative performance of IP and mis-specified ML estimators applied to simu-

lated capture–recapture samples from populations differing in density D. Half-normal detection

function g0 = 0.1, σ = 40 m; 144 single-catch traps at 25-m spacing, 5 occasions. Mean (SE) of

1000 simulations (reduced to 200 for IP with D ≥ 5 ha−1).

a. Proxy statistics n, p∗ and σ∗ (defined in main text) and trap saturation (TS)

D n p∗ σ∗ TS %

0.5 9.51 (0.10) 0.504 (0.003) 35.4 (0.18) 3.33 (0.04)

1 19.17 (0.14) 0.503 (0.002) 35.5 (0.11) 6.68 (0.05)

2 38.18 (0.20) 0.498 (0.001) 35.7 (0.08) 13.20 (0.07)

5 92.61 (0.30) 0.471 (0.001) 35.8 (0.06) 30.28 (0.10)

10 175.43 (0.38) 0.432 (0.000) 36.0 (0.04) 52.61 (0.11)

20 309.81 (0.42) 0.369 (0.000) 36.2 (0.04) 79.40 (0.08)

50 513.02 (0.34) 0.277 (0.000) 36.4 (0.04) 98.75 (0.01)

b. Maximum likelihood estimates using mis-specified model for multi-catch traps

D D̂ RSE(D̂) % RB(D̂) % COV(D̂) % ĝ0 σ̂

0.5 0.49 (0.01) 37.2 (0.25) –1.70 (1.00) 98.4 0.101 (0.001) 40.1 (0.21)

1 1.00 (0.01) 24.8 (0.10) 0.18 (0.77) 94.1 0.099 (0.001) 39.9 (0.14)

2 2.01 (0.01) 17.2 (0.05) 0.56 (0.53) 95.4 0.095 (0.001) 39.9 (0.10)

5 5.00 (0.02) 11.0 (0.02) 0.03 (0.33) 96.0 0.083 (0.000) 39.9 (0.06)

10 9.93 (0.03) 8.0 (0.01) –0.69 (0.26) 94.5 0.069 (0.000) 39.9 (0.05)

20 19.86 (0.04) 6.3 (0.00) –0.71 (0.21) 93.1 0.048 (0.000) 40.0 (0.05)

50 49.95 (0.10) 6.3 (0.01) –0.11 (0.20) 94.2 0.023 (0.000) 39.7 (0.05)

c. Estimates by simulation and inverse prediction

D D̂ RSE(D̂) % RB(D̂) % COV(D̂) % ĝ0 σ̂

0.5 0.52 (0.01) 43.0 (1.05) 3.76 (1.00) 97.6 0.098 (0.001) 41.3 (0.23)

1 1.03 (0.01) 26.6 (0.18) 2.81 (0.78) 95.2 0.098 (0.001) 40.7 (0.14)

2 2.03 (0.01) 18.0 (0.07) 1.34 (0.54) 96.3 0.098 (0.006) 40.5 (0.11)

5 5.03 (0.04) 11.3 (0.06) 0.58 (0.77) 95.5 0.098 (0.001) 40.3 (0.16)

10 10.00 (0.06) 8.1 (0.04) 0.02 (0.61) 92.5 0.097 (0.001) 40.3 (0.11)

20 20.15 (0.09) 6.4 (0.03) 0.76 (0.48) 93.5 0.098 (0.001) 40.1 (0.11)

50 50.44 (0.23) 6.5 (0.04) 0.89 (0.46) 96.0 0.101 (0.001) 40.2 (0.12)
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Appendix 2: Brushtail possum examples

The examples use data included in the package ‘secr’ (Efford, 2022). Packages ‘secr’

(≥4.5.7), ‘ipsecr’ (Efford 2023a) and ‘sf’ are required. The hazard half-normal detection

function (‘HHN’) is defined by λ(r) = λ0 exp(−r2/(2σ2)). The habitat mask msk is a grid

of points at 7.5 m spacing within 120 m of a trap, excluding areas of shingle riverbed

delineated in the boundary file. ‘lcl’ and ‘ucl’ are 95% confidence limits.

Figure S1: Brushtail possum trapping grid 30-m spacing (Efford & Cowan 2004). Shaded area

indicates extent of habitat mask.

Example 1: Brushtail possums, February 1996

#----------------------------------------------------------------

library(ipsecr)

set.seed(123)

setNumThreads(7) # number of cores for parallel processing

Feb96 <- OVpossumCH[[1]] # one trapping session (February 1996)

#----------------------------------------------------------------

# prepare habitat mask, excluding riverbed

boundary <- system.file("extdata/OVforest.shp", package = "secr")

OVforest <- sf::st_read(boundary)

msk <- make.mask(traps(Feb96), buffer = 120, type = "trapbuffer",

poly = OVforest[1:2,], spacing = 7.5, keep.poly = FALSE)

#----------------------------------------------------------------
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# display

plot(traps(Feb96), border = 120, gridlines = FALSE)

plot(msk, dots = FALSE, add = TRUE, col = grey(0.9))

plot(traps(Feb96), add = TRUE)

plot(sf::st_union(OVforest), add = TRUE)

#----------------------------------------------------------------

# mis-specified multi-catch model, MLE

fitML <- secr.fit(Feb96, mask = msk, detectfn = "HHN", trace = F)

predict(fitML)

# link estimate SE.estimate lcl ucl

# D log 14.3802 1.003093 12.5447 16.4842

# lambda0 log 0.1015 0.008948 0.0854 0.1206

# sigma log 27.3765 0.972969 25.5349 29.3508

#----------------------------------------------------------------

# single-catch model, simulation and inverse prediction

fitIP <- ipsecr.fit(Feb96, mask = msk, detectfn = "HHN", verbose = T)

predict(fitIP)

# link estimate SE.estimate lcl ucl

# D log 14.1773 0.90293 12.5152 16.060

# lambda0 log 0.1555 0.01552 0.1279 0.189

# sigma log 27.4818 0.89938 25.7748 29.302

#----------------------------------------------------------------

# mis-specified multi-catch model, simulation and inverse prediction

fitIPm <- ipsecr.fit(Feb96, mask = msk, detectfn = "HHN",

details = list(newdetector = "multi"), verbose = FALSE)

predict(fitIPm)

# link estimate SE.estimate lcl ucl

# D log 14.2402 1.002276 12.40734 16.3438

# lambda0 log 0.1034 0.009787 0.08589 0.1244

# sigma log 27.5175 1.036710 25.55944 29.6255

#----------------------------------------------------------------

3-D plot

The 3-D plot in the main text can be reproduced with this code:

library(plot3D) # may require installation

# fit model as before, but keep all simulations

fitIPk <- ipsecr.fit(Feb96, mask = msk, detectfn = "HHN", verbose = FALSE, details =

list(keep.sim = TRUE))

par(mfrow=c(2,2), oma = c(1,1,3,1), mar = c(2,2,0.5,0), lwd=1, cex=1)

oldplot <- plot3D.IP(fitIPk, box = 1)

plot3D.IP(fitIPk, box = 2, oldplot, plotfinal = TRUE)

mtext(outer =TRUE, side = 3, line = 0.5, adj = c(0.2,0.8), cex = 1.1,

c("Parameter space", "Proxy space"))
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Example 2: Brushtail possums, February 1996 and February

1997, with interference

In addition to the preceding data from package ‘secr’, this requires the text files ‘NT-

Feb1996.txt’ and ‘NTFeb1997.txt’ that are available on Zenodo (Efford 2023b). Output

shown as comments (#) has been slightly edited for formating.

#----------------------------------------------------------------

library(ipsecr)

set.seed(123)

options(digits = 4)

setNumThreads(7) # number of cores for parallel processing

#----------------------------------------------------------------

# extract two sessions and read non-target data

Feb9697 <- subset(OVpossumCH, sessions = c(1,4))

names(Feb9697) <- 1996:1997

nontarget(Feb9697) <- lapply(c("NTFeb1996.txt", "NTFeb1997.txt"),

read.table, head = TRUE, row.names = 1)

#----------------------------------------------------------------

# prepare habitat mask, excluding riverbed, as in Example 1

boundary <- system.file("extdata/OVforest.shp", package = "secr")

OVforest <- sf::st_read(boundary)

msk <- make.mask(traps(Feb9697), buffer = 120, type = "trapbuffer",

poly = OVforest[1:2,], spacing = 7.5, keep.poly = FALSE)

#----------------------------------------------------------------

# mis-specified multi-catch model, MLE, constant lambda0

fitMLs <- secr.fit(Feb9697, model = list(D~session), mask = msk, detectfn = "HHN",

trace = FALSE)

predict(fitMLs)

#‘session = 1996‘

# link estimate SE.estimate lcl ucl

# D log 13.42246 0.914274 11.7468 15.337

# lambda0 log 0.09283 0.005823 0.0821 0.105

# sigma log 31.56650 0.808716 30.0208 33.192

# ‘session = 1997‘

# link estimate SE.estimate lcl ucl

# D log 9.75086 0.776283 8.3442 11.395

# lambda0 log 0.09283 0.005823 0.0821 0.105

# sigma log 31.56650 0.808716 30.0208 33.192

#----------------------------------------------------------------

# mis-specified multi-catch model, MLE, year-specific lambda0

fitMLsls <- secr.fit(Feb9697, model = list(D~session, lambda0~session), mask = msk,

detectfn = "HHN", trace = FALSE)

predict(fitMLsls)

# ‘session = 1996‘

# link estimate SE.estimate lcl ucl

# D log 14.06482 0.981481 12.26895 16.12357

# lambda0 log 0.07872 0.005986 0.06784 0.09135

# sigma log 31.56622 0.809195 30.01966 33.19246

8



# ‘session = 1997‘

# link estimate SE.estimate lcl ucl

# D log 9.2916 0.741698 7.94793 10.8625

# lambda0 log 0.1147 0.008852 0.09863 0.1334

# sigma log 31.5662 0.809195 30.01966 33.1925

#----------------------------------------------------------------

# inverse prediction, ignoring interference

fitIPs <- ipsecr.fit(Feb9697, model = list(D~session), mask = msk, detectfn = "HHN",

verbose = FALSE, details = list(ignorenontarget = TRUE)

predict(fitIPs)

# ‘session = 1996‘

# link estimate SE.estimate lcl ucl

# D log 12.8816 0.961604 11.1305 14.9081

# lambda0 log 0.1352 0.008496 0.1196 0.1529

# sigma log 31.5914 0.831311 30.0036 33.2632

# ‘session = 1997‘

# link estimate SE.estimate lcl ucl

# D log 10.3525 0.747267 8.9884 11.9236

# lambda0 log 0.1352 0.008496 0.1196 0.1529

# sigma log 31.5914 0.831311 30.0036 33.2632

#----------------------------------------------------------------

# inverse prediction, constant interference

fitIPsi <- ipsecr.fit(Feb9697, model = list(D~session, NT~1), mask = msk, detectfn = "

HHN", verbose = FALSE)

predict(fitIPsi)

# ‘session = 1996‘

# link estimate SE.estimate lcl ucl

# D log 13.0838 0.99784 11.2696 15.190

# lambda0 log 0.2447 0.01688 0.2137 0.280

# sigma log 31.5097 0.84188 29.9024 33.203

# NT log 0.9586 0.04175 0.8802 1.044

# ‘session = 1997‘

# link estimate SE.estimate lcl ucl

# D log 10.1994 0.72858 8.8684 11.730

# lambda0 log 0.2447 0.01688 0.2137 0.280

# sigma log 31.5097 0.84188 29.9024 33.203

# NT log 0.9586 0.04175 0.8802 1.044

#----------------------------------------------------------------

# inverse prediction, session-specific interference

fitIPsis <- ipsecr.fit(Feb9697, model = list(D~session, NT~session), mask = msk,

details = list(max.nsim = 20000), detectfn = "HHN", verbose = FALSE)

predict(fitIPsis)

# ‘session = 49‘

# link estimate SE.estimate lcl ucl

# D log 14.9621 1.10522 12.9480 17.2896

# lambda0 log 0.2718 0.01832 0.2382 0.3102

# sigma log 31.5555 0.77649 30.0699 33.1144

# NT log 1.4987 0.10041 1.3145 1.7088

# ‘session = 52‘

# link estimate SE.estimate lcl ucl

# D log 8.6502 0.48481 7.7510 9.6537

# lambda0 log 0.2718 0.01832 0.2382 0.3102
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# sigma log 31.5555 0.77649 30.0699 33.1144

# NT log 0.7118 0.05541 0.6112 0.8289

#----------------------------------------------------------------

Annual change in density under the various models is shown in Fig. S2.
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Figure S2: Change in brushtail possum density between February 1996 and February 1997

from 5 fitted models. The last two models include non-target interference (λI). 95% CI. Dashed

lines indicate 1996 (upper) and 1997 (lower) estimates from fully year-specific ML models.

Example 2a: Varying spatial scale of detection

This example allows the spatial scale of detection to differ spatially, specifically between

forest types. The proxy.ms function models the individual-level RPSV as a function of

forest type at the centroid of each individual’s detections. It requires a spatial data source

for the forest type, at least for points within the outer hull of the detector array. This is

given in the ‘...’ argument: a named component ‘spatialdata’ is passed by proxy.ms to

its internal call of the addCovariates function. Here we use a habitat mask with ‘forest’

as a covariate (coincidentally the same one used as the mask argument of ipsecr.fit).

#----------------------------------------------------------------

library(ipsecr)

set.seed(123)

setNumThreads(7) # number of cores for parallel processing

Feb96 <- OVpossumCH[[1]] # one trapping session (February 1996)

#----------------------------------------------------------------

# prepare habitat mask, excluding riverbed

10



forest
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Figure S3: Centroids of brushtail possum capture locations in relation to forest type. February

1996.

boundary <- system.file("extdata/OVforest.shp", package = "secr")

OVforest <- sf::st_read(boundary)

msk <- make.mask(traps(Feb96), buffer = 120, type = "trapbuffer",

poly = OVforest[1:2,], spacing = 7.5, keep.poly = FALSE)

#----------------------------------------------------------------

# add "forest" covariate to mask and plot

msk <- addCovariates(msk, OVforest[1:2,])

plot(msk, cov = "forest", dots = FALSE, legend = TRUE)

plotMaskEdge(msk, add = TRUE)

plot(traps(Feb96), add = TRUE)

points(centroids(Feb96), pch = 16)

#----------------------------------------------------------------

fit <- ipsecr.fit(Feb96, mask = msk, model = sigma~forest,

spatialdata = msk)

predict(fit, all.levels = TRUE)

# ‘forest = beech‘

# link estimate SE.estimate lcl ucl

# D log 14.0760338 0.9693785 12.3006956 16.1076034

# g0 logit 0.1560139 0.0185713 0.1229674 0.1959572

# sigma log 30.7520023 4.9417092 22.4884760 42.0520112

# ‘forest = nonbeech‘

# link estimate SE.estimate lcl ucl
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# D log 14.0760338 0.9693785 12.3006956 16.1076034

# g0 logit 0.1560139 0.0185713 0.1229674 0.1959572

# sigma log 26.0724766 1.8208569 22.7409253 29.8921010

It appears that the scale of detection is smaller in the mixed non-beech forest than in the

beech (Nothofagus) forest. This agrees with the analysis of Efford et al. (2016) who found

that the scale of detection varied inversely with population density, which was lower in

beech forest. However, there is relatively little beech forest within the trapped area, and

the corresponding σ̂ is rather imprecise (Fig. S3).

Discussion

An independent trap-catch index of ship rat density declined from 8.5 (SE ) in February

1996 to 0.6 (SE ) in February 1997 (Efford et al. 2006).
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Appendix 3: Simulations with density trend and single-

catch traps

If traps fill up, varying trap saturation may be confounded with varying density in a

naive spatially explicit capture–recapture model (Distiller & Borchers 2015; main text).

Simulation and inverse prediction in ‘ipsecr’ enables a correctly specified model to be

fitted to data single-catch traps, and consequently enables almost unbiased estimation of

density trend, independent of trap saturation.

This is illustrated by simulation of a scenario in which density follows a log-

linear trend in the east-west direction. Similar scenarios were considered by Efford et al.

(2009) and Distiller & Borchers (2015).

Single-catch traps were placed on a square grid at notional spacing 20 m within

a notional habitat extending 100 m beyond the traps in the cardinal directions. The pop-

ulation followed an inhomogeneous Poisson distribution with intensity (expected density)

D(x) = exp(β0 + β1xs) where β0 = 3, β1 = 1 and xs indicates the value of x scaled to

zero mean and unit standard deviation over the extent of the notional habitat. This

corresponds to a density of 9.9 per hectare at the western edge of the grid and 41.9 per

hectare at the eastern edge, and 31.7 per hectare averaged over the entire habitat.

The detection function used for both data generation and model fitting was half-

normal on the hazard scale, with parameters λ0 = 0.2 and σ = 25. In a real population

we might expect σ to vary inversely with density (Efford et al. 2016); a simple scenario

with constant σ is used here merely to illustrate the ipsecr approach.

library(ipsecr) # also loads secr

# make 8x8 grid of single-catch traps

tr <- make.grid(8, 8, spacing = 20, detector = "single")

# define discretized habitat (default 64 x 64 pixels)

msk <- make.mask(tr, buffer = 100)

# covariate "Dexp" is inhomogeneous Poisson intensity for sim.pop

# east-west trend linear on log scale with slope 1 and intercept 3

covariates(msk) <- data.frame(x0 = scale(msk$x),

Dexp = exp(scale(msk$x) + 3))
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# other setup

fitsIP <- list()

fitsML <- list()

setNumThreads(7)

set.seed(1237)

for (r in 1:100) {

# simulate population and sample over 5 occasions

popexp <- sim.popn(D = "Dexp", core = msk, model2D = "IHP", buffer = 100)

chexp <- sim.capthist(tr, popn = popexp, detectfn = "HHN",

noccasions = 5, detectpar = list(lambda0 = 0.2, sigma = 25))

# fit model by simulation and inverse prediction

fitsIP[[r]] <- ipsecr.fit(chexp, mask = msk, detectfn = "HHN", model = list(D~x))

# fit mis-specified model (using likelihood for multi-catch traps)

fitsML[[r]] <- secr.fit(chexp, mask = msk, detectfn = "HHN", model = list(D~x0))

}

# extract coefficients (100 x 2 matrix)

outIP <- t(sapply(fitsIP, function(x) coef(x)[1:2,1]))

outML <- t(sapply(fitsML, function(x) coef(x)[1:2,1]))

# function to add curve with coefficients a,b on log scale

plotone <- function(ab, x, ...) {

x0 <- scale(x, mean(-100:240), sd(-100:240))

lines(x, exp(x0*ab[2]+ab[1]), ...)

}

# x values for plotting

x <- -100:240

par(mfrow=c(1,1), mgp=c(2.2,0.6,0), las = 1)

plot(0,0, type = "n", xlim = c(-100,240), ylim = c(0,100),

xlab = "x", ylab = "D(x)")

# each replicate ipsecr.fit

apply(out,1, plotone, x = x, lwd = 1,col = "grey")

# true trend

plotone(c(3,1), x = x, type = "l", lwd = 2, col = "black")

# average of simulations, ipsecr.fit

plotone(apply(out,2,mean), x = x, lty = 2, lwd = 2.5, col = "blue")

# average of simulations, mis-specified (multi-catch)

plotone(apply(outMC,2,mean), x = seq(-100,240,4), pch = 16,

cex = 0.5, type = "p", col = "red")

# limits of grid

abline(v=c(0,140), lty=2)

rug(unique(tr$x), col="red", lwd=2)
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Appendix 4: Simulations of post-collection subsam-

pling

Some sampling protocols yield more samples at each detector than can be processed,

and it is common for some sort of post-collection subsampling to be undertaken. This

applies specifically to the use of hairs for DNA individuation (e.g., Jiménez et al., 2021).

In the extreme, a single hair sample may be chosen for laboratory analysis from among

those left at a hair snag. Individual detection probability then declines with density,

and detections violate the usual assumption of independence among animals. The effect

is to bias estimates of λ0 if a binary proximity model is fitted (independent detections,

maximum one per individual per detector per occasion).

‘secr’ (Efford, 2022) has the ‘capped’ detector type, in which a maximum of

one detection may occur at a detector on any occasion, but the maximum likelihood

method for capped detectors in ‘secr.fit’ is an unpublished approximation. Simulation

and inverse prediction is one way to tackle the problem (see also Jiménez et al., 2021).

‘ipsecr.fit’ recognises the ‘capped’ detector type and simulates accordingly (using simCH);

the default proxies apply. A call such as this is sufficient if traps(ch) has detector type

‘capped’:

ipsecr.fit(ch)

R package ‘secrdesign’ (Efford 2023a) has recently been extended to allow mod-

els to be fitted with the function ‘ipsecr.fit’ from ‘ipsecr’ (Efford 2023b). This makes it

easy to examine the performance of the method across multiple scenarios. Example code

follows. Fig. S4 compares results from the ipsecr estimator with naive estimates from

a binary proximity model, across five levels of density (0.0625–2 / σ2), and consequent

detector saturation, and two levels of λ0 (with compensatory adjustment of σ). The naive

model shows large bias in λ̂0 whenever there is sigificant detector saturation. Bias in the

ipsecr estimates is positive and slight, except at the lowest density. The observed low-

density bias is possibly due to the very small samples and failure of a significant minority

of simulations (3.9% when λ0 = 0.2; 2.0% when λ0 = 0.05, none otherwise).

library(secrdesign) # >= 2.8.0

# define grid of "capped" detectors
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# (proximity detectors subject to post-collection sampling)

trc <- make.grid(10,10, spacing = 20, detector = "capped")

# generate data.frame of simulation scenarios

scenc <- make.scenarios (

D = c(1,4,8,16,32) / (20/100)^2 / 16,

lambda0 = c(0.2,0.05),

sigma = 20,

detectfn = "HHN",

noccasions = 5

)

scenc$sigma[scenc$lambda0 == 0.05] <- 40

scenc$maskindex <- rep(1:2, each = 5)

# vary extent of habitat for each scale of detection

masks <- list(

make.mask(trc, buffer = 4 * 20, spacing = 10, type = "trapbuffer"),

make.mask(trc, buffer = 4 * 40, spacing = 10, type = "trapbuffer")

)

# run.scenarios internally generates data with the secr functions

# sim.popn and sim.capthist as in Example 3

simc <- run.scenarios(

nrepl = 2,

scenarios = scenc,

trapset = trc,

maskset = masks,

ncores = 6,

seed = 1234,

fit = TRUE,

fit.function = "ipsecr.fit",

fit.args = list(detectfn = "HHN", verbose = FALSE))

# overall summary focussing on density (D)

summary(simc)

# summarize estimate of lambda0, filtering for bad fits at lowest density

st <- select.stats(simc, "lambda0")

st <- validate(st, "SE.estimate", c(1e-3, 0.2), "all")

summary(st)
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