
217Animal Biodiversity and Conservation 27.1 (2004)

© 2004 Museu de Ciències NaturalsISSN: 1578–665X

Efford, M. G., Dawson, D. K. & Robbins, C. S., 2004. DENSITY: software for analysing capture–recapture
data from passive detector arrays. Animal Biodiversity and Conservation, 27.1: 217–228.

Abstract
DENSITY: software for analysing capture–recapture data from passive detector arrays.— A general
computer–intensive method is described for fitting spatial detection functions to capture–recapture data
from arrays of passive detectors such as live traps and mist nets. The method is used to estimate the
population density of 10 species of breeding birds sampled by mist–netting in deciduous forest at Patuxent
Research Refuge, Laurel, Maryland, U.S.A., from 1961 to 1972. Total density (9.9 ± 0.6 ha–1 mean ± SE)
appeared to decline over time (slope –0.41 ± 0.15 ha–1y–1). The mean precision of annual estimates for
all 10 species pooled was acceptable (          = 14%). Spatial analysis of closed–population capture–
recapture data highlighted deficiencies in non–spatial methodologies. For example, effective trapping
area cannot be assumed constant when detection probability is variable. Simulation may be used to
evaluate alternative designs for mist net arrays where density estimation is a study goal.
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Resumen
DENSITY: programa empleado para el análisis de datos de captura–recaptura procedentes de matrices de
detectores pasivos.— En este estudio se describe un método general de cómputo intensivo que permite
ajustar las funciones de detección espacial a datos de captura–recaptura procedentes de baterías de
trampas pasivas, como las trampas de cebo y las redes japonesas. Este método es utilizado para estimar
la densidad de población de 10 especies de aves reproductoras, muestreadas mediante la colocación de
redes japonesas en un bosque de árboles de hoja caduca del Centro de Investigación Patuxent, en Laurel,
Maryland, Estados Unidos, desde 1961 hasta 1972. La densidad total (9,9 ± 0,6 ha–1 promedio ± EE)
parecía disminuir con el tiempo (gradiente –0,41 ± 0,15 ha–1y–1). La precisión media de las estimaciones
anuales correspondientes a la totalidad de las 10 especies recogidas fue aceptable (           = 14%). El
análisis espacial de los datos de captura–recaptura de la población cerrada revelaron deficiencias en las
metodologías no espaciales. Así, por ejemplo, no puede suponerse que el área efectiva de colocación de
trampas sea constante cuando la probabilidad de detección es variable. En los casos en que la
estimación de la densidad sea objeto de estudio, la simulación permite evaluar diseños alternativos para
baterías de redes japonesas.

Palabras clave: Baterías de trampas pasivas, Estimación de la densidad, Captura–recaptura, Redes
japonesas, Aves.
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arrays of passive detectors. The framework is
conceptually consistent with that of distance sam-
pling (Buckland et al., 1993; Rosenstock et al.,
2002), but it offers major advantages for passive
count data. Here we introduce the spatial detec-
tion model for PDAs and a numerical method for
model fitting (Efford, 2004), along with software
designed to make the method generally accessi-
ble. We assess the potential of the method for
estimating the population density of birds cap-
tured in mist nets, using a dataset collected in
Maryland, U.S.A., by CSR.

Spatial model for the detection process

Assume that animals occupy stationary home
ranges whose centres are a realization of a ho-
mogeneous random spatial point process with
intensity (density) D. Populations that have a
natural boundary are explicitly excluded. Passive
sampling uses detectors in a known spatial con-
figuration to sample the unknown distribution of
animals. An individual–based model is proposed
for the detection process. The core of the model
is a spatial detection function g(r) for the simplest
possible case: one animal and one detector. The
probability of detecting animal i is assumed to be
a decreasing function of the distance r between
its range centre and the detector. The simplest
useful detection function has two parameters. In
the formulation discussed here, these correspond
to measures of home range size ( ) and suscep-
tibility to capture (g(0)). This definition of g is
more useful than a global one at the level of the
entire array, as parameter estimates are "port-
able" to other detector configurations (i.e. differ-
ent arrays).

Given some ancillary information, the three
parameters D, g(0) and  define the detection
process. The required ancillary information is: (i)
the configuration of the detector array (i.e. x–y
coordinates of detectors), (ii) the nature of the
spatial point process (here assumed to be
Poisson), (iii) a model for resolving conflicts be-
tween incompatible detection events (e.g. animal
caught in two traps at once), and (iv) the shape
of the detection function (assumed here to be
half–normal). Writing a computer algorithm to
simulate capture data from this model is straight-
forward except for (iii), which is addressed later.

Fitting the spatial detection model

Our formulation of closed population sampling in
terms of D, g(0) and  is useful only if there is a
practical method of estimation. An expression for
the likelihood is currently lacking, and therefore
maximum likelihood estimators cannot be derived.
Instead, D, g(0) and  are estimated by simulation
and inverse prediction (Carothers, 1979; Pledger
& Efford, 1998). Briefly, this method uses Monte
Carlo sampling of populations with known D, g(0)

Introduction

Rigorous sampling of animal populations to esti-
mate or index density raises the problem of incom-
plete detection (e.g. Burnham, 1981; MacKenzie &
Kendall, 2002; Pollock et al., 2002; Rosenstock et
al., 2002; Thompson, 2002). Detection probability
generally has been described by a single parameter
p. An estimate of p may be used to obtain a popula-
tion estimate N from a count C:

       (1)

Estimation of detection probability protects the
population estimate or index from the confounding
effects of season, time of day, observer, weather,
habitat, etc. If detections relate to a known area A
then population density may be calculated as

       (2)

This strategy applies to "limited–area" counts
when a stationary observer makes instantaneous
observations of bird locations and includes only
those within a known area (e.g. the double–ob-
server approach of Nichols et al., 2000 and the
removal method of Farnsworth et al., 2002). These
methods are called "active" because they require
continuous attention and discrimination by the ob-
server.

 "Passive" counts are obtained when a detec-
tor (e.g. trap, mist net, or camera) records indi-
viduals at a point. Individuals are included in the
count only when they encounter and interact with
a detector. Passive detectors are commonly de-
ployed in arrays of varying geometry and size.
The general term "passive detector array" (PDA)
is suggested to emphasize the common features
of spatial capture data from diverse field studies
(table 1). Passive detection combined with mark
and release on a series of occasions spaced
closely in time is a common source of data for
closed–population experiments (e.g. Otis et al.,
1978).

Equations (1) and (2) and their capture–recap-
ture equivalents do not provide an adequate frame-
work for estimating animal density from capture
data from PDAs. The area A is unknown and
difficult to define. It follows that both N and p are
ill–defined for these data except in an operational
and probably circular sense (e.g. "N is the number
of animals potentially exposed to the PDA"). Thus
N varies both with animal behaviour and with the
configuration of the PDA. The widespread use of
the term "abundance" for N acknowledges its
vagueness in this context. Further complications
arise because the component detectors (traps,
mist nets) of a PDA may interact. Interaction com-
monly occurs when an animal detained in one trap
is not immediately available for capture in a differ-
ent trap.

An alternative framework is advocated for esti-
mating density from closed population data from
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and  to generate data that may be "matched" to
the field data. "Matching" uses statistics from the
data as surrogates for D, g(0) and . Each statistic
is chosen for its conditional monotonic relation to
a parameter. The statistics used here are the
closed population estimate    , the corresponding
estimate of mean detection probability , and the
mean distance between successive detections of
the same individual .

Inverse prediction (Brown, 1982; Pledger & Efford,
1998) provides a formal framework for estimating D,
g(0) and  from    ,  and , complete with predic-
tion standard errors. The parameter vector x and
simulated observations y may be used to fit the
multivariate multiple regression

y =  + Bx + E

where λ is a 3 x 1 vector of intercepts, B is a
3 x 3 matrix of coefficients, and E is a 3 x 1 vector
of error terms with multivariate normal MVN(0, V)
distribution. With sufficient replications, the ele-
ments of λ, B and E are estimated virtually without
sampling error.

Given a single observation yP the point esti-
mates of D, g(0), and  (together, the vector xP) are
given by

                   xP =  B–1(yP – )               (3)

The model equation rearranges to:

x = B–1(y – ) + B–1E

where the random error B–1E has distribution
MVN(0, ), where  = B–1 V B–1T.

Detection conflicts

As noted previously, simulations with a one–
animal, one–detector detection function may lead
to conflicts when multiple animals interact with
multiple detectors. The problem is severe when
either animals or detectors are at high density
(e.g. when traps become "saturated"). This issue
was addressed by a discrete–event simulation of
the trapping process (see also Efford, 2004).
Potential detection events (animal i at detector j)
were treated as competing Poisson processes.
The time to first occurrence of each potential
event then follows an exponential distribution with
rate parameter ij = –ln(1–g(rij)) where rij is the
distance between animal i and detector j and
g(r) = g(0)exp(–rij

2/(2 2)). Independent pseudorandom
exponential variates, one for each potential event,
were sorted by magnitude to establish priority among
events. Simulated events were discarded (i.e. did not
occur) if they were inconsistent with previous events
or they occurred after one unit of elapsed detection
time. Mist nets allow multiple simultaneous detec-
tions; for this detector type the only consistency
constraint was that an individual could appear at no
more than one detector per sample.

Software

The Windows ® program DENSITY (www.landcare
research.co.nz/services/software/density) analyses
closed population capture–recapture data from
arrays of passive detectors. Two input text files
are required. One file contains the locations (x–y
coordinates) of the detectors. The second file
records detection events (individual ID, sample
number and detector ID). Detection events may
for convenience be stratified by "session". Each
session is analysed separately. A graphic interface
enables the visualization of spatial detection data
(fig. 1). Program usage is described in an online
help file.

DENSITY implements the proposed method for
simulation and inverse prediction. Starting values
of the parameters are determined automatically
(see the Appendix for a description of how these are
calculated). Model fitting proceeds by Monte Carlo
simulation of detection samples from random
populations with known parameter vectors. In each
simulation a new set of animal locations is gener-
ated for a rectangular area that includes the PDA
and a buffer zone. The width of the buffer zone
should be at least 3  in order to include all individu-
als with a reasonable chance of detection. Param-
eter values follow a full factorial design, i.e. they lie
at the vertices of a "box" in parameter space. The
dimensions of the parameter "box" are fixed as a
percentage (e.g. ± 10%) of the current best esti-

Table 1.  Examples of passive detectors used
in animal population studies. Detectors in
which animals are detained provide the further
option of selective non–release: D. Detections;
Eb. Effect on behaviour; * Individual natural
marks are required for capture–recapture
analysis.

Tabla 1.  Ejemplos de métodos de trampeo
utilizados en estudios de poblaciones animales.
Los métodos de trampeo en los que los
animales quedan retenidos proporcionan la
opción más avanzada de no liberación
selectiva: D. Detecciones; Eb. Efecto en el
comportamiento; * Para el análisis de captura–
recaptura se precisan marcas naturales
individuales.

Type        D        Eb

Sherman trap single detained

Mist net multiple detained

Pitfall trap multiple detained

Crab pot multiple detained

Fixed camera* multiple not detained

www.landcareresearch.co.nz/services/software/density
www.landcareresearch.co.nz/services/software/density
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(39° 3’ N, 76° 48’ W) in early summer from 1959
to 1972. The initial study design used 21 12–m
nets at 61–m (200–foot) intervals on the arms of a
cross (Stamm et al., 1960). This was changed in
1960 to a 4 x 11 grid, with net spacing 100 m
between rows and 61 m along rows. On six non-
consecutive days in late May and early June, nets
were open between about 0600 hours and 1800
hours Eastern Daylight Time and were checked
every 2 hours. On initial capture birds were ringed
with uniquely numbered aluminium rings, identi-
fied to species and, when possible, to age and
sex, measured, and released. The ring number
and the date and location of capture were also
recorded for previously marked birds. Noon &
Sauer (1990) presented some analyses of survival
and recruitment from these data. Here we analyse
only closed–population data from the grid layout
(1961 to 1972). Thirty–seven bird species netted
over 1961–1972 were likely to have been breeding
in the forest. We focus on the 10 species with at
least 200 captures each (Baeolophus bicolor,
Cardinalis cardinalis, Empidonax virescens,
Hylocichla mustelina, Oporornis formosus, Piranga
olivacea, Seiurus aurocapillus, Setophaga ruticilla,
Vireo olivaceus, Wilsonia citrina).

Analysis of mist–netting data in DENSITY

Captures were pooled by day (i.e. within–day re-
captures were ignored). Most species were cap-
tured and recaptured in only small numbers in each
sampling session (year), and it was necessary to
group data for analysis. Analyses were conducted
by species for data pooled over three consecutive
years (1961–1963, 1964–1966, etc.), considering
only recaptures within a year. In addition both
annual and 3–year–pooled analyses were conducted
on the pooled sample from the 10 species most
commonly caught. This enabled us to assess em-
pirically the effect of pooling species with different
detection functions.

Half–normal spatial detection functions were
fitted by simulation and inverse prediction. Bird
range centres were assumed to follow a Poisson
distribution. For closed–population estimation (   ,

), Chao’s second coverage estimator for model
Mth was used (Otis et al., 1978; Lee & Chao,
1994). This estimator is a sensible and conserva-
tive option given the likely presence of non–spatial
heterogeneity. However, some study designs do
not allow formal probabilistic estimation of N (e.g.
when the locations of detectors only partly overlap
between samples). In these situations it is still
possible to estimate density by the method pre-
sented here, but it is necessary to use an ad hoc
surrogate for    such as the number of individuals
caught (Mt+1). To evaluate the effect of this substi-
tution on the estimates, the density of all 10
species pooled was also estimated using Mt+1 for
    and setting

mate of the parameter values. Statistics (   , 
and ) from the multiple simulations conducted at
each vertex are averaged to remove sampling vari-
ance. A sample size of 20–100 simulations appears
adequate, but this requires further investigation.
Estimation follows equation (3). If the estimated
vector (D, g(0), ) lies outside the initial "box" then
the estimate becomes the starting point for another
simulation cycle. This avoids extrapolation of the
linear approximating function. Once a satisfactory
prediction is obtained (i.e. the estimate lies inside
the box), further simulations are conducted to esti-
mate the variance–covariance matrix in statistic
space V, and its equivalent in parameter space 
(see above).

The automatic algorithm sometimes fails to find
a parameter "box" that includes the fitted parameter
values, in which case a degree of supervision may
be required to fit the model. It is usually sufficient to
provide better starting values, either manually or by
applying a constant scalar adjustment (e.g. x 0.5)
to the "automatic" initial value for g(0). The adjust-
ment may be stored for further use with the same
detector configuration. It may also be necessary to
increase the size of the "box" or the number of
replicate simulations at each vertex.

Outputs of DENSITY include both the "N–p" analy-
ses of conventional closed population models (Otis et
al., 1978; Chao & Huggins, in press a, in press b) and
numerical estimates of D, g(0) and  by inverse
prediction. The user may also simulate sampling
with novel detector arrays to identify efficient ways
to allocate sampling effort and to predict precision
and bias. This meta–functionality is described as
"power analysis" to distinguish it from the
simulations embedded in the estimation of D, g(0)
and  by inverse prediction.

Test of assumptions

Goodness–of–fit tests for the present spatial detec-
tion model have yet to be developed. However, a test
has been developed for one key assumption. This is
the assumption that capture locations are sampled
from a stationary distribution subject only to the
modelled effects of competition for and among de-
tectors and, in particular, that capture location is not
affected by previous capture. A suitable test statistic
is the t–value for a comparison of the mean distance
between first and second capture when captures are
in consecutive samples versus the mean distance
between first and second capture when captures are
separated by more than one sample. Values of this
statistic may be compared to its bootstrap sampling
distribution from simulated realizations of spatial
sampling with appropriate D, g(0) and  (see DEN-
SITY online help).

Methods

Birds were mist–netted on a forested site on the
Patuxent Research Refuge, Maryland, U.S.A.
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Initial parameter values were determined as described
in the Appendix. The factorial design in parameter
space spanned ± 10% of the initial values; statistics
were averaged from 100 simulations with each com-
bination of parameter values. Nets were modelled as
multi–catch detectors with marking and live release.
The variance–covariance matrix was estimated by
conducting 200 further simulations at the fitted val-
ues. The precision of density estimates was expressed
as .

Results

The detection model was fitted successfully to
the 3–year grouped data for all species. Vireo
olivaceus maintained the highest population den-
sity throughout the study (table 2). Precision
depended strongly on the number of recaptures
in the sample (fig. 2). Relative number of cap-
tures was a poor measure of relative density; for
example, captures of Seiurus aurocapillus out-
numbered those of Empidonax virescens, but the
estimated density of Empidonax virescens was
always more than twice that of  Seiurus
aurocapillus (table 2). This is consistent with large
species differences in the fitted detection func-
tions (table 2; fig. 3). Three–year estimates for
the 10 species pooled (table 2) were close to the
sums of the individual species estimates for each
interval (1961–1963 12.9 ha–1; 1964–1966 11.0
ha–1; 1967–1969 10.3 ha–1; 1970–1972 7.6 ha–1).
Thus the pooled data appear to provide usable
estimates of total density despite species differ-
ences in detection.

The number of within–year recaptures ( m) for all
10 species pooled ranged from 52 to 129 (97.4 ± 7.9

Fig. 1. Graphic interface to DENSITY.

Fig. 1. Interfaz gráfica del DENSITY.

Fig. 2. Precision of density estimated by
inverse prediction ( %) for 10 bird species
mist–netted at Patuxent Research Refuge,
Maryland, U.S.A., 1961–1972, as a function
of the number of recaptures. Each point
represents one 3–year pooled estimate for
one species.

Fig. 2. Precisión de la densidad estimada por
predicción inversa ( %) para 10 espe-
cies de aves capturadas con redes japone-
sas en el Centro de Investigación Patuxent,
Maryland, Estados Unidos, 1961–1972, en
función del número de recapturas. Cada punto
representa una estimación combinada de tres
años para una especie.
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Table 2. Density (  ha-1) and spatial detection parameters ( , ) of breeding bird species at Patuxent
Research Refuge, Maryland, U.S.A., in 3–year intervals 1961–1972. Estimates by inverse prediction
(SE). Also shown is the number of captures, including recaptures, over the entire study (NC).

Tabla 2. Densidad (  ha-1) y parámetros de detección espacial ( , ) de especies de aves
reproductoras en el Centro de Investigación Patuxent, Maryland, Estados Unidos, en intervalos de tres
años: 1961–1972. Estimaciones por predicción inversa (EE). También se indica el número de
capturas, incluyendo las recapturas, a lo largo de todo el estudio (NC).

                    Year interval

Species            1961–63     1964–66        1967–69 1970–72

NC                                                                 

Vireo olivaceus

1,015 5.50 0.034 55 3.35 0.038 61 3.55 0.041 66 2.85 0.027 59

(0.92) (0.007) (5) (0.56) (0.008) (6) (0.51) (0.006) (5) (0.80) (0.009) (8)

Hylocichla mustelina

743 1.68 0.041 90 1.43 0.019 85 1.11 0.028 103 1.36 0.035 84

(0.24) (0.007) (8) (0.34) (0.009) (16) (0.22) (0.006) (12) (0.25) (0.008) (9)

Seiurus aurocapillus

436 0.42 0.076 89 0.33 0.070 111 0.37 0.050 114 0.30 0.035 118

(0.09) (0.019) (10) (0.08) (0.018) (13) (0.09) (0.015) (16) (0.11) (0.014) (22)

Empidonax virescens

385 1.28 0.036 75 1.06 0.039 68 0.88 0.043 64 0.97 0.020 78

(0.27) (0.011) (10) (0.29) (0.012) (10) (0.22) (0.016) (10) (0.45) (0.011) (20)

Oporornis formosus

366 0.53 0.072 78 0.42 0.023 124 0.66 0.038 87 0.40 0.055 81

(0.11) (0.019) (8) (0.16) (0.009) (24) (0.20) (0.012) (12) (0.10) (0.020) (13)

Wilsonia citrina

288 0.36 0.058 97 0.50 0.023 93 0.19 0.037 155 0.08 0.043 180

(0.09) (0.018) (12) (0.25) (0.012) (24) (0.06) (0.013) (28) (0.04) (0.018) (55)

Baeolophus bicolor

262 0.51 0.027 95 0.52 0.013 115 0.61 0.057 80 0.44 0.008 111

(0.16) (0.014) (18) (0.26) (0.007) (37) (0.12) (0.016) (10) (0.35) (0.008) (64)

Setophaga ruticilla

230 1.19 0.037 44 1.68 0.037 55 1.40 0.010 69 0.38 0.029 63

(0.90) (0.023) (11) (0.50) (0.018) (10) (1.19) (0.010) (36) (0.24) (0.029) (29)

Cardinalis cardinalis

214 0.35 0.027 96 0.60 0.010 114 0.87 0.015 92 0.30 0.017 132

(0.14) (0.015) (27) (0.62) (0.008) (73) (0.36) (0.008) (21) (0.13) (0.010) (43)

Piranga olivacea

200 1.04 0.012 85 1.09 0.015 71 0.64 0.008 145 0.52 0.004 142

(0.60) (0.009) (43) (0.74) (0.009) (22) (0.35) (0.005) (46) (0.45) (0.005) (87)

Pooled

4,139 11.39 0.035 79 11.05 0.024 84 10.06 0.029 89 7.11 0.022 96

(0.81) (0.003) (3) (0.94) (0.003) (4) (0.77) (0.003) (4) (0.78) (0.003)  (6)
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Discussion

The conventional parameterization of closed–popu-
lation models in terms of N and p is incomplete
because it neglects space. Conversely, a spatial
parameterization (D, g(0), ) has major benefits
where the underlying dispersion model (localized
detection) fits the biology of the study animal. More
often than not, ecologists want to measure popula-
tion density D rather than N. Detection functions
g(r) are fundamental to distance analysis, which
uses a sample of detection distances (Buckland et
al., 1993). Our approach does not model detection
distances as such, but estimates parameters of the
detection function from the pattern of recaptures.
By our definition, the parameters are independent
of a particular detector configuration. This means
that simulations may be conducted to compare the
efficiency of alternative, novel configurations using
values of g(0) and  estimated from the field.  is
also a convenient measure of home range size.
There may be pathological detector configurations
for which  is a biased estimate of , but this
remains to be investigated.

Closed–population estimator selection

Our method uses an empirical    as an input to
inverse prediction. Analyses were presented using

Fig. 3. Fitted detection functions for the five
species most often caught in mist nets at
Patuxent Research Refuge, Maryland,
U.S.A., 1961–1972: a. Vireo olivaceus; b.
Hylocichla mustelina; c. Seiurus aurocapillus;
d. Empidonax virescens; e. Oporornis
formosus. Parameters were obtained by
averaging 3–year pooled estimates for each
species (table 2).

Fig. 3. Funciones de detección ajustadas para
las cinco especies más frecuentemente cap-
turadas con redes japonesas en el Centro
de Investigación Patuxent, Maryland, Esta-
dos Unidos, 1961–1972 (a. Vireo olivaceus;
b. Hylocichla mustel ina;  c.  Seiurus
aurocapillus; d. Empidonax virescens; e.
Oporornis formosus). Los parámetros se ob-
tuvieron calculando el promedio de las esti-
maciones combinadas de tres años para
cada especie (tabla 2).

Fig. 4. Temporal variation in annual population
density of common breeding bird species at
Patuxent Research Refuge, Maryland, U.S.A.,
1961–1972, estimated by inverse prediction
± 1 SE. (See text for details.)

Fig. 4. Variación temporal en la densidad
anual de la población de especies de aves
comunes reproductoras en el Centro de In-
vestigación Patuxent, Maryland, Estados Uni-
dos, 1961–1972, estimada mediante predic-
ción inversa ± 1 EE (Para más detalles ver
el texto.)
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mean ± SE), sufficient to allow us to compute an-
nual estimates of density. The estimated density of
common breeding birds ranged between 4.8 ha–1

(1971) and 12.2 ha–1 (1966) (9.93 ± 0.64 ha–1

mean ± SE) and appeared to decline over time (slope
of linear trend –0.41 ± 0.15 ha–1y–1; fig. 4). Density
estimates using Mt+1 for     (8.16 ± 0.54 ha–1) were
lower by 17 ± 3% than those using Mth, but this
discrepancy was much less than that between the
alternative estimates of N (51 ± 2%). Estimates of
g(0) and  were inversely correlated between
years (r = –0.83, P < 0.001), which may be due
in part to their inverse sampling covariance.
The precision of annual density estimates was
high ( = 0.144 ± 0.010) and only slightly
worse than that of population size estimates
(  = 0.123 ± 0.008).
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both (1) Chao’s sample coverage estimators that
are believed to be robust to temporal and indi-
vidual heterogeneity (Mth), and (2) the number of
distinct individuals caught, which is almost cer-
tainly less than the number that would be caught
over a longer period. This raises the issue of how
to select an appropriate estimator of N from among
the many available (e.g. Otis et al., 1978; Chao &
Huggins, in press a, in press b). More work needs
to be done on this topic, but the outcome is not
critical for the adoption of the method.     is used
here only in the context of a particular PDA and
detection function. Biases inherent in the estima-
tor and context will also arise during simulation
and be automatically down–weighted or removed.
This applies specifically to spatial heterogeneity in
access by animals to detectors and the general
negative bias of incomplete counts from a small
number of samples. In some situations (e.g. de-
tection on a continuously shifting array), Mt+1 may
be the only available measure of N, and an esti-
mate of density using Mt+1 and inverse prediction
may be acceptable. Nevertheless, density esti-
mates of common breeding birds at Patuxent did
depend on the estimator for N, and similar effects
have been observed with field data for other spe-
cies (e.g. Efford, 2004). Our provisional interpreta-
tion is that such field datasets include unmodelled
heterogeneity that causes modest negative bias
in , particularly with N–estimators that are not
robust to individual heterogeneity. The available
tests for heterogeneity in the closed-population
capture histories (e.g. Otis et al., 1978) do not
distinguish heterogeneity caused by spatial loca-
tion (see below) from other heterogeneity. They
are therefore inappropriate for model selection in
this context. Until new methods are developed the
use of robust estimators such as those for Mth and
Mh is recommended.

Simulations reported elsewhere (Efford, 2004)
suggest that  is robust to the arbitrary choice of 2–
D distribution (Poisson vs even) and detection func-
tion (half–normal vs uniform).

Conventional capture probability and the spatial
detection function

Detection in conventional N–p frameworks is
described at the level of the detector array. In
other words, p is the probability that an average
individual of the target population is detected
somewhere in the array. When density is low or
detectors may register multiple individuals (e.g.
mist nets) competition between animals for de-
tectors may be ignored. Then the cumulative
array–level probability of detection pxy of an
individual at x,y can be predicted from its pairwise
interactions with detectors:

Here gxy(j) represents the probability of detecting an
animal with range centred at x,y in detector j over a

given time interval. pxy is a spatial variable that may
be contoured for given g and detector locations
(example in fig. 5). This provides a useful perspec-
tive on the functioning of the entire PDA as a sam-
pling device, discussed in the next section.

Constant–area assumption

The conventional N–p parameterization relies on
constant area A. Our fully spatial description of the
detection process allows us to consider this as-
sumption in more detail. Clearly the assumption
does not hold when there is variation in the scale of
movement by individuals, indexed by the parameter

 of the detection function. In our experience  is
often a decreasing function of population density.
However, there is also reason to believe that A
depends on the detection function parameter g(0).
A may be defined operationally as the area within
which every animal is close enough to a detector
that it is "counted" by the population (N) estimator.
For animals whose detection function declines
gradually towards the edge of their range, this
implies a fixed threshold pT of individual detection
probability for inclusion in N. Consider the effect of
increasing the non–spatial parameter of the spatial
detection function g(0) to say g(0)’ while keeping 
constant. Animals outside A will now be counted
(included in N) because p’xy > pT. A will correspond-
ingly increase to A’ defined by the locus of points at
which p’xy = pT. Our postulate that N estimators
may be characterized by a threshold pT is un-
proven. Nevertheless, the argument provides strong
reason for doubting the common, if implicit, as-
sumption that A is sensitive only to the scale of
movement (home range size). "Abundance" as
conventionally measured with passive detector
arrays is confounded with variation in both the
spatial and non–spatial components of detection,
and with the size and configuration of detector
arrays. The force of arguments against index meth-
ods (Anderson, 2003) should lead us also to reject
     as a surrogate for population density. The
method described here allows researchers to over-
come the problem by estimating density itself.

Pollock’s robust design

It is conceptually simple to substitute  for  in
the robust design of Pollock (1982). The appro-
priate unit for recruitment Bt is then animals per
unit area per unit time. However, it is untidy to
use a spatial parameterization (g(0), ) for detec-
tion probability in the closed population model
and a non–spatial parameterization (p) in the
open population model. Further work is needed
to determine whether it is beneficial and practical
to incorporate a spatial detection function in the
open population model used to estimate apparent
survival ( t). We envisage modelling between–
session home–range shifts in the open model,
which would require at least one additional time–
specific parameter.
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Mist–nett ing to estimate the density of bird
populations

The application of spatial detection functions in the
analysis of capture–recapture data from mist nets
is now briefly discussed. The main requirement for
such analysis is that birds occupy equal–sized
home ranges that are more or less stationary for
the duration of a detection session. The effect of
transients and of heterogeneous home range sizes
on spatial detection estimates remains to be inves-
tigated. A related requirement is that recaptures
within a detection session provide information on
the spatial scale of movements. This can be met if
the PDA is large enough to span several home
ranges and either capture rates are high or netting
continues for many occasions.

"Net shyness" is sometimes invoked to explain a
declining trend in capture numbers during a mist–
netting session (e.g. Swinebroad, 1964; MacArthur
& MacArthur, 1974; Karr, 1981). Avoidance by birds
of nets at which they have been captured previously
has the potential to bias estimates of density by
inverse prediction. The general occurrence of net
shyness appears controversial, and alternatively
may be explained as avoidance of areas of human
activity (Murray, 1997). If the learned response is to
a site–specific hazard rather than to the device
itself, then a solution is to shift the location of nets
part way through a detection session (e.g. Stamm

et al., 1960). Spatial data from such a design may
be analysed in DENSITY by specifying the occa-
sions on which detectors were operated at each
location.

Finally it is noted that the fitted density and
detection function for breeding birds at Patuxent (in
round terms D = 10 ha-1, g(0) = 0.03,  = 90 m) is
likely to be a good basis for simulations to optimize
detector configurations in future field studies of
similar species.
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Appendix. Automatic calculation of initial values for inverse prediction search algorithm.

Apéndice. Cálculo automático de los valores iniciales para buscar el algoritmo de predicción inversa.

Initial values of the three parameters D, g(0),  required for inverse prediction are here denoted by
subscript S. Good initial values often make the difference between a speedy, fruitful search and failure.
Calculations in DENSITY use the simplifying assumption of negligible competition among animals for
detectors. Calculation of S and g(0)S uses Monte Carlo integration; accuracy depends on the number
of random points sampled within the nominal detection area A. The user may vary the sampling
intensity as an option in DENSITY.

Initial detection scale S

The expected distance between recaptures may be inferred from  and the detector configuration:

 (1)

where the indices i and j refer to traps, pi is the "naïve" probability of an animal located somewhere
within area A being caught in trap i, and Rij is the distance between traps i and j.

With a half–normal detection model

 (2)

where ri is the distance between an animal’s range centre at x,y and trap i.
The integrals are evaluated by sampling points x,y within an area A. The area A is limited to

locations where animals are "detectable" by some criterion (e.g. P  > 0.01, see below). A factor of g(0)2

appears in both numerator and denominator of equation 1, and cancels out.
 Numerical minimization (the "golden" routine of Press et al., 1989) is used to find the value of 

for which  matches the observed  for the given detector configuration. Evaluation of equation (1)
is time–consuming (O(T2) where T is the number of traps). Only the lower triangle and diagonal of the
symmetric Rij pi pj matrix need be evaluated.

Initial core detection probability g(0)S

A similar but faster approach is used to obtain g(0)S. Given a value for  equation (2) may be used to
estimate the "naïve" probability that an animal is caught somewhere in the PDA:

To what observable quantity should we relate g(0)? We propose the mean number of captures
within a detection session, conditional on an animal having been caught once:

This may be an unreliable indicator of g(0) when there is a large "learned trap response" (i.e. c ^ p
or c p p in the notation of Otis et al., 1978). However, it has the advantage of not requiring an estimate
of N or D.

(3)

where t is the number of capture occasions and A is the area within which P > 0.

The procedure is again to sample P from A and use numerical minimization to find the value of g(0)
for which  equals the observed , given S, t and the detector configuration.
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Initial DENSITY DS

When D has been estimated by inverse prediction it is possible retrospectively to infer the boundary
strip width W (e.g. Otis et al., 1978) that, if applied as a buffer around the PDA, would have yielded
the "correct" density. Inferred values of W typically show a quadratic relationship to  (unpubl. results).
We base our initial estimate of density on this relationship as follows:

where AW is the effective area corresponding to W. A quadratic is used to predict W:

    W = a S
2 + b S + c

The default polynomial coefficients in DENSITY are a = 0, b = 2, c = 0 (i.e. W = 2 S). Coefficients
may be changed by the user if experience with a particular species and detector configuration provides
more information.

The relationship between  and W appears to vary with the properties of the estimator for    , and
also with the detector configuration and possibly the duration of the study. Estimators that are robust
to individual heterogeneity (Mh) tend to yield larger   , and therefore require a smaller W to yield the
same   .

Appendix. (Cont.)


