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Appendix S1: Scientific names

Table S1: Scientific names of species mentioned in main text

Common name Scientific name

Field vole Microtus agrestis

Red-backed shrike Lanius collurio

Red-backed salamander Plethodon cinereus

Common bottle-nosed dolphin Tursiops truncatus

Tiger Panthera tigris

Golden-cheeked warbler Setophaga chrysoparia

Ocelot Leopardus pardalis

Jaguar Panthera onca

Brushtail possum Trichosurus vulpecula

Northern wheatear Oenanthe oenanthe

Brown bear Ursus arctos

Wolf Canis lupus

Wolverine Gulo gulo
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Appendix S2: Scales of sampling and movement in

published studies

To determine a consistent sampling scale across studies, we used the square root of the

area spanned by detectors (A). If not reported by the authors, the expected (mean)

dispersal distance was computed from the parameters of the fitted model (see Table 1

of the main text for formulae). The mean distance was less than 20% of
√
A in all

studies except for that of female red-backed shrikes (E(d) = 0.43
√
A). Female red-backed

shrikes also showed the greatest increase in φ̂ of the 7 studies where estimates of survival

probability could be compared between models with and without movement (Table S2).

Estimated distance moved was generally of similar magnitude to the scale of

detection (0.26σ̂ ≤ E(d) ≤ 1.79σ̂) except for five of the six species-sex categories of

Bischof et al. (2020) (1.35σ̂ ≤ E(d) ≤ 12.1σ̂). This may be due to the large temporal and

spatial scale of those studies, or the unusual behaviour of these large carnivores; further

investigation is warranted.
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Table S2: Magnitude of movement effects in open SECR models. Sources in square brackets

follow the main text.

φ̂

Species
√
A σ̂ Kernel Ê(d) CJS Static Move

Red-backed shrike, female [1] 1.6 km — 2t 0.68 km 0.37 — 0.59

Red-backed shrike, male [1] 1.6 km — 2t 0.25 km 0.52 — 0.62

Field vole, female [2] 91 m 5.3 m* RDE 3.0 m 0.72 — 0.75

Field vole, male [2] 91 m 7.3 m* RDE 5.8 m 0.88 — 0.92

Red-backed salamander, female [3] 6.0 m 1.0 m RDE 0.87 m — — 0.85

Red-backed salamander, male [3] 6.0 m 3.0 m RDE 0.77 m — — 0.83

Tiger [5] 12.4 km 2.04 km BVN 1.37 km 0.71 0.74 0.75

Golden-cheeked warbler [6] 11.1 km — 2t 0.15 km — — 0.57

Ocelot [7] ≈21 km 1.9 km BVN 1.5–5.4 km — — 0.77–0.83

Jaguar [8] 22 km 3.1 km BVN 4.4 km — 0.77 0.85

Brushtail possum [9] 390 m 32 m BVE 18 m 0.55 0.64 0.66

Brown bear, female [11,12] 725 km 7.7 km BVN 10.4 km — — 0.82

Brown bear, male [11,12] 725 km 8.0 km BVN 53.1 km — — 0.89

Wolf, female [12] 510 km 6.0 km BVN 72.3 km — — 0.64

Wolf, male [12] 510 km 8.9 km BVN 99.6 km — — 0.63

Wolverine, female [12,13,14] 770 km 7.4 km BVN 21.9 km — — 0.73

Wolverine, male [12,13,14] 770 km 10.3 km BVN 57.1 km — — 0.61

Ovenbird [this paper] 239 m 76 m INDzi† 336 m 0.46 0.53 0.79

* recalculated with standard HN detection function

† buffer dependent
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Appendix S3: Kernel notation

We define the bivariate density in the Cartesian space as fXY (x, y), where X and Y

are random variables that define the relative coordinates of the movement, with x and y

corresponding realizations. The term g(r) used in the manuscript corresponds to the case

where we can write fXY (r), meaning that the bivariate density fXY can be expressed in

terms of r =
√
x2 + y2.

We can also define a bivariate density in the polar space as fRΘ(r, θ), where R

and Θ are random variables that define the radial distance and movement angle, with r

and θ corresponding realizations. The term f(r) in the manuscript corresponds to fR(r),

defined as

fR(r) =

∫ 2π

0

fRΘ(r, θ)dθ,

noting that the integral can be taken over any interval in R of length 2π.

The relationship between X, Y and R,Θ can be defined by the following bijec-

tion:

X = R cos(Θ) R =
√
X2 + Y 2

Y = R sin(Θ) Θ = atan2(Y,X).

This means that we can transform random variables from Cartesian to polar

space by taking

fRΘ(r, θ) = fXY (r, θ)

∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ ,
where the Jacobian is∣∣∣∣cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣∣∣∣ = r cos2(θ) + r sin2(θ) = r.

Similarly we can transform from polar to Cartesian space with

fXY (x, y) = fRΘ(x, y)

∣∣∣∣∣ ∂r∂x ∂r
∂y

∂θ
∂x

∂θ
∂y

∣∣∣∣∣ ,
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where the Jacobian is∣∣∣∣∣
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

∣∣∣∣∣ =
x2 + y2

(x+ y)3/2
=

1√
x2 + y2

.
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Appendix S4: Miscellaneous kernel issues
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Figure S1: Bivariate probability distributions defined in terms of marginal univariate distri-

butions (normal σ = 1, Laplace λ = 1, Student’s t ν = 0.25).

Parameterisations of bivariate t-distribution

Several published formulations refer to the same distribution but differ in their param-

eterisation. Our β (main text Table 2 corresponds to p in Clark et al. (1999), b − 1

in Nathan et al. (2012) and ν
2

where ν is the degrees of freedom for the underlying t

distribution (e.g., Genz et al. 2020). Thus, BVT with ν = 5 as used by Paquet et al.

(2020) corresponds to β = 2.5 in main text Table 2 (incidentally, this BVT kernel has

tail weight very like BVE).

Cousens et al. (2008) use the form of Clark et al. (1999), but re-label u as b

and p as a.
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Table S3: Parameterisations of standard uncorrelated bivariate t-distribution

Source Scale Shape

Kotz and Nadarajah (2004) Σ =

[
σ2 0

0 σ2

]
ν (degrees of freedom)

Clark et al. (1999) u = νσ2 p = ν
2

Nathan et al. (2012) a =
√
νσ b = ν

2
+ 1

Efford (2021) α = a =
√
u =
√
νσ β = p = b− 1 = ν

2

Boundary rules

Here we expand on the question of boundary rules mentioned in the main text.

The problem of selecting a boundary rule is shared with simulations on a lattice

(see Chipperfield et al. 2011 Supplement 2 for a summary). Possible solutions from

that context might be applied in SECR, but most can be dismissed as infeasible or

inappropriate for capture–recapture data on individuals. An ‘absorbing’ boundary would

model boundary crossings as mortality events, but that is likely to introduce artifacts

in estimated rates of survival and population growth. A ‘periodic’ boundary (toroidal

wrapping of boundary crossings to the opposite edge) is not suitable when the boundary is

irregular, and likely disrupts the set of locations occupied by an individual and invalidates

Euclidean distances.

A reviewer suggested we consider a boundary rule in which each individual that

leaves is absorbed and replaced by a new individual at its point of departure. This has the

advantage of maintaining the spatial distribution of the population, but it is not neutral

with respect to vital rates. Potentially reversible movement events are transformed into

permanent mortality and recruitment events. The method has yet to be demonstrated

in a capture–recapture context, so we cannot evaluate its utility.

One solution is to truncate each probability kernel at the boundary, and to

renormalize the probabilities (‘truncate and renormalize’). This is equivalent to repeat-

edly drawing locations from the kernel until one is found that lies within the boundary

(i.e. rejection sampling). The rule is stated explicitly by Chandler et al. (2018) and

Satter et al. (2019). Truncation introduces centripetal bias in the direction of movement

that is greatest close to the boundary and constrains the average realised movement (be-

low). In the limit, as the spatial scale of movement increases, realised distances match
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the independent, kernel-free model and are entirely buffer-dependent.

Other possible rules are ‘if first attempt fails, stay home’ and ‘stop at the

boundary’. To our knowledge, these have not been implemented in open SECR, and

their specific effects on estimates are unknown.

Effect of enclosure on movement models

Most theoretical kernel models for open SECR are circular, infinite and spatially uniform.

Symmetry and homogeneity are broken when the habitat mask is bounded or settlement

depends on local habitat in other ways. We refer to the modelled displacements subject

to boundary and settlement effects as ‘realised’ movements. The survival-only models of

Ergon & Gardner (2014) and Schaub & Royle (2014) place no limit on dispersal and the

distribution of realised movements is exactly the original kernel.

Constraints on realised movement transform the step-level distributions of di-

rection and distance. The trap layout of the brushtail possum study described by Efford

& Schofield (2020) is used in Figures S2 and S3 to illustrate these consequences. The

effect depends on the site of origin, making it less useful to talk of ‘average’ movement.
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Figure S2: Centripetal effect of truncating a radially symmetrical probability kernel at a hard

natural habitat boundary (top left) or a buffered boundary (bottom right). Arrows represent

average displacement in one step of individuals initially at various points.
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Figure S3: Average realised movement from bivariate normal probability kernels truncated at

a range of buffer widths, based on trap layout for brushtail possum study. Mean across points

in the buffered area for three levels of expected, untruncated, movement E(d), indicated by

dashed lines (800 m off scale). Heavy line indicates the limit when post-dispersal locations are

distributed uniformly over bounded area.
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Distribution of independent movements

The average distance implied by the ‘independent’ movement model is readily calculated

for regular boundaries such as a circle or square, as given in the main text, or a rectangle

(Burgstaller & Pillichshammer, 2009). For irregular outlines it is sufficient to calculate

distances on a discretized habitat mask using functions in the R package ‘secr’ (Efford

2022):

library(secr)

movements <- function (mask) {

r <- as.matrix(dist(mask))

c(mean = mean(r), median = median(r))

}

grid <- make.grid(6, 6, spacing = 20)

# square with rounded corners

movements (make.mask(grid, buffer = 100, spacing = 10, type = "trapbuffer"))

# for type = ’traprect’ this is a square with side 300 m.

# cf 300 * 0.36869 * sqrt(2)

movements (make.mask(grid, buffer = 100, spacing = 10, type = "traprect"))

# for large buffer this approaches a circle with diameter slightly larger than 2000 m

# cf max(dist(mask)) * 0.45271

movements (make.mask(grid, buffer = 1000, spacing = 100, type = "trapbuffer"))

Note: The ‘polygon’ argument of make.mask() clips to an irregular area.

Independent movements: Laplace distribution

Using the notation from Appendix S??, we can treat the marginals fY and fX as inde-

pendent (and identical) Laplace densities,

fX(x) =
1

2α
exp

(
−|x|
α

)
, x > 0,

fY (y) =
1

2α
exp

(
−|y|
α

)
, y > 0.

This means the joint density is

fXY (x, y) =
1

4α2
exp

(
−|x|+ |y|

α

)
, x > 0, y > 0.
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Using the results from Appendix S??, the joint distribution in polar coordinates is then

fRΘ(r, θ) =
r

4α2
exp

(
−r(| cos(θ)|+ | sin(θ)|)

α

)
, r > 0, 0 ≤ θ < 2π.

Integrating over R we obtain the marginal density of movement angles,

fΘ(θ) =
1

4α2

∫ ∞

0

r exp

(
−r | cos(θ)|+ | sin(θ)|

α

)
dr

=
1

4(1 + 2| cos(θ)|| sin(θ)|)
, 0 ≤ θ < 2π.

To see how this result was obtained, first note that the integrand is the kernel of a gamma

distribution with shape 2 and scale α/(| cos(θ)|+ | sin(θ)|). This means that the integral

is ∫ ∞

0

r exp

(
−r | cos(θ)|+ | sin(θ)|

α

)
dr =

Γ(2)α2

(| cos(θ)|+ | sin(θ)|)2
.

The final step is noting that (| cos(θ)|+ | sin(θ)|)2 = 1 + 2| cos(θ) sin(θ)|. The density fΘ

is shown in Figure S4. The density is not uniform, and is quadrimodal with increased

density at the cardinal axes corresponding to θ = 0, θ = π/2, θ = π, θ = 3π/2. Note that

it is not quintamodal as it is a circular density where θ = 2π corresponds to θ = 0.

0.
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Figure S4: The marginal density of turning angle (θ) when two independent and identically

distributed univariate Laplace densities are used to model movement.
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We can find the conditional distribution fR|Θ using Bayes rule

fR|Θ(r, θ) =
fRΘ(r, θ)

fΘ(θ)

=
r(1 + 2| cos(θ|| sin(θ)|))

α2
exp

(
−r | cos(θ)|+ | sin(θ)|

α

)
, r > 0.

This is a gamma distribution with shape 2 and scale α/(| cos(θ)|+ | sin(θ)|).

To find E[R] we note that

fR(r) =

∫ 2π

0

r

4α2
exp

(
−r(| cos(θ)|+ | sin(θ)|)

α

)
dθ, r > 0,

which we were unable to evaluate algebraicly. Using this density we have

E[R] =

∫ ∞

0

r

∫ 2π

0

r

4α2
exp

(
−r(| cos(θ)|+ | sin(θ)|)

α

)
dθ dr.

Exchanging the order of integration by Fubini’s theorem we have

E[R] =
1

4α2

∫ 2π

0

∫ ∞

0

r2 exp

(
−r (| cos(θ)|+ | sin(θ)|)

α

)
dr dθ.

The inner integrand is the kernel of a gamma with shape 3 and scale α/(| cos(θ)|+| sin(θ)|),

so that

E[R] = α

∫ 2π

0

1

2(| cos(θ)|+ | sin(θ)|)3
dθ.

This integral can be evaluated numerically and does not depend on α. We find that

E[R] ≈ 1.6232α.
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Appendix S5: Case studies

Here we describe analyses of two moderately small datasets used to supplement published

comparisons in the main text.

The ovenbird is a migratory ground-nesting warbler that breeds across east-

ern North America in early summer and winters mostly in Central America and the

Caribbean. The data are from a multi-species banding study over the 2005–2009 breed-

ing seasons on the Patuxent Research Refuge, Maryland, USA (Dawson & Efford, 2009,

2022). Ovenbirds were mistnetted at 44 points spaced 30 m apart on a rectangular loop

yielding 215 detections of 70 individuals.

Tigers were surveyed using an array of paired automatic cameras in the Na-

garahole tiger reserve, Karnataka State, India, from 1991 to 2000 (Karanth et al., 2006).

The area surveyed increased from about 41 km2 to 232 km2 in the course of the study.

Sampling intervals and sampling effort (number of cameras and number of nights) varied

over the study. We use the published version of the dataset (Gardner et al., 2021), com-

prising 343 detections of 75 tigers, that differs in minor respects from that tabulated by

Karanth et al. (2006).

Recapture data for the two studies are summarised in classic m-array form in

Table S4.

Model fitting

Open SECR models were fitted by maximizing the integrated likelihood in R package

openCR 2.2.1 (Efford & Schofield, 2020; Efford, 2021; R Core Team 2021). Detection

hazard was modelled within each primary session with a halfnormal function (hijk =

λ0 exp(−d2ik/(2σ2)) for animal i, occasion j and detector k). Initial activity centres of

ovenbirds were assumed to be distributed uniformly within an area (the ‘habitat mask’)

extending 800 m from the mist nets. Initial activity centres of tigers were assumed to

1



Table S4: Recapture summaries

a. Ovenbird

Recapture year Not

Year R 2006 2007 2008 2009 recaptured

2005 20 9 2 1 0 8

2006 22 10 0 0 12

2007 26 3 3 20

2008 19 5 14

2009 15 15

b. Tiger

Recapture session Not

Session R 2 3 4 5 6 7 8 9 10 recaptured

1 8 3 1 0 1 0 0 0 0 0 3

2 4 1 2 0 0 0 0 0 0 1

3 5 4 0 0 0 0 0 0 1

4 17 10 0 0 0 0 0 7

5 13 7 0 0 0 0 6

6 24 8 8 0 0 8

7 12 5 2 0 5

8 16 10 2 4

9 22 12 10

10 30 30

be distributed uniformly in an area extending 15 km from the outermost cameras in the

final sessions. The habitat mask was discretized as 20-m pixels for ovenbird analyses and

1-km pixels for tiger analyses.

We chose the Pradel-Link-Barker (PLB) formulation of the open population

capture–recapture model that conditions on the number caught to give estimates of per

capita survival φ and recruitment f (Efford and Schofield 2020). Ten movement models

and a model with static activity centres were fitted to each dataset. Movement modelling

used a sparse discretized kernel of radius 30 pixels (Efford 2022). This corresponded

to radii of 600 m for ovenbirds and 30 km for tigers; movement probability was set to

zero beyond these distances. The ‘truncate and renormalize’ method was applied at

the boundary. Parameters were assumed constant across primary sessions. Models were

compared in terms of the maximized log likelihood and Akaike’s Information Criterion

2



(AIC). We use p(r) for the discretized pixel-specific probability of a truncated non-sparse

kernel based on g(r).

Model averaged estimates were computed using AIC model weights (Burnham

& Anderson, 2002); variance calculations followed Burnham & Anderson (2004).

Results

Parameter estimates for the base ovenbird and tiger models, with respectively 800-m and

15-km buffers, are in Table S5. The main text should be consulted for definitions of the

dispersal kernels and their parameters. Cross-sections of selected kernel fits are shown in

Fig. S5.
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Figure S5: Selected movement kernels fitted to data for ovenbirds (a) and tigers (b). Y-axis is

2-D probability density g(r) along one axis of kernel. Both zero-inflated (“zi”) and 2-parameter

kernels peaked strongly at zero distance, indicated by horizontal line and value of p(0) for

INDzi. Fitted BVNzi and INDzi curves overlapped for ovenbirds, and RDG and BVT kernels

overlapped for tigers. (Plots truncated at less than kernel radius).

The tiger data were provided by Gardner et al. (2021) in three .csv files. This
R code illustrates their input and analysis.

library(openCR)

#-------------------------------------------------------------------------------------------------------------

# read csv files into three dataframes

traplocs <- read.csv(’EEtraplocs.csv’, row.names = 1)

usge <- read.csv(’EEcam_act.csv’, row.names = 1)

recs <- read.csv(’EERecords.csv’, header = TRUE)

#----------------------------

# prepare traps object

names(traplocs) <- c(’x’,’y’)

trps <- read.traps(data=traplocs, detector = ’count’)

trps <- rep(list(trps), 10)

for (i in 1:10) attr(trps[[i]], ’usage’) <- as.matrix(usge[,i,drop=FALSE])

#----------------------------

# prepare capthist object

recs$occasion <- rep(1,nrow(recs))

capt <- recs[,c(4, 1, 5, 2)]

CH <- make.capthist(capt, trps)

#----------------------------

# sampling intervals in years

intervals(CH) <- c(0.667, 1.333, 0.750, 0.917, 1.250, 1.167, 0.583, 1.250, 1.083)

#-------------------------------------------------------------------------------------------------------------

# habitat mask

5



mask <- make.mask(traps(CH[[10]]), buffer = 15000, type = ’trapbuffer’, spacing = 1000)

# number of cores to use

setNumThreads(7)

# fit constant model (about 29 minutes on old quad core i7)

# binomN = 1 to take binomial size from usage attribute

fit <- openCR.fit (CH, type = ’PLBsecrf’, mask = mask, detectfn = ’HHN’, binomN = 1,

movementmodel = ’BVNzi’, sparsekernel = TRUE, kernelradius = 30)

predict(fit)

#-------------------------------------------------------------------------------------------------------------
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Appendix S6: Simulations of sampling scale

We considered movements arising from a mixture of two distributions, one compatible

with the scale of sampling and one with larger scale, and evaluated fitted models in terms

of their ability to recover the true survival probability.

The population was sampled with an 8 × 8 square array of detectors at spacing

s on 5 sampling occasions. Initial locations were simulated uniformly in an arena 70s×70s,

and centres were allowed to move with no boundary. Half of all movements were bivariate

normal (BVN) on the scale of the detector array (E(d1) = 3.5s); the other half were also

BVN, but with a scale E(d2) that was a multiple of the base scale. Open SECR models

using the Pradel–Link–Barker formulation were fitted with a buffer of width 7s, and other

standard assumptions (sparse discretized kernel radius 21s; boundary rule ‘truncate and

renormalize’).

Simulations used the R package ‘openCR’ (Efford, 2021). Code is given in

Efford & Schofield (2022).
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