
Density surfaces in secr 4.6

Murray Efford

2023-12-20

Contents

Introduction 1

Density surfaces - some background 1

Brushtail possum example 2

Using the ‘model’ argument in secr.fit 4

Link function . 5
Built-in variables . 5
User-provided variables . 5
Covariates computed from coordinates . 6
Pre-computed resource selection functions . 6
Regression splines . 7

Prediction and plotting 9

Scaling 10

Potential problems 10

This is not a density surface 11

Relative density 12

References 14

Appendix 1. User-provided model functions 15

Appendix 2. More on link functions 18

Introduction

The formulation of spatially explicit capture–recapture (SECR) by Borchers and Efford (2008) allows for
population density to vary over space. Models of density may include spatial covariates (e.g., habitat class),
or spatial trend. This document describes the fitting of density models in secr 4.6 by means of a worked
example.

Density surfaces - some background

SECR fits a state model and an observation model to data from incomplete spatial detections of individuals.
The observation model is based on a distance-dependent detection function with parameters g0 (or λ0)

1

and σ, as described in secr-overview.pdf. The state model, with which we are concerned here, is a spatial
Poisson process for animal range centres. The expected value of the process (centres per unit area) is either
homogeneous (constant over space) or inhomogeneous (varying over space). The notation D(x; φ) covers both
possibilities: density (D) is a function of location (the vector x represents a pair of x- and y-coordinates). If
density is homogeneous its expected value is a flat surface and the parameter φ is one number, the density.
In most other cases, φ is a vector of several parameters.

To model variation in a density surface we need to maximise the full likelihood. Maximising the conditional
likelihood (conditional on n, the number of observed individuals) is a way to estimate the observation model;
to go from there to a Horvitz-Thompson estimate of density we assume that density is homogeneous. Here
we are concerned with inhomogeneous models that are all fitted with CL = FALSE in secr.fit.

Although D(x; φ) may be a smooth function, in secr we evaluate it only at the fixed points of a habitat
‘mask’ (think of these as the cell centres of a pixellated or raster representation). A mask defines the region
of habitat relevant to a particular study: in the simplest case it is a buffered zone inclusive of the detector
locations, but it may exclude interior areas of non-habitat or have an irregular outline.

A density model D(x; φ) is specified in the ‘model’ argument of secr.fit1. Spatial covariates, if any, are
needed for each mask point; they are stored in the ‘covariates’ attribute of the mask. Results from fitting
the model (including the estimated coefficients φ) are saved in an object of class ‘secr’. To visualise a fitted
density model we first evaluate it at each point on a mask with the function predictDsurface to create an
object of class ‘Dsurface’. A Dsurface is a mask with added density data, and plotting a Dsurface is like
plotting a mask covariate.

Brushtail possum example

For illustration we use a brushtail possum (Trichosurus vulpecula) dataset from the Orongorongo Valley, New
Zealand. Possums were live-trapped in mixed evergreen forest near Wellington for nearly 40 years (Efford
and Cowan 2004). Single-catch traps were set for 5 consecutive nights, three times a year. The dataset
‘OVpossumCH’ has data from the years 1996 and 1997. The study grid was bounded by a shingle riverbed to
the north and west. See ?OVpossum in secr for more details.

First we import data for the habitat mask from a polygon shapefile included with the package:

library(secr)

setNumThreads(18) # depends on machine

[1] 18

datadir <- system.file("extdata", package = "secr")

OVforest <- sf::st_read (paste0(datadir, "/OVforest.shp"), quiet = TRUE)

leftbank <- read.table(paste0(datadir,"/leftbank.txt"))[21:195,] ## drop some we don't need

options(digits = 6, width = 95)

OVforest is a simple features (sf) object defined in package sf. Now we can build a habitat mask object,
selecting the first two polygons in OVforest and discarding the third that lies across the river. The attribute
table of the shapefile (and hence OVforest) includes a categorical variable ‘forest’ that is either ‘beech’ or
‘nonbeech’; ‘addCovariates’ attaches these data to each cell in the mask.

ovtrap <- traps(OVpossumCH[[1]])

ovmask <- make.mask(ovtrap, buffer = 120, type = "trapbuffer",

poly = OVforest[1:2,], spacing = 7.5, keep.poly = FALSE)

ovmask <- addCovariates(ovmask, OVforest[1:2,])

Warning: attribute variables are assumed to be spatially constant throughout all geometries

1Technically, it may also be specified in a user-written function supplied to secr.fit (see Appendix 1), but you are unlikely
to need this.

2

https://www.otago.ac.nz/density/pdfs/secr-overview.pdf

Plotting is easy:

par(mar = c(1,6,2,8))

forestcol <- terrain.colors(6)[c(4,2)]

plot(ovmask, cov="forest", dots = FALSE, col = forestcol)

plot(ovtrap, add = TRUE)

par(cex = 0.8)

terra::sbar(d = 200, xy = c(2674670, 5982930), type = 'line', divs = 2,

below = "metres", labels = c("0","100","200"), ticks = 10)

terra::north(xy = c(2674670, 5982830), label = "N")

Figure 1: OVmask

We fit some simple models to data from February 1996 (session 49). Some warnings are suppressed for clarity.

base.args <- list(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE)

args.0 <- c(base.args, model = D ~ 1)

args.Dxy <- c(base.args, model = D ~ x + y)

args.Dxy2 <- c(base.args, model = D ~ x + y + x2 + y2 + xy)

args.Dforest <- c(base.args, model = D ~ forest)

arglist <- list(null = args.0, Dxy = args.Dxy, Dxy2 = args.Dxy2, Dforest = args.Dforest)

fits <- par.secr.fit(arglist, ncores = 4)

Completed in 1.42 minutes at 13:27:34 21 May 2023

AIC(fits, criterion = "AIC")[,-2]

model npar logLik AIC AICc dAIC AICwt

fit.Dxy2 D~x + y + x2 + y2 + xy g0~1 sigma~1 8 -1549.32 3114.64 3115.31 0.000 0.4429

fit.Dxy D~x + y g0~1 sigma~1 5 -1552.86 3115.72 3116.00 1.086 0.2573

fit.Dforest D~forest g0~1 sigma~1 4 -1554.15 3116.29 3116.47 1.653 0.1938

fit.null D~1 g0~1 sigma~1 3 -1555.75 3117.50 3117.61 2.860 0.1060

Each of the inhomogeneous models seems marginally better than the null model, but there is little to choose
among them.

To visualise the entire surface we compute predicted density at each mask point. For example, we can plot

3

the quadratic surface like this:

par(mar = c(1,6,1,8))

surfaceDxy2 <- predictDsurface(fits$fit.Dxy2)

plot(surfaceDxy2, plottype = "shaded", poly = FALSE, breaks = seq(0,22,2),

title = "Density / ha", text.cex = 1)

Various graphical elements may be added, including contours of the Dsurface:

plot(ovtrap, add = TRUE)

plot(surfaceDxy2, plottype = "contour", poly = FALSE, breaks = seq(0,22,2), add = TRUE)

lines(leftbank)

Figure 2: Quadratic surface

Following sections expand on the options for specifying and displaying density models.

Using the ‘model’ argument in secr.fit

The model argument of secr.fit is a list of formulae, one for each ‘real’ parameter2 in both the state model
(usually just D for density) and the observation model (typically g0 or lambda0, and sigma). A model formula
defines variation in each parameter as a function of covariates (including geographic coordinates and their
polynomial terms) that is linear on the ‘link’ scale, as in a generalized linear model.

The options differ between the state and observation models. D may vary with respect to group, session or
point in space; g0, lambda0, and sigma may vary by group, session, occasion or latent class (finite mixture),
but not with respect to continuous space. This was a choice made in the software design, aiming to tame the
complexity that would result if g0 and sigma were allowed to vary continuously in space.

The predictors ‘group’ and ‘session’ behave for D as they do for other real parameters. They determine
variation in the expected density for each group or session that is (by default) uniform across space, leading
to a homogeneous Poisson model and a flat surface. No further explanation is therefore needed.

2Null formulae such as D ~ 1 may be omitted, and if a single formula is used, it may be presented on its own rather than in
list() form.

4

Link function

The default link for D is ‘log’. It is equally feasible in most cases to choose ‘identity’ as the link (see the
secr.fit argument ‘link’), and for the null model D ∼ 1 the estimate will be the same to numerical accuracy,
as will estimates involving only categorical variables (e.g., session). However, with an ‘identity’ link the usual
(asymptotic) confidence limits will be symmetrical (unless truncated at zero) rather than asymmetrical. In
models with continuous predictors, including spatial trend surfaces, the link function will affect the result,
although the difference may be small when the amplitude of variation on the surface is small. Otherwise,
serious thought is needed regarding which model is biologically more appropriate: logarithmic or linear.

The ‘identity’ link may cause problems when density is very small or very large because, by default, the
maximisation method assumes all parameters have similar scale (e.g., typsize = c(1,1,1) for default
constant models). Setting typsize manually in a call to secr.fit can fix the problem and speed up
fitting. For example, if density is around 0.001/ha (10 per 100 km2) then call secr.fit(..., typsize

= c(0.001,1,1)) (typsize has one element for each beta parameter). See Appendix 2 for more on link
functions.

You may wonder why secr.fit is ambivalent regarding the link function: link functions have seemed a
necessary part of the machinery for capture–recapture modelling since Lebreton et al. (1992). Their key role
is to keep the ‘real’ parameter within feasible bounds (e.g., 0-1 for probabilities). In secr.fit any modelled
value of D that falls below zero is truncated at zero (of course this condition will not arise with a log link).

Built-in variables

secr.fit automatically recognises the spatial variables x, y, x2, y2 and xy if they appear in the formula
for D. These refer to the x-coordinate, y-coordinate, x-coordinate2 etc. for each mask point, and will be
constructed automatically as needed.

The formula for D may also include the non-spatial variables g (group), session (categorical), and Session
(continuous), defined as for modelling g0 and sigma (see secr-overview.pdf).

The built-in variables offer limited model possibilities:

Formula Interpretation

D ~ 1 flat surface (default)
D ~ x + y linear trend surface (planar)
D ~ x + x2 quadratic trend in east-west direction only
D ~ x + y + x2 + y2 + xy quadratic trend surface

User-provided variables

More interesting models can be made with variables provided by the user. These are stored in a data frame
as the ‘covariates’ attribute of a mask object. Covariates must be defined for every point on a mask.

Variables may be categorical (a factor or character value that can be coerced to a factor) or continuous (a
numeric vector). The habitat variable ‘habclass’ constructed in the Examples section of the skink help is
an example of a two-class categorical covariate. Remember that categorical variables entail one additional
parameter for each extra level.

There are several ways to create or input mask covariates.

1. Read columns of covariates along with the x- and y-coordinates when creating a mask from a dataframe
or external file (read.mask)

2. Read the covariates dataframe separately from an external file (read.table)

3. Infer covariate values by computation on in existing mask (see below).

5

https://www.otago.ac.nz/density/pdfs/secr-overview.pdf

4. Infer values for points on an existing mask from a GIS data source, such as a polygon shapefile or other
spatial data source (see secr-spatialdata.pdf).

Use the function addCovariates for the third and fourth options.

Covariates computed from coordinates

Higher-order polynomial terms may be added as covariates if required. For example,

covariates(ovmask)[,"x3"] <- covariates(ovmask)$xˆ3

allows a model like D ~ x + x2 + x3.

If you have a strong prior reason to suspect a particular ‘grain’ to the landscape then this may be also be
computed as a new, artificial covariate. This code gives a covariate representing a northwest – southeast
trend:

covariates(ovmask)[,"NWSE"] <- ovmask$y - ovmask$x - mean(ovmask$y - ovmask$x)

Another trick is to compute distances to a mapped landscape feature. For example, possum density in our
Orongorongo example may relate to distance from the river; this corresponds roughly to elevation, which
we do not have to hand. The distancetotrap function of secr computes distances from mask cells to the
nearest vertex on the riverbank, which are precise enough for our purpose.

covariates(ovmask)[,"DTR"] <- distancetotrap(ovmask, leftbank)

par(mar = c(1,6,1,8))

plot(ovmask, covariate = "DTR", breaks = seq(0,500,50),

title = "Distance to river m", dots = FALSE, inset= 0.07)

Figure 3: Distance to river

Pre-computed resource selection functions

A resource selection function (RSF) was defined by Boyce et al. (2002) as “any model that yields values
proportional to the probability of use of a resource unit”. An RSF combines habitat information from multiple

6

https://www.otago.ac.nz/density/pdfs/secr-spatialdata.pdf

sources in a single variable. Typically the function is estimated from telemetry data on marked individuals,
and primarily describes individual-level behaviour (3rd-order habitat selection of Johnson (1980)).

However, the individual-level RSF is also a plausible hypothesis for 2nd-order habitat selection i.e. for
modelling the relationship between habitat and population density. Then we interpret the RSF as a single
variable that is believed to be proportional to the expected population density in each cell of a habitat mask.

Suppose, for example, in folder datadir we have a polygon shapefile (RSF.shp, RSF.dbf etc.) with the
attribute “rsf” defined for each polygon. Given mask and capthist objects “habmask” and “myCH”, this code
fits a SECR model that calibrates the RSF in terms of population density:

rsfshape <- sf::st_read(paste0(datadir, "/RSF.shp"))

habmask <- addCovariates(habmask, rsfshape, columns = "rsf")

secr.fit (myCH, mask = habmask, model = D ~ rsf - 1)

• “rsf” must be known for every pixel in the habitat mask
• Usually it make sense to fit the density model through the origin (rsf = 0 implies D = 0). This is not

true of habitat suitability indices in general.

This is a quite different approach to fitting multiple habitat covariates within secr, and one that should
be considered. There are usually too few individuals in a SECR study to usefully fit models with multiple
covariates of density, even given a large dataset such as our possum example. However, 3rd-order and
2nd-order habitat selection are conceptually distinct, and their relationship is an interesting research topic.

Regression splines

Regression splines are a flexible alternative to polynomials for spatial trend analysis. Regression splines are
familiar as the smooth terms in ‘generalized additive models’ (gams) implemented (differently) in the base R
package gam and in Simon Wood’s package mgcv.

Some of the possible smooth terms from mgcv can be used in model formulae for secr.fit – see the help
page for ‘smooths’ in secr. Smooths are specified with terms that look like calls to the functions s and te.
Smoothness is determined by the number of knots which is set by the user via the argument ‘k’. The number
of knots cannot be determined automatically by the penalty algorithms of mgcv.

Here we fit a regression spline with the same number of parameters as a quadratic polynomial, a linear effect
of the ‘distance to river’ covariate on log(D), and a nonlinear smooth.

base.args <- list(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE)

args.D6 <- c(base.args, model = D ~ s(x,y, k = 6))

args.DDTR <- c(base.args, model = D ~ DTR)

args.DDTR3 <- c(base.args, model = D ~ s(DTR, k = 3))

arglist <- list(D6 = args.D6, DDTR = args.DDTR, DDTR3 = args.DDTR3)

fits2 <- par.secr.fit(arglist, ncores = 3)

Completed in 1.385 minutes at 13:28:58 21 May 2023

Now add these to the AIC table and plot the ‘AIC-best’ model:

AIC(c(fits, fits2), criterion = "AIC")[,-2]

model npar logLik AIC AICc dAIC AICwt

fit.DDTR3 D~s(DTR, k = 3) g0~1 sigma~1 5 -1552.00 3114.01 3114.29 0.000 0.2667

fit.Dxy2 D~x + y + x2 + y2 + xy g0~1 sigma~1 8 -1549.32 3114.64 3115.31 0.628 0.1948

fit.DDTR D~DTR g0~1 sigma~1 4 -1553.36 3114.72 3114.90 0.705 0.1875

fit.Dxy D~x + y g0~1 sigma~1 5 -1552.86 3115.72 3116.00 1.714 0.1132

fit.D6 D~s(x, y, k = 6) g0~1 sigma~1 8 -1549.93 3115.86 3116.53 1.847 0.1059

fit.Dforest D~forest g0~1 sigma~1 4 -1554.15 3116.29 3116.47 2.281 0.0853

fit.null D~1 g0~1 sigma~1 3 -1555.75 3117.50 3117.61 3.488 0.0466

7

tmp <- predict(fits2$fit.DDTR3, newdata = data.frame(DTR = seq(0,400,5)))

par(mar=c(5,8,2,4), pty = "s")

plot(seq(0,400,5), sapply(tmp, "[", "D","estimate"), ylim = c(0,20),

xlab = "Distance from river (m)", ylab = "Density / ha", type = "l")

Figure 4: Predicted D from DTR3 model

Confidence intervals are computed in predictDsurface by back-transforming ±2SE from the link (log) scale:

par(mar = c(1,1,1,1), mfrow = c(1,2), xpd = FALSE)

surfaceDDTR3 <- predictDsurface(fits2$fit.DDTR3, cl.D = TRUE)

plot(surfaceDDTR3, covariate= "lcl", breaks = seq(0,22,2), legend = FALSE)

mtext(side=3,line=-1.5,"Lower 95% confidence limit of D (possums / ha)")

plot(surfaceDDTR3, plottype = "contour", breaks = seq(0,22,2), add = TRUE)

lines(leftbank)

plot(surfaceDDTR3, covariate= "ucl", breaks = seq(0,22,2), legend = FALSE)

mtext(side=3,line=-1.5,"Upper 95% confidence limit of D (possums / ha)")

plot(surfaceDDTR3, covariate= "ucl", plottype = "contour", breaks = seq(0,22,2),

add = TRUE)

lines(leftbank)

mtext(side=3, line=-1, outer=TRUE, "s(DTR, k = 3) model")

8

Multiple predictors may be included in one ‘s’ smooth term, implying interaction. This assumes isotropy –
equality of scales on the different predictors – which is appropriate for geographic coordinates such as x and
y in this example. In other cases, predictors may be measured on different scales (e.g., structural complexity
of vegetation and elevation) and isotropy cannot be assumed. In these cases a tensor-product smooth (te) is
appropriate because it is scale-invariant. For te, ‘k’ represents the order of the smooth on each axis, and we
must fix the number of knots with ‘fx = TRUE’ to override automatic selection.

For more on the use of regression splines see the documentation for mgcv, the secr help page ‘?smooths’,
Wood (2006), and Borchers and Kidney (submitted).

Prediction and plotting

Fitting a model provides estimates of its coefficients or ‘beta parameters’; use the coef method to extract
these from an secr object. The coefficients are usually of little use in themselves, but we can use them to make
predictions. In order to plot a fitted model we first predict the height of the density surface at each point on a
mask. As we have seen, this is done with predictDsurface, which has arguments (object, mask = NULL,

se.D = FALSE, cl.D = FALSE, alpha = 0.05). By default, prediction is at the mask points used when
fitting the model (i.e. object$mask); specify the mask argument to extrapolate the model to a different area.

The output from predictDsurface is a specialised mask object called a Dsurface (class “c(‘Dsurface’, ‘mask’,
‘data.frame’)”). The covariate dataframe of a Dsurface has columns for the predicted density of each group
(D.0 if there is only one). Usually when you print a mask you see only the x- and y-coordinates. The print

method for Dsurface objects displays both the coordinates and the density values as one dataframe, as also
do the head and tail methods.

Use the arguments ‘se.D’ and ‘cl.D’ to request computation of the estimated standard error and/or upper
and lower confidence limits for each mask point3. If requested, values are saved as additional covariates of
the output Dsurface (SE.0, lcl.0, and ucl.0 if there is only one group).

The plot method for a Dsurface object has arguments (x, covariate = "D", group = NULL, plottype

= "shaded", scale = 1, ...). covariate may either be a prefix (one of “D”, “SE”, “lcl”, “ucl”) or any
full covariate name. ‘plottype’ may be one of “shaded”, “dots”, “persp”, or “contour”. A coloured legend is
displayed centre-right (see ?plot.mask and ?strip.legend for options).

For details on how to specify colours, levels etc. read the help pages for plot.mask, contour and persp

(these functions may be controlled by extra arguments to plot.Dsurface, using the ‘dots’ convention).

3Option available only for models specified in generalized linear model form with the ‘model’ argument of secr.fit, not for
user-defined functions.

9

A plot may be enhanced by the addition of contours. This is a challenge, because the contour function in R
requires a rectangular matrix of values, and our mask is not rectangular. We could make it so with the secr

function rectangularMask, which makes a rectangular Dsurface with missing (NA) values of density at all
the external points. plot.Dsurface recognises an irregular mask and attempts to fix this with an internal
call to rectangularMask.

Scaling

So far we have ignored the scaling of covariates, including geographic coordinates.

secr.fit scales the x- and y-coordinates of mask points to mean = 0, SD = 1 before using the coordinates
in a model. Remember this when you come to use the coefficients of a density model. Functions such as
predictDsurface take care of scaling automatically. predict.secr uses the scaled values (‘newdata’ x = 0,
y = 0), which provides the predicted density at the mask centroid. The mean and SD used in scaling are
those saved as the ‘meanSD’ attribute of a mask (dataframe with columns ‘x’ and ‘y’ and rows ‘mean’ and
‘SD’).

Scaling of covariates other than x and y is up to the user. It is not usually needed.

The numerical algorithms for maximising the likelihood work best when the absolute expected values are
roughly similar for all parameters on their respective ‘link’ scales (i.e. all beta parameters) rather than varying
by orders of magnitude. The default link function for D and sigma (log) places the values of these parameters
on a scale that is not wildly different to the variation in g0 or lambda0, so this is seldom an issue. In extreme
cases you may want to make allowance by setting the typsize argument of nlm or the parscale control
argument of optim (via the . . . argument of secr.fit).

Scaling is not performed routinely by secr.fit for distance calculations. Sometimes, large numeric values in
coordinates can cause loss of precision in distance calculations (there are a lot of them at each likelihood
evaluation). The problem is serious in datasets that combine large coordinates with small detector spacing,
such as the Lake Station skink dataset. Set details = list(centred = TRUE) to force scaling; this may
become the default setting in a future version of secr.

Potential problems

Modelling density surfaces can be tricky. Recognise when model fitting has failed. If there is no asymptotic
variance-covariance matrix, the estimates cannot be trusted. Some forensic work may be needed. If in doubt,
try repeating the fit, perhaps starting from the previously fitted values (you can use secr.fit(..., start

= last.model) where last.model is a previously fitted secr object) or from new arbitrary values. Problems
may result when the discretization is too coarse, so try with smaller mask cells.

You can try another optimization method; method = "Nelder-Mead" is generally more robust than the
default gradient-based method. Any method may fail to find the true maximum from a given starting point.
We have no experience with simulated annealing (‘SANN’ in optim); it is reputedly effective, but slow. In the
optim help it is stated ominously that “the ‘SANN’ method depends critically on the settings of the control
parameters. It is not a general-purpose method”.

Avoid using ‘[’ to extract subsets from mask, capthist and other secr objects. Use the provided subset

methods. It is generally safe to use ‘[[’ to extract one session from a multi-session object, as in our possum
example, but this is not guaranteed. With care, it is also possible to replace selected elements in situ, but
note that any change in coordinates will require the attribute ‘meanSD’ to be recalculated (see ?getMeanSD).

Do you really want to model density on the log scale? If not, change the link.

10

This is not a density surface4

The surfaces we have fitted involve inhomogeneous Poisson models for the distribution of animal home range
centres. The models have parameters that determine the relationship of expected density to location or to
habitat covariates.

Another type of plot is sometimes presented and described as a ‘density surface’ – the summed posterior
distribution of estimated range centres from a Bayesian fit of a homogeneous Poisson model. A directly
analogous plot may be obtained from the secr function fx.total (see also Borchers and Efford 2008 Section
4.3). The contours associated with the home range centre of each detected individual essentially represent
2-D confidence intervals for its home range centre, given the fitted observation model. Summing these gives a
summed probability density surface for the centres of the observed individuals (‘D.fx’), and to this we can
add an equivalent scaled probability density surface for the individuals that escaped detection (‘D.nc’). Both
components are reported by fx.total, along with their sum (‘D.sum’) which we plot here for the flat possum
model:

fxsurface <- fx.total(fits$fit.null)

par(mar = c(1,6,1,8))

plot(fxsurface, covariate = "D.sum", breaks = seq(0,30,2), poly = FALSE)

plot(ovtrap, add = TRUE)

D.sum

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30

The plot concerns only one realisation from the underlying Poisson model. It visually invites us to interpret
patterns in that realisation that we have not modelled. There are serious problems with the interpretation of
such plots as ‘density surfaces’:

• attention is focussed on the individuals that were detected; others that were present but not detected
are represented by a smoothly varying base level that dominates in the outer region of the plot (contrast
this figure with the previous quadratic and DTR3 models).

• the surface depends on sampling intensity, and as more data are added it will change shape systematically.
Ultimately, the surface near the centre of a detector array becomes a set of spikes on a barren plain

• the ‘summed confidence interval’ plot is easily confused with the 2-D surface obtained by summing
utilisation distributions across animals

• confidence intervals are not available for the height of the probability density surface.

4http://en.wikipedia.org/wiki/The_Treachery_of_Images

11

http://en.wikipedia.org/wiki/The_Treachery_of_Images

The plots are also prone to artefacts. In some examples we see concentric clustering of estimated centres
around the trapping grids, apparently ‘repelled’ from the traps themselves (e.g., plot below for a null model of
the Waitarere ‘possumCH’ dataset in secr). This phenomenon appears to relate to lack of model fit (unpubl.
results).

fxsurfaceW <- fx.total(possum.model.0)

par(mar = c(1,5,1,8))

plot(fxsurfaceW, covariate = "D.sum", breaks = seq(0,5,0.5), poly = FALSE)

plot(traps(possumCH), add = TRUE)

Figure 5: fxsurfaceW

Relative density

In rare cases it is useful to model the relative density of tagged animals. This is the best that can be done
with data for which the tagged sample was not collected in a way that allows the initial detections to be
modelled spatially. One scenario involves acoustic telemetry or other automated detection for which the only
animals at risk of detection are those previously marked (cf resighting data, in which unmarked animals are
detected and counted, but not identified).

The relative density model is fitted by maximising the likelihood for the density (φ) and detection (θ)
parameters, conditional on the number of detected animals n. Other notation here follows Borchers and
Efford (2008).

L(φ, θ|ω) =

(

n

n1, ..., nC

) n
∏

i=1

∫

R2

Pr(ωi|θ, x) f(x|φ) dx. (1)

The factor f(x|φ) describes the distribution of tagged animals under the model with no allowance for how
they came to be tagged. The factor Pr(ωi|θ, x) is the probability of the observed detection history of animal
i given that its activity centre was at x.

A spatial model for relative density is fitted in secr by setting details = list(relativeD = TRUE) in the
call to secr.fit (secr ≥ 4.6.5). For example

routine fit with DTR as density covariate

fitrd0 <- secr.fit(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE,

model = D ~ DTR, details = list(relativeD = FALSE))

12

relative density fit, assuming uniform probability of tagging

fitrd1 <- secr.fit(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE,

model = D ~ DTR, details = list(relativeD = TRUE))

coef(fitrd0)

beta SE.beta lcl ucl

D 2.88882711 0.119977099 2.65367632 3.123977908

D.DTR -0.00177525 0.000811153 -0.00336508 -0.000185418

g0 -2.22622833 0.094368595 -2.41118738 -2.041269281

sigma 3.31910105 0.035575304 3.24937474 3.388827363

coef(fitrd1)

beta SE.beta lcl ucl

D.DTR -0.0027647 0.000713459 -0.00416306 -0.00136635

g0 -2.1189469 0.090419964 -2.29616675 -1.94172700

sigma 3.3677965 0.038319139 3.29269240 3.44290066

plot(predictDsurface(fitrd1), title = 'Relative D')

plot(traps(OVpossumCH[[1]]), add = TRUE)

Relative D

0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

This surface combines the population density and the probability that an animal was captured at least once,
which probably varies spatially and is therefore confounded with relative population density. Densities are
given relative to the intercept of the density model (assigned the arbitrary value 1.0). Absolute densities are
not available because the model is fitted by maximising the likelihood conditional on n. The relative model
has one fewer coefficients than the absolute density model.

A better predictor of the relative density of tagged animals is an approximation to the probability of detection,
computed as a mask covariate. We invert the covariate so that the intercept corresponds to the (approximate)
maximum relative density.

construct a detection covariate using ballpark detection parameters

covariates(ovmask)$pd <- 1-pdot(ovmask, traps(OVpossumCH[[1]]),

detectpar = list(g0 = 0.0974198, sigma = 27.6354961), noccasions = 5)

fit relative density model with new predictor...

fitrd2 <- secr.fit(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE,

model = D ~ pd, details = list(relativeD = TRUE))

coef(fitrd2)

beta SE.beta lcl ucl

D.pd -5.26727 0.9159966 -7.06259 -3.47195

g0 -2.09150 0.0882073 -2.26438 -1.91862

13

sigma 3.30745 0.0348788 3.23909 3.37581

...and with both predictors

fitrd3 <- secr.fit(capthist = OVpossumCH[[1]], mask = ovmask, trace = FALSE,

model = D ~ pd + DTR, details = list(relativeD = TRUE))

coef(fitrd3)

beta SE.beta lcl ucl

D.pd -5.50099830 1.0280375 -7.51591476 -3.486081846

D.DTR -0.00231103 0.0009217 -0.00411753 -0.000504532

g0 -2.09228470 0.0882078 -2.26516875 -1.919400653

sigma 3.30793316 0.0349507 3.23943110 3.376435225

compare and plot

AIC(fitrd1, fitrd2, fitrd3)[,-2]

model npar logLik AIC AICc dAICc AICcwt

fitrd3 D~pd + DTR g0~1 sigma~1 4 -1576.27 3160.54 3160.72 0.000 0.9041

fitrd2 D~pd g0~1 sigma~1 3 -1579.55 3165.10 3165.21 4.488 0.0959

fitrd1 D~DTR g0~1 sigma~1 3 -1654.48 3314.96 3315.07 154.353 0.0000

plot(predictDsurface(fitrd3), title = 'Relative D')

plot(traps(OVpossumCH[[1]]), add = TRUE)

Relative D

0.00

0.10

0.20

0.30

0.40

0.50

0.60

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64, 377–385.

Borchers, D. L. and Kidney, D. J. (2014) Flexible density surface estimation using regression splines with
spatially explicit capture-recapture data. In prep.

Boyce, M. S., Vernier, P. R., Nielsen, S. E. and Schmiegelow, F. K. A. (2002) Evaluating resource selection
functions. Ecological modelling 157, 281–300.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in spatially explicit capture–recapture data.
Ecology 95, 1341–1348.

Johnson, D. H. (1980) The comparison of usage and availability measurements for evaluating resource
preference. Ecology 61, 65–71.

Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62,

14

67–118.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture–recapture models using mixtures.
Biometrics 56, 434–442.

Wood, S. N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.

Appendix 1. User-provided model functions

Some density models cannot be coded in the generalized linear model form of the model argument. To
alleviate this problem, a model may be specified as an R function that is passed to secr.fit, specifically as
the component ‘userDfn’ of the list argument ‘details’. We document this feature here, although you may
never use it.

The userDfn function must follow some rules.

• It should accept four arguments, the first a vector of parameter values or a character value (below),
and the second a ‘mask’ object, a data frame of x and y coordinates for points at which density must
be predicted.

Argument Description

Dbeta coefficients of density model, or one of c(‘name’, ‘parameters’)
mask habitat mask object
ngroup number of groups
nsession number of sessions

• When called with Dbeta = "name", the function should return a character string to identify the density
model in output. (This should not depend on the values of other arguments).

• When called with Dbeta = 'parameters', the function should return a character vector naming each
parameter. (When used this way, the call always includes the mask argument, so information regarding
the model may be retrieved from any attributes of mask that have been set by the user).

• Otherwise, the function should return a numeric array with dim = c(nmask, ngroup, nsession)

where nmask is the number of points (rows in mask). Each element in the array is the predicted density
(natural scale, in animals / hectare) for each point, group and session. This is simpler than it sounds,
as usually there will be a single session and single group.

The coefficients form the density part of the full vector of beta coefficients used by the likelihood maximization
function (nlm or optim). Ideally, the first one should correspond to an intercept or overall density, as this is
what appears in the output of predict.secr. If transformation of density to the ‘link’ scale is required then
it should be hard-coded in userDfn.

Covariates are available to user-provided functions, but within the function they must be extracted ‘manually’
(e.g., covariates(mask)$habclass rather than just ‘habclass’). To pass other arguments (e.g., a basis for
splines), add attribute(s) to the mask.

It will usually be necessary to specify starting values for optimisation manually with the start argument of
secr.fit.

If the parameter values in Dbeta are invalid the function should return an array of all zero values.

Here is a ‘null’ userDfn that emulates D ∼ 1 with log link

userDfn0 <- function (Dbeta, mask, ngroup, nsession) {

if (Dbeta[1] == "name") return ("0")

if (Dbeta[1] == "parameters") return ("intercept")

D <- exp(Dbeta[1]) # constant for all points

15

tempD <- array(D, dim = c(nrow(mask), ngroup, nsession))

return(tempD)

}

We can compare the result using userDfn0 to a fit of the same model using the ‘model’ argument. Note how
the model description combines ‘user.’ and the name ‘0’.

model.0 <- secr.fit(captdata, model = D ~ 1, trace = FALSE)

userDfn.0 <- secr.fit(captdata, details = list(userDfn = userDfn0), trace = FALSE)

AIC(model.0, userDfn.0)

model detectfn npar logLik AIC AICc dAICc AICcwt

model.0 D~1 g0~1 sigma~1 halfnormal 3 -759.026 1524.05 1524.38 0 0.5

userDfn.0 D~userD.0 g0~1 sigma~1 halfnormal 3 -759.026 1524.05 1524.38 0 0.5

predict(model.0)

link estimate SE.estimate lcl ucl

D log 5.47982 0.6467417 4.351636 6.900490

g0 logit 0.27319 0.0270513 0.223477 0.329274

sigma log 29.36583 1.3049376 26.917572 32.036771

predict(userDfn.0)

link estimate SE.estimate lcl ucl

D log 5.479811 0.6467412 4.351629 6.900480

g0 logit 0.273191 0.0270513 0.223477 0.329274

sigma log 29.365826 1.3049374 26.917567 32.036765

Not very exciting, maybe, but reassuring!

Now let’s try a more complex example. First create a test dataset with an east-west density step (this could
be done more precisely with sim.popn + sim.capthist):

set.seed(123)

ch <- subset(captdata, centroids(captdata)[,1]>500 | runif(76)>0.75)

plot(ch)

1
5 occasions, 155 detections, 50 animals

also make a mask and assign the x coordinate to covariate 'X'

msk <- make.mask(traps(ch), buffer = 100, type = 'trapbuffer')

covariates(msk)$X <- msk$x

16

Now define a sigmoid function of covariate X:

sigmoidfn <- function (Dbeta, mask, ngroup, nsession) {

scale <- 7.5 # arbitrary 'width' of step

if (Dbeta[1] == "name") return ("sig")

if (Dbeta[1] == "parameters") return (c("D1", "threshold", "D2"))

X2 <- (covariates(mask)$X - Dbeta[2]) / scale

D <- Dbeta[1] + 1 / (1+exp(-X2)) * (Dbeta[3] - Dbeta[1])

tempD <- array(D, dim = c(nrow(mask), ngroup, nsession))

return(tempD)

}

Fit null model and sigmoid model:

fit.0 <- secr.fit(ch, mask = msk, link = list(D = "identity"), trace = FALSE)

Warning in secr.fit(ch, mask = msk, link = list(D = "identity"), trace = FALSE): multi-catch

likelihood used for single-catch traps

fit.sigmoid <- secr.fit(ch, mask = msk, details = list(userDfn = sigmoidfn),

start=c(2.7, 500, 5.8, -1.2117, 3.4260), link = list(D = "identity"),

trace = FALSE)

Warning in secr.fit(ch, mask = msk, details = list(userDfn = sigmoidfn), : multi-catch

likelihood used for single-catch traps

coef(fit.0)

beta SE.beta lcl ucl

D 3.61369 0.5244741 2.58574 4.641642

g0 -1.08751 0.1617387 -1.40451 -0.770508

sigma 3.39532 0.0556487 3.28625 3.504391

coef(fit.sigmoid)

beta SE.beta lcl ucl

D.D1 1.68391 0.5138505 0.67678 2.691037

D.threshold 514.26458 16.6528934 481.62551 546.903652

D.D2 5.88101 1.0474658 3.82802 7.934009

g0 -1.08605 0.1616989 -1.40297 -0.769123

sigma 3.39315 0.0554869 3.28439 3.501898

AIC(fit.0, fit.sigmoid)

model detectfn npar logLik AIC AICc dAICc AICcwt

fit.sigmoid D~userD.sig g0~1 sigma~1 halfnormal 5 -520.643 1051.29 1052.65 0.0 1

fit.0 D~1 g0~1 sigma~1 halfnormal 3 -528.114 1062.23 1062.75 10.1 0

The sigmoid model has improved fit, but there is a lot of uncertainty in the two density levels. The average
of the fitted levels D1 and D2 (3.7825) is not far from the fitted homogeneous level (3.6137).

beta <- coef(fit.sigmoid)[1:3,'beta']

X2 <- (300:700 - beta[2]) / 15

D <- beta[1] + 1 / (1+exp(-X2)) * (beta[3] - beta[1])

plot (300:700, D, type = 'l', xlab='X', ylab = 'Density', ylim=c(0,7))

abline(v=beta[2], lty=2)

abline(h=coef(fit.0)[1,1], lty=1, col='blue')

rug(unique(traps(ch)$x), col = 'red')

17

text(400, 2.2, 'D1')

text(620, 6.4, 'D2')

300 400 500 600 700

0
1

2
3

4
5

6
7

X

D
en

si
ty

D1

D2

Appendix 2. More on link functions

From secr 4.5.0 there is a scaled identity link ‘i1000’ that multiplies each real parameter value by 1000. Then
secr.fit(..., link = list(D = 'i1000')) is a fast alternative to specifying typsize for low absolute
density.

Going further, you can even define your own ad hoc link function. To do this, provide the following functions
in your workspace (your name ‘xxx’ combined with standard prefixes) and use your name to specify the link:

Name Purpose Example

xxx transform to link scale i100 <- function(x) x * 100
invxxx transform from link scale invi100 <- function(x) x / 100
se.invxxx transform SE from link scale se.invi100 <- function (beta, sebeta) sebeta / 100
se.xxx transform SE to link scale se.i100 <- function (real, sereal) sereal * 100

Following this example, you would call secr.fit(..., link = list(D = 'i100')). To see the in-
ternal transformations for the standard link functions, type secr:::transform, secr:::untransform,
secr:::se.untransform or secr:::se.transform.

18

	Introduction
	Density surfaces - some background
	Brushtail possum example
	Using the `model' argument in secr.fit
	Link function
	Built-in variables
	User-provided variables
	Covariates computed from coordinates
	Pre-computed resource selection functions
	Regression splines

	Prediction and plotting
	Scaling
	Potential problems
	This is not a density surface
	Relative density
	References
	Appendix 1. User-provided model functions
	Appendix 2. More on link functions

