
Changes in secr 4.0
Murray Efford

2020-02-23

Contents

Introduction 1

Multi-threading 2

Faster fitting of ‘proximity’ and ‘count’ data 2

Data compression . 3
1. Binary proximity data as binomial count . 3
2. Pass only non-zero counts . 3

Operation . 3
Restrictions . 3

Individual mask subsets 4

Backward compatibility 4

References 5

Appendix 1. Specific changes in secr 4.0 6

Appendix 2. Code for fitting models omitted from secr ≥ 4.0 6

House mouse . 6
Stoat . 7
Ovenbird . 7
Brushtail possum . 7
Deer mouse . 7
DENSITY demo data . 8
Ovenbird song . 8

Appendix 3. Functions calling multi-threaded C++ in secr ≥ 4.1 8

Introduction

Version 4 has been substantially re-written. Most code from earlier versions will still work. However, there
are major changes to some features, and results may differ. This note describes the major changes in version
4.0 and additions in 4.1 and 4.2. Version 4.1 fixed some bugs in secr 4.0 (covariate models were prone to
error). Version 4.2 introduced a new mechanism for setting the number of threads in multi-threaded functions.
The default number of threads has been capped at two; to take full advantage of multi-threading it is now
usually necessary to specify ‘ncores’ at least once.

Table 1. Key changes in secr 4.0 (see also see Appendix 1)

Category Feature Status

General Multi-threading of likelihood computation New

1

Category Feature Status

General Fast evaluation for proximity and count
detectors

New, optional

General Individual mask subsets New, optional
Mark-resight Conditional formulation of likelihood for

unidentified, marked
Discontinued

Data Fitted models Most fitted models have been omitted to
save space (see Appendix 2)

Multi-threading

Multi-threading is a way to use multiple processor cores to speed computation. secr 4.0 performs multi-
threading with parallelFor in RcppParallel (Allaire et al. 2019). Multi-threading is used in computationally
intensive functions, particularly likelihood evaluation in secr.fit (Appendix 3).

Multi-threading was not applied in secr 4.0 for polygon and transect detector types because these used
integration code from the R API (Rdqags). Multi-threading is enabled for these detector types in secr 4.1
and later, using the integration interface in RcppNumerical (Qiu et al. 2019).

Multi-threading in secr.fit is at the level of entire detection histories: histories are distributed over cores
(in general the number of histories is much greater than the number of cores). In a typical application on a
quad-core desktop running Windows (8 virtual cores) this can speed up model fitting by a factor of 3–4.

By default, the code will use only two threads (cores). The number of threads may be controlled directly
with the ncores argument of secr.fit etc. or with the function setNumThreads (new in secr 4.2; see
?setNumThreads for details). If ncores = NULL the number of threads is taken from the environment variable
RCPP_PARALLEL_NUM_THREADS that is initialised to 2 when the package is loaded. The variable is
updated by setNumThreads and whenever a function is called with specified ncores.

For example,

setNumThreads(8)

secr.fit(captdata)

is equivalent to

secr.fit(captdata, ncores = 8)

Parallel processing in secr previously relied on the parallel package, with mixed success (setting ncores>1
could even slow down computation). The old function par.secr.fit no longer speeds up computation when
ncores>1, but it is retained.

Faster fitting of ‘proximity’ and ‘count’ data

Data from binary proximity (‘proximity’) and count proximity (‘count’) detectors often take the form of large,
sparse 3-D arrays. For one session the array has dimensions n (number of detected individuals), s (number of
occasions) and k (number of detectors), and most cells will be zero.

The code in secr 3.2 always iterated over all cells of the array; this does not constrain the models that can
be fitted. For many models it is faster to operate on a compressed version of the data, and this is the default
in secr 4.0 and later versions. Fast processing (and the associated compression) can be bypassed by setting
the details argument fastproximity = FALSE. This may be needed to avoid restrictions.

2

Data compression

Two types of compression are applied automatically by default (fastproximity = TRUE):

1. Binary proximity data as binomial count

Binary data for a particular animal and detector over s occasions are summed and modelled as a binomial
count of size s on a single occasion. This option has been available with manual preprocessing using code
such as

CH1 <- reduce(CH, outputdetector = 'count', by = 'all')

secr.fit(CH1, binomN = 1)

The capthist object from the reduce step includes detectors with a usage attribute that records the number
of occasions s pooled for each detector; binomN = 1 directs secr.fit to find the binomial size in the usage
attribute.

2. Pass only non-zero counts

Even with compression over occasions, the number of detections at most detectors is usually zero. It is
efficient to preprocess the data for each animal into a list of those detectors with non-zero counts, and the
associated counts. The likelihood code in secr automatically applies this compression under the fastproximity
option.

Operation

Compressed counts may be modelled as Poisson or binomial. A Poisson model is used for the compressed
counts if detector type count appears anywhere in the input data and a Poisson model is specified via the
argument binomN = 0.

Otherwise, a binomial model is used for the compressed counts. The size of the binomial model is specific to
each detector. It is set internally by manipulating the usage attribute. Most simply (binomN = NULL) this is
merely the number of occasions or the sum over occasions of the input usage if that exists. For specified
binomN > 1 the usage is multiplied by binomN.

Restrictions

fastproximity = TRUE is applied by secr.fit under these conditions:

• all detectors are of type ‘proximity’, ‘count’ or ‘capped’

• no learned response in model (~b, ~bk etc. prohibited)

• no temporal variation in model (~t, ~T, ~tcov etc. prohibited)

• groups = NULL

• no variation over detectors in model [potential, not implemented]

If any condition is not met then processing continues as if fastproximity = FALSE.

3

Individual mask subsets

The base algorithm of secr treats all points on the habitat mask as potential locations for the activity centre
of each individual i.e. integration is over the area of the mask. When the mask is large relative to the home
range, most points will contribute almost nothing to the integral, and time is wasted including them in the
summation.

A more efficient approach is to consider only mask points in the vicinity of the known detections of an individual.
In secr 4.0 and later versions the user may specify a maximum mask radius (details$maxdistance) with
respect to the centroid of detections, computed separately for each animal. The centroid is the geometric
mean of detection locations for each individual. If maxdistance is not specified then summation is over all
mask points. The entire mask is always used for the likelihood component due to undetected individuals.

A simple example:

library(secr)

fit0 <- secr.fit (captdata, buffer = 100, trace = FALSE)

fitims <- secr.fit (captdata, buffer = 100, details = list(maxdistance = 100), trace = FALSE)

fits <- secrlist(fit0, fitims)

sapply(fits, '[[', 'proctime')

fit0.elapsed fitims.elapsed

3.43 2.55

collate(fits)[1,,,'D']

estimate SE.estimate lcl ucl

fit0 5.479818 0.6467416 4.351635 6.900488

fitims 5.500105 0.6481329 4.369290 6.923585

It is up to the user to select a limit that is large enough not to affect the likelihood. This should be larger
than the expected home range radius, as the centroid is only an approximation to the activity centre. The
value 5σ is suggested for a half-normal detection function.

Using individual mask subsets makes fitting much faster, particularly when activity areas are small relative
to the overall extent of the mask (examples in Table 2).

Table 2. Relative timings for model fitting in secr.fit with two scenarios for halfnormal σ in relation to
spacing s between detectors on a 10 × 10 square grid. Using individual, local mask achieves >5-fold speed
improvement with the usual approach to likelihood evaluation (‘Basic’), but only minor improvement when
other tools are used to speed up execution (‘Fast’). D = (0.8/σ)2; λ0 = 0.1/σ0.5.

Method

Scenario Basic Fast

sigma = s, full mask 303 7

sigma = 2s, full mask 112 6

sigma = s, local mask 51 4

sigma = 2s, local mask 24 3

Backward compatibility

Code that worked in previous versions should work in secr 4.2, but this is not guaranteed. Problems are likely
with models fitted in earlier versions, as these will not include the new components ‘designD’, ‘designNE’ and
‘learnedresponse’. The solution is to refit the models from scratch in the new secr, or continue using the
earlier version (secr ≤ 3.2).

4

The default behaviour of secr ≥ 4.0 is to use the new ‘fastproximity’ algorithms where possible (see above).
This forces the detector type to ‘count’ and the number of occasions to 1. To suppress this behaviour and
return to something like secr ≤ 3.2, set details = list(fastproximity = FALSE) in the call to secr.fit.

Fewer fitted models are included with the datasets. If you rely on a missing model for one of the built-in
datasets, fit it yourself with the code in Appendix 2.

References

Allaire, J. J., Francois, R., Ushey, K., Vandenbrouck, G., Geelnard, M. and Intel (2019) RcppParallel: Parallel
Programming Tools for ‘Rcpp’. R package version 4.4.4. https://CRAN.R-project.org/package=RcppParallel.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture–recapture
studies. Biometrics 64: 377–385.

Efford, M. G. (2019a) secr: Spatially explicit capture-recapture models. R package version 3.2.0. https:
//CRAN.R-project.org/package=secr.

Efford, M. G. (2019b) secr: Spatially explicit capture-recapture models. R package version 4.0.1. https:
//CRAN.R-project.org/package=secr.

Qiu, Y., Balan, S., Beall, M., Sauder, M., Okazaki, N. and Hahn, T. (2019) RcppNumerical: ‘Rcpp’
Integration for Numerical Computing Libraries. R package version 0.3-3. https://CRAN.R-project.org/
package=RcppNumerical

5

https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=secr
https://CRAN.R-project.org/package=secr
https://CRAN.R-project.org/package=secr
https://CRAN.R-project.org/package=secr
https://CRAN.R-project.org/package=RcppNumerical
https://CRAN.R-project.org/package=RcppNumerical

Appendix 1. Specific changes in secr 4.0

Function Change

secr.fit etc. Argument ncores now refers to the number of cores used for multi-threading by
RcppParallel, not the number of clusters used by parallel. In secr 4.2 the default
NULL is to use the value of the RCPP_PARALLEL_NUM_THREADS
environment variable, initially 2

secr.fit autoini = ‘all’ for start values from multi-session data (experimental)
secr.fit New components designD, designNE and learnedresponse in output secr object
secr.fit LLonly = TRUE uses automatic parameter values when start not provided
secr.fit LLonly = TRUE output has new attributes ‘npar’, ‘preptime’ and ‘LLtime’
sim.capthist Detection function for polygons and transects must be of hazard type (14:19) as

required by secr.fit

make.systematic New argument order controls sequence of clusters in generated traps object
par.secr.fit No longer automatically sets ncores=1 in each call to secr.fit

RSE New function to extract precision of ‘real’ parameter estimates
summary.capthist Includes summary of individual covariates
summary.secr Component ‘versiontime’ includes elapsed time
autoini,
region.N,
suggest.buffer

Acquire ncores argument

fx.secr,
fxi.contour

Argument normal dropped

mask.check,
pmixProfileLL,
simulate.secr

Argument ncores dropped

read.SPACECAP,
write.SPACECAP

Removed

The new components in ‘secr’ objects returned by secr.fit are described on the help page for the function.

Appendix 2. Code for fitting models omitted from secr ≥ 4.0

Earlier versions of secr included pre-fitted models to demonstrate various features. Most of these have
been dropped in secr ≥ 4.0 to save space and to reduce maintenance costs. The omitted models may be
regenerated with the code in this appendix.

House mouse

morning <- subset(housemouse, occ = c(1,3,5,7,9))

afternoon <- subset(housemouse, occ = c(2,4,6,8,10))

morning.0 <- secr.fit(morning, buffer = 20, trace = FALSE)

morning.h2 <- secr.fit(morning, buffer = 20, model=list(g0~h2), trace = FALSE)

morning.0h2 <- secr.fit(morning, buffer = 20, model=list(sigma~h2), trace = FALSE)

morning.h2h2 <- secr.fit(morning, buffer = 20, model=list(g0~h2, sigma~h2), trace = FALSE)

morning.t <- secr.fit(morning, buffer = 20, model=g0~t, trace = FALSE)

morning.b <- secr.fit(morning, buffer = 20, model=g0~b, trace = FALSE)

6

housemouse.0 <- secr.fit (housemouse, buffer = 20, trace = FALSE)

housemouse.ampm <- secr.fit (housemouse, model = g0~tcov, timecov =

c(0,1,0,1,0,1,0,1,0,1), buffer = 20, trace = FALSE)

housemouse.ampmh2h2 <- secr.fit (housemouse, model=list(g0~tcov+h2, sigma~tcov+h2),

timecov = c(0,1,0,1,0,1,0,1,0,1), buffer = 20, trace = FALSE)

Stoat

stoat.model.HN <- secr.fit(stoatCH, buffer = 1000, detectfn = 0, trace = FALSE)

stoat.model.HZ <- secr.fit(stoatCH, buffer = 1000, detectfn = 1, trace = FALSE,

biasLimit = NA)

stoat.model.EX <- secr.fit(stoatCH, buffer = 1000, detectfn = 2, trace = FALSE)

Ovenbird

ovenmask <- make.mask(traps(ovenCH), type = 'pdot', buffer = 400,

spacing = 15, detectpar = list(g0 = 0.03, sigma = 90), nocc = 10)

ovenbird.model.1 <- secr.fit(ovenCH, mask = ovenmask, trace = FALSE)

ovenbird.model.1b <- secr.fit(ovenCH, mask = ovenmask, model = list(g0 ~ b), trace = FALSE)

ovenbird.model.1T <- secr.fit(ovenCH, mask = ovenmask, model = list(g0 ~ T), trace = FALSE)

ovenbird.model.h2 <- secr.fit(ovenCH, mask = ovenmask, model = list(g0~h2), trace = FALSE)

ovenbird.model.D <- secr.fit(ovenCH, mask = ovenmask, model = list(D ~ Session),

trace = FALSE)

Brushtail possum

possum.model.0 <- secr.fit(possumCH, mask = possummask, trace = FALSE)

possum.model.b <- secr.fit(possumCH, mask = possummask, model = g0~b,

trace = FALSE)

possum.model.Ds <- secr.fit(possumCH, mask = possummask, model =

list(D ~ d.to.shore), link = list(D = 'identity'), trace = FALSE,

method = 'Nelder-Mead')

Deer mouse

ESG.0 <- secr.fit(deermouse.ESG, trace = FALSE)

ESG.b <- secr.fit(deermouse.ESG, model=g0~b, trace = FALSE)

ESG.t <- secr.fit(deermouse.ESG, model=g0~t, trace = FALSE)

ESG.h2 <- secr.fit(deermouse.ESG, model=g0~h2, trace = FALSE)

WSG.0 <- secr.fit(deermouse.WSG, model=g0~1, trace = FALSE)

WSG.b <- secr.fit(deermouse.WSG, model=g0~b, trace = FALSE)

WSG.t <- secr.fit(deermouse.WSG, model=g0~t, trace = FALSE)

WSG.h2 <- secr.fit(deermouse.WSG, model=g0~h2, trace = FALSE)

7

DENSITY demo data

secrdemo.0 <- secr.fit (captdata, trace = FALSE)

secrdemo.CL <- secr.fit (captdata, CL = TRUE, trace = FALSE)

secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b), trace = FALSE)

Ovenbird song

signalCH.525 <- subset(signalCH, cutval = 52.6)

omask <- make.mask(traps(signalCH), buffer=200)

ostart <- c(log(20), 80, log(0.1), log(2))

ovensong.model.1 <- secr.fit(signalCH.525, mask = omask, start = ostart, detectfn = 11,

trace = FALSE)

ovensong.model.2 <- secr.fit(signalCH.525, mask = omask, start = ostart, trace = FALSE)

Appendix 3. Functions calling multi-threaded C++ in secr ≥ 4.1

These internal C++ functions use multi-threading. Set ‘ncores = 1’ or the secr.fit details argument
‘grain = 0’ to suppress multi-threading. ‘Level’ refers to the units that are distributed over parallel threads.
makegkPointcpp precomputes probability and hazard values for each combination of parameter values,
detector, and mask point.

Function Level Called by user-facing functions. . .

makegkPointcpp cell of habitat mask autoini, esa, expected.n, fxi, region.N, secr.fit,
sim.secr

makegkPolygoncpp cell of habitat mask esa, expected.n, fxi, region.N, secr.fit
fasthistoriescpp detection history secr.fit
polygonhistoriescpp detection history secr.fit
pdotpointcpp point (of mask) pdot (used in many functions)
hdotpolycpp point (of mask) pdot (used in many functions)
sightingchatcpp detection history secr.fit
signalhistoriescpp detection history secr.fit
simplehistoriescpp detection history secr.fit
simplehistoriesfxicpp detection history fxi

8

	Introduction
	Multi-threading
	Faster fitting of `proximity' and `count' data
	Data compression
	1. Binary proximity data as binomial count
	2. Pass only non-zero counts

	Operation
	Restrictions

	Individual mask subsets
	Backward compatibility
	References
	Appendix 1. Specific changes in secr 4.0
	Appendix 2. Code for fitting models omitted from secr \ge 4.0
	House mouse
	Stoat
	Ovenbird
	Brushtail possum
	Deer mouse
	DENSITY demo data
	Ovenbird song

	Appendix 3. Functions calling multi-threaded C++ in secr \ge 4.1

