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The R package openCR fits both non-spatial and spatial capture–recapture models to data from open
animal populations, where there is turnover during sampling. Modelling of movement between sessions is
experimental in this version. The interface generally resembles that of secr (Efford 2018a) upon which
openCR depends for some functions. This document explains the purpose and general features of openCR.
Help pages should be consulted for more detail on particular functions. Worked examples using published
datasets are given in another vignette openCR-examples.pdf, and simulation-based examples are in a further
vignette openCR-simulations.pdf1. Some bugs should be expected in the initial release. A paper describing
the spatial model has been submitted (Efford 2018b).

1 Outline

1.1 Model types

openCR fits nonspatial open-population models of the Cormack-Jolly-Seber (CJS) and Jolly-Seber-Schwarz-
Arnason (JSSA2 or ‘POPAN’) types. JSSA models are offered in both full and conditional likelihood forms,
each with several parameterizations of recruitment, and incorporating Pollock’s robust design. Pradel analyses
are also provided.

Spatial versions of the CJS and JSSA model types are also provided3. The spatial models allow for ‘multi’,
‘proximity’ or ‘count’ detectors as defined in secr. Several functions are implemented for the decline in hazard
of detection with distance. Movement between primary sessions may be modelled (cf Ergon and Gardner
2014), but this feature is experimental.

1These supplementary vignettes are not included with the package. It is intended to distribute them on the website
www.otago.ac.nz/density. Otherwise contact the author.

2As far as I know, this abbreviation was first used by Pledger et al. (2010). Recognising the contributions of Crosbie and
Manly, Schofield and Barker (2009) and Cowen et al. (2010) referred to it the Crosbie-Manly-Arnason-Schwarz (CMAS) model.
Link and Barker (2010) used ‘Crosbie-Manly-Schwarz-Arnason’ (CMSA) for the same model. CMSA has since been used by
various authors, including Schofield and Barker (2016). JSSA is used in openCR because this highlights its evolution from the
widely known Jolly-Seber model. POPAN refers to the software of Schwarz and Arnason (1996), recycled as the name of a data
type in MARK.

3The utility of the spatial CJS model type (CJSsecr) is in doubt because the distribution of detected animals is not uniform
at first detection, but rather biased towards the vicinity of the detectors.
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1.2 Data

Data are assumed to be from a robust design. Secondary sampling sessions are nested within primary sessions
and all turnover (births, deaths, immigration or emigration) is between primary sessions (Pollock 1982).
There may be a single secondary session per primary session (this limits identifiability of some parameters).

1.3 Model specification and fitting

Models are specified using formula notation as in secr. Possible predictors include both pre-defined variables
for learned responses, trend over time, etc., and user-provided covariates. Models are fitted by numerically
maximizing the log likelihood. The likelihood is formed as a product over capture histories (Pledger at al.
2010) rather than from summary statistics. The fitted model is an object of class ‘openCR’ for which generic
methods are implemented (print, predict, AIC, plot etc.).

Variation in a parameter between primary sessions is modelled as e.g., model = phi ~ session4.
Within-session variation in detection parameters may also be modelled (see field vole example in
openCR-examples.pdf).

1.4 Parameterization

A selection of parameterizations is offered for recruitment in JSSA models. Models can also be parameterized
in terms of the time-specific population size (non-spatial models) or density (spatial models), avoiding the
super-population parameter.

Super-population size (or density in the case of secr models) may be computed as a derived parameter from
‘CL’ models with the function derived(), which also computes time-specific population sizes and densities.

1.5 Features and limitations

openCR has definite limitations that may or may not be addressed in future versions. Important differences
between secr and openCR are noted here. Online help is not guaranteed: users should attempt to solve
their own problems, or seek help from other users via phidot or secrgroup.

2 Dipper example

We start with a simple nonspatial example. Lebreton et al. (1992) demonstrated Cormack-Jolly-Seber
methods with a dataset on European Dipper (Cinclus cinclus) collected by Marzolin (1988). The object
dipperCH distributed with openCR provides these data in the secr ‘capthist’ format. See the Examples
section of its help page ?dipperCH for code to input the data from other sources.

library(openCR) # also loads secr

options(digits = 4, width = 90) # for more readable output

Dippers were captured annually over 1981–1987.

m.array(dipperCH, never.recap = T) # compare Lebreton et al. 1992 Table 10

## R 1982 1983 1984 1985 1986 1987 NRecap

## 1981 22 11 2 0 0 0 0 9

## 1982 60 24 1 0 0 0 35

4This is equivalent of ~t in Lebreton et al. (1992) or ~time in RMark, and openCR recognises ~ t as a synonym of ~

session.
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## 1983 78 34 2 0 0 42

## 1984 80 45 1 2 32

## 1985 88 51 0 37

## 1986 98 52 46

## 1987 93 93

We can fit a Cormack-Jolly-Seber model directly with openCR.fit and display the estimates:

dipper.phi.t <- openCR.fit(dipperCH, type = 'CJS', model = phi~t)

predict(dipper.phi.t)

## $p

## session estimate SE.estimate lcl ucl

## 1981 1 NA NA NA NA

## 1982 2 0.9021 0.02906 0.8286 0.9461

## 1983 3 0.9021 0.02906 0.8286 0.9461

## 1984 4 0.9021 0.02906 0.8286 0.9461

## 1985 5 0.9021 0.02906 0.8286 0.9461

## 1986 6 0.9021 0.02906 0.8286 0.9461

## 1987 7 0.9021 0.02906 0.8286 0.9461

##

## $phi

## session estimate SE.estimate lcl ucl

## 1981 1 0.6258 0.11165 0.3965 0.8098

## 1982 2 0.4542 0.06662 0.3295 0.5849

## 1983 3 0.4784 0.05845 0.3669 0.5921

## 1984 4 0.6244 0.05703 0.5079 0.7281

## 1985 5 0.6079 0.05483 0.4970 0.7088

## 1986 6 0.5833 0.05721 0.4688 0.6895

## 1987 7 NA NA NA NA

plot(dipper.phi.t, par = 'phi', ylim = c(0,1), pch = 16, col = 'red')

Session

ph
i

1981 1983 1985 1987

0.0

0.2

0.4

0.6
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From this example you can see some of the virtues of openCR

• accessible data summaries
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• compact model specification
• direct plotting and tabulation of results.

See openCR-examples.pdf for more extensive analyses of this dataset.

3 A brief survey of open population capture–recapture models

There is a large literature on open-population capture–recapture modelling. Almost all modern models derive
from the Cormack-Jolly-Seber (CJS) or Jolly-Seber (JS) models (Seber 1982), with refinements by Crosbie
and Manly (1985), Schwarz and Arnason (1996), Pradel (1996) and others. The MARK software (White and
Burnham 1999) implemented many of these developments and remains the standard. This section describes
differences among models as they relate to openCR.

3.1 CJS vs JS

The split between the CJS and JS model lineages is fundamental. CJS models do not model the first capture
of each animal; they condition on that capture and model subsequent recapture probabilities p and apparent
survival φ. CJS estimates of apparent survival are robust and useful (Lebreton et al. 1992), but CJS models
stop short of estimating abundance, recruitment or population trend.

JS models model the first capture of each animal, and lead either directly or indirectly to estimates of
abundance and recruitment. The modern development of JS methods rests heavily on Schwarz and Arnason
(1996), so openCR follows Pledger et al. (2010) in using the label ‘JSSA’. JSSA models were the basis of
the POPAN software, which led to the POPAN data type in MARK. JSSA models are the main focus of
openCR.

3.2 Parameterization of recruitment in JSSA models

The JSSA model appears in several different forms whose unity is obscured by differing parameterizations
of recruitment. The classic POPAN formulation uses entry probabilities: the members of a notional
superpopulation enter the population with time-specific probability βj (PENT in MARK), an idea from
Crosbie and Manly (1985). Other parameterizations are

• number of new entrants at each time j
• per capita fecundity (new entrants at time j scaled by 1/number in population at j − 1)
• seniority (reverse-time survival Pradel 1996, Nichols 2016)
• population growth rate λ
• (relative) number in population at each time j

Estimates of recruitment or implied recruitment from any one of these six parameterizations can be used to
infer the others5. The choice of parameterization rests on which is more natural for the problem in hand (and
allows the desired constraints to be applied) and on practicalities (some are more likely to give numerical
problems than others).

Schwarz (2001) is illuminating (see also chapter on Jolly-Seber models by Schwarz and Arnason in the MARK
book, Cooch and White 2017). Pradel (1996), Williams, Nichols and Conroy (2002: p.518 et seq.), Pledger et
al. (2003, 2010) and Link and Barker (2005) also comment on and compare JS parameterizations. See also
the MARK help page on ‘Recruitment Parameters in Jolly-Seber models’ (‘Recruitment Parameters’ in the
help index).

5except for some mostly trivial differences relating to removals
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3.3 Conditional vs full likelihood JSSA

For each JSSA recruitment parameterization there is a choice between models that include the total number of
detected individuals (u· or n in different notations), and models that condition on this number. Conditional-
likelihood models do not directly estimate abundance; abundance is estimated as a derived parameter (Schwarz
and Arnason 1996). Full-likelihood models include abundance as a parameter. The choice of formulation
has virtually no effect on the parameter estimates6. The conditional likelihood form is somewhat faster and
easier to fit (Schwarz and Arnason 1996), and it focuses on parameters that are estimated robustly (apparent
survival, seniority, population growth rate).

3.4 Sufficient statistics vs capture histories

Historically the CJS and JS likelihoods have been expressed in terms of ‘sufficient statistics’ that are time-
specific counts of animals in different categories, such as the number caught, the number marked etc. This
approach is used in the openCR function JS.direct and with the Pradel model type in openCR.fit. The
likelihood may also be computed as a product over terms, one for each observed capture history7. Modelling
of individual capture histories, is slower, but it is extremely flexible, allowing direct inclusion of censoring,
learned responses, individual covariates, secondary sessions and other extensions. This is the approach used
in MARK and openCR.fit.

3.5 Robust design

Most published formulations of CJS and JSSA models admit only one secondary session per primary session.
Data collected according to a robust design with multiple secondary sessions must be collapsed to a single
sample per primary session. However, it is simple to adapt the capture-history models for multiple secondary
occasions, and this makes better use of the data. MARK offers many specific robust design models. A robust
design is assumed in openCR; data with a single secondary session per primary session are merely a special
case.

3.6 Spatial vs nonspatial

Models may be spatially explicit or not. Nonspatial models ignore the spatial distribution of animals. Spatial
models use the spatially explicit capture–recapture paradigm of Efford (2004), Borchers and Efford (2008)
and Royle et al. (2014). Open population spatial models using MCMC were published by Gardner et al.
(2010), Chandler and Clark (2014), Ergon and Gardner (2014), Whittington and Sawaya (2015) and others.
There are three major motivations for open spatial models

• allowance for varying extent of sampling area
• modelling of individual heterogeneity due to differential access to detectors
• separation of emigration and mortality

openCR fits spatial analogues of CJS and JSSA models by maximizing the likelihood. The abundance
parameter is density D (animals per hectare) rather than population size N .

Recruitment in spatial models may be modelled using parameterizations to those described above for
non-spatial models, replacing ‘number’ by ‘density’. The locations at which animals recruit are not modelled.

6this may not be true for spatial models with spatially varying density, but these models are not considered in openCR.
7strictly, the product over observed histories is only one component of the likelihood
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3.7 Home-range shifts between primary sessions

By definition, the interval between primary sessions is long enough for turnover due to births and deaths. It
is also possible that resident animals shift their home ranges (i.e. disperse). Spatial models may either ignore
such movement (Gardner et al. 2010, Chandler and Clark 2014, Whittington and Sawaya 2015) or attempt
to model it (Ergon and Gardner 2014). There are good arguments for modelling movement:

• Movement that is ignored inflates estimates of the within-session scale of detection σ, and therefore
results in downard bias in estimates of density.

• If the distribution of dispersal distances can be inferred from the detection histories of residents then it
is possible in principle to separate actual mortality from losses due emigration (Ergon and Gardner
2014). However, the robustness and data requirements of movement models have yet to be researched.

4 Data structure and input

Data should be provided to openCR.fit as secr ‘capthist’ objects. The occasions of a single-session dataset
are treated as open-population temporal samples. For spatial analyses, the capthist object should use a point
detector type (‘multi’, ‘proximity’ or ‘count’).

openCR mostly uses the terminology of primary and secondary sessions (Pollock 1982) rather than ‘session’
and ‘occasions’ as in secr. Where ‘session’ appears without qualifier it refers to a primary session composed
of one or more secondary sessions.

The optional intervals attribute of the capthist object defines the structure. If intervals are not specified
then they default to 1.0 and each occasion is treated as a primary session. If intervals are specified then
some may be zero; occasions separated by ‘zero’ intervals are treated as secondary sessions within the same
primary session, as in MARK.

A multi-session capthist object will be converted automatically to a single-session object using function
secr::join. An appropriate intervals attribute is constructed, using the intervals attribute of the multi-
session object for the intervals between primary sessions (1.0 if not specified), and setting other intervals to
zero.

To construct your own capthist objects –

1. Consult secr-datainput.pdf, or
2. Convert a dataframe in RMark input format using secr::unRMarkInput, or
3. Read a MARK .inp input file with read.inp.

Examples of data input code also appear on the help pages for data objects FebpossumCH, fieldvoleCH,
microtusCH and dipperCH.

5 Model types

The various models available in openCR are named to encode the distinctions made in the ‘Brief survey’.
Names are formed by concatenating four components:

1. ‘CJS’ vs ‘JSSA’
2. Spatial (‘secr’) vs non-spatial (default, blank)
3. JSSA recruitment parameterization (‘f’,‘l’,‘b’,‘g’,‘BN’,‘BD’,‘N’,‘D’ - see following)
4. JSSA likelihood conditional (‘CL’) vs full (default, blank)

Thus ‘JSSAsecrfCL’ is a spatial JSSA model parameterized in terms of per capita recruitment f and fitted
by maximizing the conditional likelihood (a spatial version of Link and Barker (2005), minus parameter
covariation). Any movement model is specified separately with the ‘movementmodel’ argument of openCR.fit.
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Parameters vary with the type of model, as listed below. Each of these primary parameters (‘real’ parameters
in MARK) may also be modelled as a linear combination of predictors on a suitable link scale, allowing the
inclusion of covariates and constraints. The coefficients of the parameter-specific linear combinations are
called ‘beta’ parameters in MARK; the likelihood is maximized with respect to the concatenated list of beta
parameters.

5.1 Non-spatial openCR models

5.1.1 Parameters and model types

Table 1. Parameter definitions and default link functions (nonspatial models)

Parameter Symbol Link Description

p p logit capture probability (recapture probability for CJS)
phi* φ logit apparent survival
b b mlogit entry probability cf PENT in MARK
f* f log per capita recruitment rate
gamma* γ logit seniority (Pradel 1996)
lambda* λ log population growth rate (finite rate of increase)
superN N log superpopulation size
BN BN log number of entrants
N Nj log time-specific population size

* parameters marked with an asterisk are scaled by the interval between primary sessions.

Table 2. Parameters of nonspatial openCR models

Type p phi b f gamma lambda superN BN N

CJS + +
JSSAbCL + + +
JSSAfCL + + +
JSSAgCL + + +
JSSAlCL + + +
JSSAb + + + +
JSSAf + + + +
JSSAg + + + +
JSSAl + + + +
JSSAB + + +
JSSAN + + +

5.1.2 Non-spatial models using sufficient statistics

openCR mostly fits models by modelling capture histories one-by-one. An alternative faster method is to
evaluate the likelihood expressed in terms of sufficient statistics. Sufficient statistics vary among models, but
they are typically counts such as provided by the function JS.counts. The ‘sufficient statistics’ approach is not
compatible with individual covariates. The non-spatial model types ‘Pradel’ and ‘Pradelg’ are implemented
in openCR using sufficient statistics (Pradel 1996) and therefore fall outside the main framework (Table
2). They correspond to ‘JSSAlCL’ and ‘JSSAgCL’ respectively, and estimate the same parameters as those
models. Estimates should coincide except when there are losses on capture. ‘Pradel’ is parameterized in
terms of population growth rate (lambda) and ‘Pradelg’ is parameterized in terms of seniority (gamma).
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Additionally, the function JS.direct computes classic Jolly–Seber estimates using the sufficient statistics.

5.2 Spatial openCR models

Table 3. Parameter definitions and default link functions (spatial models)

Parameter Symbol Link Description

lambda0 λ0 log detection function intercept
sigma σ log detection function scale (m)
z z log detection function shape parameter (HHR, HAN, HCG, HVP)
phi* φ logit apparent survival
b b mlogit entry probability (beta)
f* f log per capita recruitment rate
gamma* γ logit seniority (Pradel 1996)
lambda* λ log population growth rate (finite rate of increase)
superD D log superpopulation density
BD BD log entrants per hectare
D Dj log time-specific population density

* parameters marked with an asterisk are scaled by the interval between primary sessions.

Table 4. Parameters of spatial openCR models

Type lambda0 sigma z phi b f gamma lambda superD BD D

CJSsecr + + + +
JSSAsecrbCL + + + + +
JSSAsecrfCL + + + + +
JSSAsecrgCL + + + + +
JSSAsecrlCL + + + + +
JSSAsecrb + + + + + +
JSSAsecrf + + + + + +
JSSAsecrg + + + + + +
JSSAsecrl + + + + + +
JSSAsecrB + + + + +
JSSAsecrD + + + + +
secrCL + + +
secrD + + + +

6 Model formulae

Formulae define a linear model for each ‘real’ parameter (p, phi, sigma etc.) on the link scale (logit, log etc.).
Alternative link functions not shown in Tables 1 and 3 are ‘loglog’ and ‘sin’, both as defined in MARK.

The default linear combination for each parameter is a constant, null model (~1, parameter constant over
time, unaffected by individual differences etc.). To include other effects build formulae using either predefined
(built-in) predictors listed here, or the names of covariates.
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6.1 Built-in predictors

Table 5. Built-in predictors (‘sessions’ refers to primary sessions)

Predictor Parameters Description

session all except ‘superN’, ‘superD’ Factor, one level per primary session
t all except ‘superN’, ‘superD’ synonym of ‘session’
Session all except ‘superN’, ‘superD’ Continuous time
b p, phi, lambda0, sigma learned response (persists across sessions)
B p, lambda0, sigma detector-specific transient (Markovian) response across

sessions
bk p, phi, lambda0, sigma detector-specific learned response (persists across sessions)
bsession p, lambda0, sigma learned response within sessions
Bsession p, lambda0, sigma transient (Markovian) response within sessions
bksession p, lambda0, sigma detector-specific learned response within sessions
Bksession p, lambda0, sigma detector-specific transient (Markovian) response within

sessions
h2 all except abundance 2-class finite mixture
h3 all except abundance 3-class finite mixture
age all except abundance age factor
Age all except abundance linear effect on age
Age2 all except abundance linear effect on age2

Differences among the various learned responses may be understood by examining their effect on the parameter
index array (PIA). This table illustrates the PIA slice corresponding to an individual with the non-spatial
detection history shown (4 primary sessions, each of 4 secondary sessions). The values ‘1’ and ‘2’ refer to
different parameter combinations, most commonly to levels of lambda0.

Detection history : 0100 0000 0000 0100

~bsession 1122 1111 1111 1122 persistent within primary session
~Bsession 1121 1111 1111 1121 transient within primary session
~b 1122 2222 2222 2222 persistent
~B 1122 2222 1111 1122 transient across primary sessions

IMPORTANT NOTE: Learned response predictors (‘b’, ‘bsession’ etc.) were re-defined in openCR 1.3.0.
Models fitted with earlier versions should be re-fitted.

6.2 User-provided covariates

The rules for covariates largely follow secr (secr-overview.pdf). Covariates may be at the level of primary
session, secondary session (detection parameters only), individual (CL models only), or detector (spatial
models only). Further complexity may be modelled by providing custom design data cutting across these
categories (see below).

Individual and detector covariates are named columns in the ‘covariates’ attributes of the respective capthist
and traps object. Covariate names should differ from the built-in predictors (Table 5).

Primary session covariates are provided to openCR.fit in the argument ‘sessioncov’, rather than associated
with a data object. If ‘sessioncov’ is a vector (length equal to number of primary sessions) rather than a
dataframe then it may be referenced as ‘scov’ in model formulae.
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Covariates for detection parameters in secondary sessions are provided in the ‘timecov’ argument; if ‘timecov’
is a vector (length equal to total number of secondary sessions) rather than a dataframe then it may be
referenced as ‘tcov’ in model formulae.

7 More on modelling

7.1 Closed populations

The types ‘secrD’ and ‘secrCL’ cause openCR.fit to treat the data as if from a closed population (no
mortality, no recruitment, no movement); the intervals attribute is ignored. openCR 1.3 fits simple closed
models faster than secr 3.1. This surprising result is due to multithreading, improved coding, and avoidance
of some modelling complexity.

msk <- make.mask(traps(captdata), buffer = 100, type = 'trapbuffer')

secr <- secr.fit(captdata, detectfn = 'HHN', mask = msk, trace = FALSE)

openCR <- openCR.fit(captdata, detectfn = 'HHN', mask = msk, type = 'secrD')

# massage the predict.openCR results to the same format as predict.secr

pred_openCR <- plyr::rbind.fill(predict(openCR))[c(2,1,3),-1]

rownames(pred_openCR) <- secr$realnames

# compare estimates

predict(secr)[,-1]

## estimate SE.estimate lcl ucl

## D 5.485 0.64703 4.356 6.9058

## lambda0 0.307 0.03413 0.247 0.3815

## sigma 28.764 1.30055 26.326 31.4283

pred_openCR

## estimate SE.estimate lcl ucl

## D 5.485 0.64479 4.356 6.9058

## lambda0 0.307 0.03403 0.247 0.3815

## sigma 28.764 1.29988 26.326 31.4283

# compare timings in seconds

c(secr = secr$proctime, openCR = openCR$proctime)

## secr.elapsed openCR.elapsed

## 18.37 5.49

The maximised log likelihoods differ because openCR does not include the multinomial constant. secr has
function logmultinom that lets us add it back:

# compare maximised log likelihoods

c(secr.logLik = logLik(secr), openCR.logLik = logLik(openCR) + logmultinom(captdata))

## secr.logLik openCR.logLik

## -758.9 -758.9
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7.2 Finite mixtures

Two- and three-class finite mixtures (h2, h3) allow for individual heterogeneity in detection and turnover
parameters (Pledger et al. 2003, 2010). Using one of these predictors in a formula causes a further real
parameter ‘pmix’ to be added. pmix is the proportion in latent mixture class 2 for h2, and the proportions in
classes 2 and 3 for h3 (the proportion in class 1 is obtained by subtracting from 1). The implementation in
openCR assumes that class membership applies across all parameters. The posterior probabilities of class
membership for all detected individuals are returned as the ‘posterior’ component of the fitted model.

Finite mixture likelihoods are prone to multimodality. Misleading estimates result when the numerical
maximization settles on a local maximum (see also [secr-finitemixtures.pdf].

7.3 Age

If age is modelled as a factor then it is useful to group older animals in a maximum age class (‘maximumage’).
Animals are assumed to be first caught at age zero unless ‘initialage’ is specified. ‘maximumage’ and ‘initialage’
are optional components of the ‘details’ argument of ‘openCR.fit. ‘initialage’ can name an individual covariate
to avoid the assumption that all animals are the same age at first detection.

For a quadratic relationship with age, specify an additive model with both Age and Age2 terms (e.g., model
= phi ~ Age + Age2).

7.4 Sampling intervals

We have seen the role of the intervals attribute in defining primary and secondary sessions. Between-session
intervals need to be specified only if they vary, or if you would like rates (phi, gamma, lambda, f) to be
reported in time units other than the (implicitly constant) sampling interval. Scaling from the standardised

parameter θj to the interval-specific value θ′

j uses θ′

j = θ
Tj

j where θj is one of φj or λj , and Tj is the duration
of interval j.

Scaling γ follows the same pattern except that the relevant duration for γj is Tj−1. Scaling per capita

recruitment fj is more tricky. We use f ′

j = (φj + fj)Tj − φ
Tj

j .

7.5 Custom design data

Occasionally there is a need for covariates that do not relate specifically to individuals, sessions or detectors,
and are not included as canned predictors. For this you must construct your own dataframe of design data
and pass it as the ‘dframe’ argument of openCR.fit. Design data are used as input to the model.matrix

function (the ‘data’ argument); model.matrix generates the design matrix for each real parameter. Design
data are usually constructed internally in openCR.fit from named covariates and other predictors that
appear in model formulae; if ‘dframe’ is provided then the internally constructed design data are added as
extra columns, overwriting any custom columns of the same name. The same design dataframe is used for all
parameters.

Constructing ‘dframe’ is fiddly. The dataframe should have one row for each combination of unique capture
history, secondary session, detector and latent class (mixture). For nonspatial models without finite mixtures
this collapses to one row for each capture history and secondary session. The order of rows follows that of
the elements in an array with dimensions (n, S, K, X) for n unique capture histories, S secondary sessions,
K detectors and X latent classes8. The secr function insertdim can help to expand data into the correct
row order.

8This rectangular (or cuboidal) configuration includes cells that are redundant and unused for a particular model type (e.g.,
cells corresponding to sessions at or before first capture in CJS models). However, the full complement of rows is required in
dframe.
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A warning: by default openCR.fit replaces the input capthist with a more compact version using only unique
capture histories (the number of each is kept in the individual covariate ‘freq’; see the function squeeze).
Design data are in terms of the ‘squeezed’ capture histories.

In this example we define a function to construct custom design data for a learned response.

makedf.b <- function (ch, spatial = FALSE, nmix = 1, naive = FALSE) {

ch <- squeeze(ch)

# Construct matrix of logical values TRUE iff caught before

detected <- apply(abs(ch),1:2,sum)>0

detected <- t(apply(detected, 1, cumsum)>0)

if (naive)

b <- rep(FALSE, prod(dim(ch)[1:2]))

else

b <- t(apply(detected, 1, function(x) {x[which.max(x)] <- FALSE; x}))

# For a simple non-spatial case: data.frame(customb = as.vector(b))

# More generally:

n <- nrow(ch)

S <- ncol(ch)

K <- if (spatial) dim(ch)[3] else 1

data.frame(customb = insertdim(b, 1:2, c(n,S,K,nmix)))

}

Now compare the result with the canned predictor ‘b’ for a persistent learned response.

ovenj <- join(ovenCH)

fitb <- openCR.fit(ovenj, model = p ~ b)

fitbc <- openCR.fit(ovenj, model = p ~ customb, dframe = makedf.b(ovenj))

AIC(fitb, fitbc)

## model npar rank logLik AIC AICc dAIC AICwt

## fitb p~b phi~1 3 2 -254.6 515.2 515.6 0 0.5

## fitbc p~customb phi~1 3 2 -254.6 515.2 515.6 0 0.5

Our custom model gives exactly the same result as the canned predictor ‘b’ when type = ‘CJS’ because
the precise secondary session of first capture is irrelevant for CJS models (recaptures are modelled only for
subsequent primary sessions unless details$CJSp1 == TRUE).

Discrepancies can arise with non-CJS models because these account for animals never detected. The
corresponding likelihood component uses a distinct design matrix for a ‘naive’ animal. To customize non-CJS
models a separate dframe should be provided that applies to naive animals:

fitb2 <- openCR.fit(ovenj, model = p ~ b, type = 'JSSAfCL', start = fitb)

fitbc2 <- openCR.fit(ovenj, model = p ~ customb, type = 'JSSAfCL',

dframe = makedf.b(ovenj), dframe0 = makedf.b(ovenj, naive = TRUE))

AIC(fitb2, fitbc2)

## model npar rank logLik AIC AICc dAIC AICwt

## fitbc2 p~customb phi~1 f~1 4 4 -661.2 1330 1331 0.00 1

## fitb2 p~b phi~1 f~1 4 3 -670.5 1349 1350 18.63 0

7.6 Transience

An ad hoc adjustment for transience may be programmed as follows (cf Pradel et al. 1997).

makedf.resident <- function (ch, spatial = FALSE, nmix = 1) {

ch <- squeeze(ch)
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n <- nrow(ch)

S <- ncol(ch)

K <- if (spatial) dim(ch)[3] else 1

primary <- primarysessions(intervals(ch))

detected <- apply(abs(ch),1:2,sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

data.frame(resident = insertdim(nprimary>1, 1, c(n,S,K,nmix)))

}

A simpler approach is to code an individual covariate that scores whether an individual was detected in more
than one primary session.

addresidentcov <- function (ch) {

primary <- primarysessions(intervals(ch))

detected <- apply(abs(ch), 1:2, sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

covariates(ch) <- data.frame(residentcov = nprimary>1)

ch

}

Results are identical:

ovenj <- join(ovenCH)

ovenj <- addresidentcov(ovenj)

fitnull <- openCR.fit(ovenj, model = phi ~ 1)

fitcov <- openCR.fit(ovenj, model = phi ~ residentcov)

fitdf <- openCR.fit(ovenj, model = phi ~ resident, dframe = makedf.resident(ovenj))

fits <- openCRlist(fitnull, fitcov, fitdf)

AIC(fits)

## model npar rank logLik AIC AICc dAIC AICwt

## fitcov p~1 phi~residentcov 3 2 -225.8 457.6 458.0 0.00 0.5

## fitdf p~1 phi~resident 3 2 -225.8 457.6 458.0 0.00 0.5

## fitnull p~1 phi~1 2 2 -254.6 513.2 513.4 55.56 0.0

pred <- predict(fits, newdata = data.frame(resident = TRUE, residentcov = TRUE))

do.call(rbind, lapply(pred, '[[', 'phi'))

## resident residentcov estimate SE.estimate lcl ucl

## fitnull TRUE TRUE 0.4630 0.05473 0.3590 0.5703

## fitcov TRUE TRUE 0.7387 0.06112 0.6031 0.8402

## fitdf TRUE TRUE 0.7387 0.06112 0.6031 0.8402

Hines et al. (2003) suggested extending the definition of residence to include animals captured at least d days
apart within a primary session; either of the approaches here may be modified accordingly. Here is the code
for two individual covariates:

addresidentcov2 <- function (ch, d = 1) {

primary <- primarysessions(intervals(ch))

secondary <- secondarysessions(intervals(ch))

detected <- apply(abs(ch), 1:2, sum)>0

nprimary <- apply(detected, 1, function(x) length(unique(primary[x])))

dsecondary <- apply(detected, 1, function(x)

max(by(secondary[x], primary[x], function(y) diff(range(y)))))

covariates(ch) <- data.frame(residentcov1 = nprimary>1,

residentcov2 = nprimary>1 | dsecondary>=d)

ch
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}

7.7 Factor coding

Factor predictors take a number of discrete values (levels). These are usually represented by columns of 0’s
and 1’s in the design matrix, where the number of columns (and coefficients) relates to the number of levels.
The default in R is to use ‘treatment contrasts’; one coefficient describes a reference class (level) and other
coefficients represent the effect size (difference from the reference class on the link scale). By default the first
level is used as the reference: for time effects (t, session) the first primary session is the reference level9.

This may lead to trouble if the parameter is not identifiable in the reference class. One workaround is to
specify a session covariate with differently ordered levels. Another is to switch from treatment contrasts to
dummy variable coding in which each coefficient represents the magnitude of one real parameter on the link
scale (useful in itself). Dummy variable coding is achieved by overriding the default contrasts and removing
the intercept from the formula (-1). The following model fits yield the same estimates of ‘real’ parameters
and the same log-likelihood, but with different ‘beta’ parameters:

fit0 <- openCR.fit(ovenCH, model = p~t)

contr.none <- function(n) contrasts(factor(1:n), contrasts = FALSE)

fitd <- openCR.fit(ovenCH, model = p ~ -1+t,

details = list(contrasts = list(t = contr.none)))

coef(fit0)

## beta SE.beta lcl ucl

## p -1.54954 0.2459 -2.0316 -1.0675

## p.t3 0.32964 0.3280 -0.3133 0.9725

## p.t4 -1.42725 0.5259 -2.4581 -0.3964

## p.t5 -0.14372 0.4489 -1.0236 0.7361

## phi -0.03141 0.2399 -0.5016 0.4388

coef(fitd)

## beta SE.beta lcl ucl

## p.t2 -1.54955 0.2459 -2.0316 -1.0675

## p.t3 -1.21990 0.2188 -1.6487 -0.7911

## p.t4 -2.97677 0.4663 -3.8907 -2.0628

## p.t5 -1.69324 0.3783 -2.4347 -0.9518

## phi -0.03143 0.2399 -0.5016 0.4387

7.8 Mean of a parameter across levels of a factor

Suppose you wish to estimate the average of a parameter across levels of a factor such as time (session).
Cooch and White (2017 Section 6.15) advocate modifying the design matrix so that one beta parameter
(coefficient) relates directly to the mean. This is achieved very simply in openCR.fit10 by setting the contrast
function for the factor to contr.sum in the details argument11. With the resulting factor coding the first
coefficient corresponds to the mean. Applying this to estimate the average time-specific survival rate for the
dippers assuming constant recapture probability:

fit <- openCR.fit(dipperCH, model = phi~t, details = list(contrasts = list(t = contr.sum)))

invlogit(coef(fit)['phi',c('beta','lcl','ucl')])

9This does not apply for times when a parameter can never be estimated – for example, openCR understands that seniority
(gamma) is not estimated for the first session and uses the second session for the reference level.

10This also works in secr.fit.
11Helmert contrasts (contr.helmert) also yield the mean as the first coefficient, but the coding is more obscure.
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## beta lcl ucl

## phi 0.5633 0.505 0.6199

The mean is backtransformed from the link scale. This results in some bias owing to the nonlinearity of
link functions other than the identity function. Cooch and White take the position that the bias is often
ignorable.

8 Movement models

Potential movement of home ranges between primary sessions (= dispersal) is a critical part of open-population
models. The argument movementmodel of openCR.fit allows the possibilities in Table 6. Two of these do
not model movement at all. The default ‘static’ is a null model in which each animal retains the same home
range. The ‘uncorrelated’ option models the locations of an animal independently in each primary session;
information is sacrificed and no particular movement model is implied.

The remaining options (normal, exponential and user-supplied function) fit a dispersal kernel (Nathan et al.
2012) to represent movement between primary sessions. This usually requires at least one more parameter to
represent the spatial scale of dispersal. The likelihood for spatially explicit capture–recapture with movement
is outlined in the Appendix and will be published separately.

Table 6. Models for movement between primary sessions.

Movement model Parameter(s) Description

static (none) Centres constant across primary sessions
uncorrelated (none) Centres unconstrained
normal move.a Centres shift randomly between sessions according to

Gaussian kernel
exponential move.a Centres shift randomly between sessions according to negative

exponential kernel
(user function) move.a, move.b User-supplied kernel function

8.1 Dispersal kernels

All movement kernels are radially symmetrical. Relative probability of movement is specified in terms of
radial distance r from the point of origin.

The extent of the kernel is controlled by details argument ‘kernelradius’ that gives the radius in terms of mask
cells. The default radius (10) results in a discretized kernel of 349 cells (square of 441 cells minus corners).
Cell-specific values are normalised so that they sum to 1.0 across the kernel. Dispersal probability effectively
falls to zero at the boundary of the kernel, so the kernel radius is a critical part of the model

A kernel function may be specified by the user and passed in the argument movementmodel. The function
should have argument r, and optionally a, or a and b (the last two correspond to openCR parameters move.a
and move.b) It should return a vector of values one for each element of r, although length(r) = 1 when the
likelihood is evaluated in C++ (details$R = FALSE, the default). The code should give a valid result when
r = 0. With the default link (‘log’ for both move.a and move.b) there is no risk of a ≤ 0 or b ≤ 0.

A kernel may be visualised with the plotKernel function:

par (mar=c(2,2,3,6), cex=0.9)

plotKernel ('normal', spacing = 10, pars = 40, clip = TRUE, contour = TRUE)
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8.2 Warnings

1. The ‘uncorrelated’ option is not recommended. It discards information on the continuity of home ranges
between primary sessions, and estimates may vary with the (often arbitrary) extent of the habitat mask.

2. Kernel-based movement models are experimental in openCR 1.1. This is because

• bugs may remain in the code,
• the theory has yet to be peer reviewed,
• doubts remain about the general robustness and usefulness of the estimates, and
• questions about edge effects, appropriate kernel size and buffer width remain to be addressed.

9 Derived parameters

Various derived parameters may be computed from a fitted model. Specifically,

1. Abundance at each primary session (population size for non-spatial models or density for spatial models)
may be computed from any JSSA model, including those fitted by maximizing the conditional likelihood.
By default, the estimator is Horvitz-Thompson-like at the level of the superpopulation (N or D). For
non-spatial models N̂ =

∑n

i=1
p̂−1

i where p̂i is the estimated probability animal i is seen in at least one

session. For spatial models D̂ =
∑n

i=1
â−1

i , where âi is the estimated effective sampling area of animal
i (Borchers and Efford 2008). The sums are over all individuals ever seen. Session-specific abundances
are inferred by distributing N or D over sessions according to the entry probabilities b. Alternatively
(HTbysession = TRUE) the H-T estimate may be based on the number detected in each session and
the corresponding session-specific estimates of p or a.

2. Any of the recruitment parameters in Table 2 or Table 4 may be computed from any other model of
the same class (non-spatial or spatial)12.

12However, the effect of a constraint (e.g., parameter constant over sessions) will vary depending on the parameter to which it
is applied.
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Both goals are served by the derived method for openCR objects. Among other outputs, this generates a
summary table with point estimates of all relevant parameters. We demonstrate this with a new dipper
model, fitted using conditional likelihood:

dipperCL <- openCR.fit(dipperCH, type = 'JSSAlCL',

model = list(lambda~t, phi~t))

# only these parameters are in the model and estimated directly,

names(predict(dipperCL))

## [1] "p" "phi" "lambda"

# but we can derive b, f, gamma and N, as well as the super-population N

d <- derived(dipperCL)

print(d, digits = 3, legend = TRUE)

## Total number observed 294

## Parameters in model p, phi, lambda

## Superpopulation size 310.6

## Session-specific counts and estimates:

##

## session t n R m r z time p phi lambda b f gamma kappa N

## 1 1 22 22 0 13 0 0 0.902 0.626 2.792 0.0785 2.166 NA NA 24.4

## 2 2 60 60 11 25 2 1 0.902 0.454 1.265 0.1701 0.811 0.224 2.23 68.1

## 3 3 78 78 26 36 1 2 0.902 0.478 1.026 0.1778 0.548 0.359 2.36 86.2

## 4 4 80 80 35 48 2 3 0.902 0.624 1.104 0.1519 0.480 0.466 2.05 88.4

## 5 5 88 88 47 51 3 4 0.902 0.608 1.103 0.1365 0.495 0.566 1.86 97.6

## 6 6 98 98 52 52 2 5 0.902 0.583 0.958 0.1554 0.375 0.551 2.09 107.6

## 7 7 93 93 54 0 0 6 0.902 NA NA 0.1298 NA 0.609 1.77 103.1

##

## Field Definition

## ------- -----------------------------------------

## session primary session

## t primary session

## n number observed

## R number released

## m number already marked

## r number recaptured in later session

## z number known alive but not caught

## time accumulated time since start

## p detection probability per secondary session

## phi apparent survival per unit time

## lambda population growth rate per unit time

## b entry probabilities

## f per capita recruitment per unit time

## gamma seniority (cf reverse-time phi)

## kappa recruitment parameter of Link and Barker (2005)

## N population size

The print method for objects from derived provides some control over formatting, as shown. Use the Dscale
argument to change area units (spatial models only).

derived does not yet provide delta-method SE or confidence intervals for derived parameters. A reliable
workaround for abundance paramaters (N, D)13 is to (i) infer the point estimates with derived14, (ii) assemble

13This may sometimes be feasible for derived recruitment parameters, but given the doubts introduced by differing constraints
it is better just to refit the model.

14These are also the MLE when distribution = “poisson” (e.g., Schofield and Barker 2016).
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a start vector on the link scale(s) for an equivalent full-likelihood openCR.fit model that includes the derived
abundances, and (iii) run openCR.fit with method = "none" to compute the hessian at the MLE, and hence
the full variance-covariance matrix.

10 Simulating open-population data

The secr functions sim.popn and sim.capthist provide the means to generate spatial open-population data
with known survival probability, population trend λ and detection parameters. Open population data are
generated by setting nsessions > 1 in sim.popn and specifying a value for λ. Turnover settings are controlled
by components of the ‘details’ argument of sim.popn. The secr help page ?turnover should be consulted.
sim.capthist should be called with renumber = FALSE (otherwise individual capture histories cannot be
matched across primary sessions).

Use the openCR function sim.nonspatial to generate non-spatial open-population data. openCR also
provides these finctions to streamline simulation and speed it up by using multiple cores –

Function Purpose

runsim.nonspatial Generate data with sim.nonspatial and fit models using openCR.fit

runsim.spatial Generate data with sim.popn and sim.capthist, and fit models using openCR.fit

sumsims Summarise list output from runsim.nonspatial or runsim.spatial

runsim.nonspatial and runsim.spatial are essentially wrappers; the user must provide appropriate
argument values for each of the nested functions. See openCR-simulations.pdf for example code.

11 Troubleshooting

11.1 Nonidentifiability

It is common for some session-specific parameters of open capture–recapture models to be nonidentifiable,
either for structural reasons or because the particular dataset is uninformative (e.g., Gimenez et al. 2004).

The main diagnostic is the rank of the Hessian matrix. If the rank is less than the number of parameters then
the model is not fully identifiable and the estimates of some parameters will be confounded or unreliable.
Matrix rank is determined numerically by counting non-zero eigenvalues. Computed eigenvalues of non-
identifiable parameters may appear as small positive numbers, so it is necessary to apply an arbitrary
numerical threshold.

Exactly which parameter estimates are unreliable can usually be discerned from computed variances (SE and
confidence intervals). Data cloning (Lele et al. 2010) is also helpful; function cloned.fit implements the
method for nonspatial models.

Session-specific turnover parameters may become nonidentifiable if home ranges are allowed to move freely
between primary sessions (movementmodel = 'uncorrelated'). Intuitively, this is because radical changes
in individual detection probability (due to proximity to detectors) cannot be separated from mortality and
recruitment.

11.2 Failure of numerical maximization

Bad estimates (zero, very large, close to starting values or zero variance) may merely indicate a problem with
the maximization algorithm rather than nonidentifiability.
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11.2.1 Starting values

Numerical maximization of the likelihood requires appropriate starting values for the parameters. If starting
values are poor then initial evaluations of the likelihood may return an infinite value, or otherwise provide
inadequate direction for the numerical algorithm.

openCR.fit provides a mechanism for recycling earlier estimates as starting values: simply provide the name
of a previously fitted model as the start argument. Parameters shared between the models will be set to the
old estimates, while unmatched parameters will be set to defaults. A list of two previous models may be
provided; values from the first take precedence.

11.2.2 Boundary estimates

Variance estimation based on the Hessian matrix fails if the estimate lies on a boundary of the parameter
space. Computed SE are then extreme, and confidence limits are implausible. This commonly happens when
apparent survival (phi) approaches 1.0. Boundary estimates are more benign than other reasons for failure
(the estimates themselves may be reliable). Alternative methods for variance estimation in this case have not
been implemented.

Using the “sin” link for parameters bounded by 0 and 1 (the probability parameters p and phi) can be helpful.

11.2.3 Alternative algorithms

The default method for maximizing the likelihood function is Newton-Raphson as implemented in the R
function nlm. This relies on numerical gradient estimates, which can cause trouble. Avoid gradient estimation
entirely by using the somewhat slower ‘Nelder-Mead’ method of function optim e.g.,

fitnr <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t))

fitnm <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t),

method = "Nelder-Mead", details = list(control = list(maxit = 5000)))

The default maximum number of likelihood evaluations for the Nelder-Mead algorithm (500) is often too
small and results in a “probable maximization error” warning. Here we increase it to 2000 by setting the
details argument “control” that is passed to optim.

Somewhat alarmingly, the NM algorithm settles on a lower log likelihood and different estimates:

AIC(fitnm,fitnr)

## model npar rank logLik AIC AICc dAIC AICwt

## fitnr p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0.000 0.9898

## fitnm p~1 phi~t lambda~t 9 9 -661.3 1341 1344 9.154 0.0102

We can fix that by feeding Nelder-Mead the starting values from another model:

fitnm <- openCR.fit(ovenCH, type = 'JSSAlCL', model = list(phi ~ t, lambda~t),

method = "Nelder-Mead", details = list(control = list(maxit = 2000)),

start = fitnr)

AIC(fitnm,fitnr)

## model npar rank logLik AIC AICc dAIC AICwt

## fitnm p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0 0.5

## fitnr p~1 phi~t lambda~t 9 9 -656.7 1331 1334 0 0.5

In the longer term, better maximizers are needed.
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11.3 Speed

Spatial models are slow to fit. Consider these options

• Use no more mask points than necessary. Typically about 1000 will do (may not apply for kernel
movement models).

• Data with many occasions (secondary sessions) should be collapsed.
• If you are interested in several models, fit them all at once with par.openCR.fit and ncores > 1. This

can save a lot of time.
• Don’t assume that increasing the number of cores will necessarily speed up computations; additional

cores impose overheads in cluster setup and communication.
• Use the conditional likelihood (CL) models: estimates of phi and lambda are often all you need, and

derive can give estimates of abundance (superN, N, superD, and D) from CL models, as well as
alternative measures of recruitment.

• Avoid individual covariates with many levels. This applies especially to continuous individual covariates:
normally these should be discretized (coded as a few ordered categories, but not converted to factor).

• First fit the most simple model and add complexity, using a simpler related model for ‘start’.
• ‘secr’ data with detector type ‘multi’ fit much faster than ‘proximity’ data; use this option if it makes

sense (and even maybe when it doesn’t).
• For problems with many parameters, ‘cyclic fixing’ may be useful (Schwarz and Arnason 1996; Pledger

et al. 2003).

openCR ≥ 1.2 is generally faster than openCR 1.1 because it automatically uses multiple threads to run
some calculations in parallel. The speed difference can be impressive - around 4x. Multithreading uses
RcppParallel. A couple of tuning parameters are available. The number of threads is set with ncores argument
in openCR.fit. By default, openCR uses one less than the number of (virtual) cores available (i.e. 7 on a
quad-core desktop with hyperthreading). The ‘grain size’ (see RcppParallel may be varied with details$grain,
but seems to have little effect.

12 Extras

12.1 Sampling variance warning

Full models (not CL or Pradel) include superpopulation size N as a variable. The default in openCR for
both non-spatial and spatial models is to treat N as a Poisson variable, from which it follows that the number
of individuals detected at least once (n) is also Poisson. This is also the default in secr. However, estimates
from POPAN models in MARK treat N as fixed and n as binomial. The assumption of fixed N leads to
narrower confidence intervals and estimates of detection and turnover parameters that differ slightly from
conditional likelihood models (see e.g. Schofield and Barker 2016). To obtain JSSA estimates from openCR

that match those from MARK it is necessary to set distribution = "binomial".

12.2 Example datasets

Several examples of analyses with openCR are given in the associated vignette openCR-examples.pdf. These
use data already formatted as secr capthist objects in R; the objects are provided in one or other package.
All are available immediately openCR is loaded with library. Each has its own help page.

Table 6. Data objects in openCR. ‘RD’ indicates robust design with multiple secondary sessions. See
openCR-examples.pdf for references.

Data object Spatial RD Species etc. Source

microtusCH
etc.

No Yes* Meadow vole Microtus

pennsylvanicus USA
Nichols et al. (1984), Williams
et al. (2002)
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Data object Spatial RD Species etc. Source

FebpossumCH No Yes Brushtail possum Trichosurus

vulpecula New Zealand
M. Efford unpubl.

dipperCH No No European dipper Cinclus cinclus

France
Lebreton et al. (1992), MARK

gonodontisCH No No Moth Gonodontis bidentata

England
Bishop et al. (1978), Crosbie
(1979)

fieldvoleCH Yes Yes Field vole Microtus agrestis

Norway
Ergon and Lambin (2013)

Table 7. Multi-session data objects in secr.

Data object Spatial RD Species etc. Source

OVpossumCH Yes Yes Brushtail possum Trichosurus

vulpecula New Zealand
M. Efford unpubl.

ovenCHp Yes Yes Ovenbird Seiurus aurocapilla USA D. Dawson and M. Efford
unpubl.

12.3 Testing assumptions

This is generally an undeveloped field for spatially explicit capture–recapture models. Demonstrating that
assumptions were not satisfied may also be of no consequence: we would usually ignore such a finding if the
estimator is reasonably robust.

For Cormack-Jolly-Seber (nonspatial) models there is an established suite of tests following Burnham et
al. (1987). The tests have been implemented in the U-CARE software of Choquet et al. (2009), recently
translated into R by Gimenez et al (2017) as package R2ucare. Program RELEASE (Burnham et al. 1987)
also implements the core CJS tests and is available through MARK.

The openCR function ucare.cjs is a wrapper for relevant functions in R2ucare, which should be installed.
We briefly demonstrate it here for the dipper data of Marzolin (1988).

if (requireNamespace("R2ucare"))

ucare.cjs(dipperCH, verbose = FALSE, by = 'sex')

## Loading required namespace: R2ucare

This invocation of ucare.cjs calls the R2ucare functions test3sr, test3sm, test2ct, test2cl and
overall_CJS for each sex and provides a condensed report. For interpretation see the original papers, the
R2ucare vignette, and Chapter 5 of the MARK book (Cooch and White 2017). Lebreton et al. (1992: 86)
indicate only Test 3SR is meaningful for these data (see also openCR-examples.pdf).

12.4 Limitations of openCR

openCR does not do

1. Continuous random effects (consider finite mixtures as an alternative)
2. Parameter counting to adjust AIC
3. Overdispersion adjustment (chat, QAIC) or goodness-of-fit tests, except for ucare.cjs (above).
4. MCMC
5. Bootstrap confidence intervals
6. Temporary emigration parameterizations of non-spatial robust-design models
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7. Age-specific survival curves (Weibull etc.)
8. Mark-resight
9. SE for derived parameters and estimates with mlogit link (to be fixed)

Parameter counting and overdispersion adjustment are probably the most critical omissions. See Cooch and
White (2017) for detailed coverage in the context of MARK.

12.5 Differences from secr

Defaults for some arguments differ between openCR.fit and secr.fit. For openCR.fit –

1. trace = FALSE

2. By default the reported log likelihood and AIC do not include the multinomial constant
(details$multinom = FALSE)

3. The default criterion for AIC.openCR is ‘AIC’, not ‘AICc’ as in secr.

distribution has been elevated to a full argument rather than merely a component of details. This
argument describes the distribution of the number of individuals detected (default distribution = “poisson”)
(see here).

When details$LLonly = TRUE, openCR.fit returns a vector with the log likelihood in position 1, followed
by the named starting values of the coefficients (beta parameters) (secr.fit returns only the log likelihood).

In secr the argument CL is used in secr.fit to switch between full- and conditional-likelihood models. In
openCR conditional-likelihood models are given a separate type with the suffix CL.

The predictor ‘t’ is used in secr models to indicate a factor with one level for each secondary session. In
openCR it is a synonym for ‘session’, i.e. a factor with one level for each primary session. This is consistent
with the use of ‘t’ in Lebreton et al. (1992) and makes for more compact model specification. In the unlikely
event that you want to code a model with one level for each secondary session in openCR, use the ‘timecov’
argument.

Parts of openCR are coded in C++, via the R package Rcpp, whereas secr uses C. The Rcpp interface
requires less copying of data, and enables the use of multiple threads via RcppParallel. openCR also
duplicates some C++ functions in native R code, which is useful for debugging. Select the R version by
setting details = list(R = TRUE) in openCR.fit. This currently works for most models except those with
detector type ‘multi’.

These features of secr are not available in openCR

1. Hybrid mixture models (hcov in secr)
2. Groups (use CL and individual covariates, or see marked)
3. Regression splines from mgcv

4. Model averaging
5. Density surfaces and other spatial density models
6. Post-hoc probability density of activity centres (fxi in secr)
7. Non-point detectors (polygon, polygonX etc. in secr)
8. ‘collate’ function (make.table may do the job)
9. Variable effort for nonspatial models (cf Efford, Borchers and Mowat 2013) (The ‘usage’ attribute of

traps objects is applied in spatial openCR models).
10. Negative binomial counts (binomN<0)

12.6 Relationship to other software

The non-spatial capability of openCR largely duplicates MARK and RMark. Several of the nonspatial
model types have exact matches in MARK (Table 8).
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Table 8. Relationship of non-spatial openCR models to MARK model types

openCR type MARK model Reference

CJS CJS Seber (1982)
JSSAb POPAN Schwarz and Arnason (1996)
JSSAfCL LinkBarker Link and Barker (2005)
Pradel Pradlambda Pradel (1996)
Pradelg Pradsen Pradel (1996)

The R package marked (Laake, Johnson and Conn 2013) also overlaps substantially with the non-spatial
features of openCR. Its interface echoes RMark just as openCR echoes secr. marked has some fancy
features for individual covariates and random effects, and promises fast processing of large datasets. marked

1.1.13 includes full-likelihood JSSA (POPAN) models parameterized in terms of entry probabilities (type
JSSAb)15, but not the other JSSA options in Table 2.
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14 Appendix. SECR likelihood for open-population model with

movement between primary sessions

This appendix repeats material in the submitted paper Efford (2018b).

We classify spatiotemporal capture–recapture models according to the constraints on home range centres.
Centres may be –

1. Stationary throughout the study,
2. Distributed independently within some region at each sampling session, or
3. Redistributed according to a spatial kernel, leading to temporally autocorrelated locations.

We assume that turnover (survival, recruitment and movement) is independent of location. This simplifies
treatment of the birth and death processes. For an animal known to be present from birth just before time b
until death just after time d, the modelling of scenarios (1) and (2) is straightforward - neither involves an
explicit description of the movement process.

In the movement model (scenario 3 above), animals shift their home-range centres in the interval between
sampling sessions according to a probabilistic dispersal kernel (Nathan et al 2012). If the kernel is radially
symmetrical we can express the probability of moving from x1 to x2 as a function of distance i.e., Pr(x2|x1) =
f(|x2 − x1|). The cumulative displacement after S intervals is the S-convolution of f with itself.

Home-range centres can be assumed initially (when first available for detection at time b) to follow a Poisson
distribution in two dimensions. The intensity of the distribution is the population density D; we mostly
assume D to be constant16.

Barring edge effects, and allowing individuals to move independently, the distribution of home range centres
remains Poisson over time. The location of an individual chosen at random from a finite region A (large
enough to avoid edge effects that affect sampled animals) has probability density π(x) = 1/A.

14.1 Closed-population likelihood

The likelihood for spatially explicit capture–recapture data developed by Borchers and Efford (2008) is a
product of two parts, one for the probability of observing n individuals in the course of a study, and the
other for the probability of observing the particular set of n non-null detection histories ω: L = L(n)L(ω|n).

The second part of the likelihood is a product over individuals:

L(ω|n) ∝
∏

ωi∈ ω

Pr(ωi|ωi· > 0),

assuming individuals are detected independently, and using ωi· > 0 to indicate a non-null detection history.
In the closed-population model

Pr(ωi|ωi > 0) =

∫

R2

Pr(ωi|ωi > 0, x) . f(x|ωi > 0) dx

=

∫

R2

Pr(ωi|x)

p·(x)
.

D(x)p·(x)
∫

R2 D(x)p·(x) dx
dx,

where x represents the location of an animal and f(x|ωi· > 0) describes the spatial distribution of detected
animals. For constant D(x) the RHS simplifies to a−1

∫

R2 Pr(ωi|x) dx where a =
∫

R2 p·(x) dx. Expressions
are provided below for the overall probability of capture p·(x) = Pr(ωi > 0|x).

16Although it is straightforward to use an inhomogeneous Poisson distribution D(x) for initial location, a radially symmetrical
movement kernel causes this to flatten over time. Location-dependent (or possibly non-isotropic) movement is needed to result
in an inhomogeneous distribution at equilibrium.
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This formulation avoids specifying a finite target population N or area A. It relies on f(x) falling to zero
over most of the plane so that E(n) is finite. The model can also be formulated for a finite population N
in a region with area A. Computer implementations of both formulations restrict integration to the most
pertinent subset of the plane, but this is a convenience rather than essential.

In a homogeneous Poisson population, n is Poisson distributed with expected value λ = Da where a is
the effective sampling area defined by a =

∫

R2 p·(x) dx where p·(x) is the probability an individual at x is
detected at least once (Borchers and Efford 2008).

14.2 Open-population likelihood

The data for an open-population study comprise observations ωi,j on each animal i in successive primary
sessions j. Times of birth/arrival b and death/departure d are generally unknown17. All possible combinations
of b and d are considered in the individual-based form of the likelihood (Pledger et al. 2003, 2010; Link and
Barker 2010; Schofield and Barker 2016).

If animals do not move between primary sessions we have

Pr(ωi|ωi· > 0) =
J

∑

b=1

J
∑

d=b



βb−1

j=d−1
∏

j=b

φj(1 − φd)

j=d
∏

j=b

∫

R2

Pr(ωi,j |ωi· > 0, xb) . f(xb|ωi· > 0) dxb





=

J
∑

b=1

J
∑

d=b



βb−1

j=d−1
∏

j=b

φj(1 − φd) a−1

j=d
∏

j=b

∫

R2

Pr(ωi,j |xb) dxb



 .

The expression f(xb|ωi· > 0) concerns the spatial distribution of detected members of the superpopulation,18

and p·(xb) refers to the overall probability of detecting a member of the superpopulation with initial location
xb. a =

∫

R2 p·(xb) dxb.

If animals are allowed to move between primary sessions then we must consider their location at each sampling
time when modelling ωi,j . We use xj for the location of an animal in session j. We assume that centres are
Poisson-distributed at the time of recruitment, and we designate these xb. On each later occasion each ωi,j is
shifted by a random vector governed by the dispersal kernel, progressively drifting away from xi,1.

Pr(ωi|ωi· > 0) =

J
∑

b=1

J
∑

d=b



βb−1

j=d−1
∏

j=b

φj(1 − φd)

j=d
∏

j=b

∫

R2

Pr(ωi,j |ωi· > 0, xj) . f(xb|ωi· > 0) . f(xj |ωi,j−1, xb) dxj





=

J
∑

b=1

J
∑

d=b



βb−1

j=d−1
∏

j=b

φj(1 − φd) a−1

j=d
∏

j=b

∫

R2

Pr(ωi,j |xj) . f(xj |xj−1, ωi,j−1) dxj



 . (1)

p·(xb) and a =
∫

R2 p·(xb) dxb are defined in relation to the superpopulation as before, but their calculation
must allow for possible movement between primary sessions.

For the correlated model, f(xb|xb−1, ωi,b−1) is defined as f(xb) i.e. Poisson. On later occasions we ‘update’
the probability of each potential location using detection information from the previous occasion and the
dispersal kernel.

17
b and d strictly refer to the first and last sampling times at which an animal was available for detection. Except for removal

on capture, CJS models condition on first detection, so the computations effectively treat b as known.
18‘Superpopulation’ refers to all animals alive and available for capture at one or more sampling times (primary sessions)

(Schwarz and Arnason 1996).
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Appendix Table 1 Probability of detection history ωi conditional on recruitment at time b and death at
time d under three models for home-range centres. p(ωi,j |x) represents the probability of the observations of
animal i on occasion j given that its centre was at x. d is the time the animal was alive and last available for
detection. a is the effective sampling area defined in relation to the superpopulation.

Centres Pr(ωi | ωi· > 0)

Static a−1
∫

R2

∏j=d

j=b p(ωi,j |x) dx

Uncorrelated a−1
∏j=d

j=b

∫

A
p(ωi,j |x) dx

Correlated a−1
∏j=d

j=b

∫

R2 p(ωi,j |xi,j)f(xi,j |xi,j−1, ωi,j−1) dxi,j

14.2.1 Updating of xj

We have yet to describe the sequence of probability models for the location of detected individuals
f(xj |xj−1, ωi,j−1). In the absence of detection information, each successive model would be a convolu-
tion of the dispersal kernel with the previous 2-dimensional probability distribution. For a homogeneous
Poisson density model this alone would achieve nothing (each successive distribution would be 2-D Poisson).
The ‘trick’ here is to first compute the posterior probability for the location of the current animal given the
spatial information on detections in the current sampling session:

g(xj |ωi,j) = p(ωi,j |xj) /

∫

R2

p(ωi,j |xj)dx.

Then for dispersal kernel h the convolution is

f(xj) = g(xj−1) ∗ h.

We usually integrate over a finite area of habitat rather than the real plane. Edge effects due to animals
dispersing out of this area pose a potentially significant problem that has not been addressed. Toroidal
wrapping is a possibility when the area is rectangular, but it generally isn’t.

14.3 Probability detected at least once

14.3.1 Static HR

For independent detectors19 each with individual detection probability psk(x), the aggregate probability that

an animal at x will be detected by at least one detector on occasion s is ps· = 1 −
∏k=K

k=1
1 − psk(x). Then the

overall probability of detection for an animal at x is p·(x) = 1−
∏s=S

s=1
[1−ps·(x)] = 1−

∏S

s=1

∏K

k=1
[1−psk(x)].

14.3.2 With kernel-based movement

The evaluation of p·(xb) must allow for the possibility that a member of the superpopulation is not alive at
time j, and for movement between sampling occasions. Using βj for entry probability and φj for apparent
survival,

p·(xb) =

J
∑

b=1

J
∑

d=b

βb−1

j=d−1
∏

j=b

φj(1 − φd){1 −

j=d
∏

j=b

[Pr(ωj = 0|xj)f(xj |xb)]}.

The problem here is to pin down f(xj |xb) for an undetected animal. Initially (j = b) xb is Poisson-distributed.
This changes over time: peripheral locations become more likely the longer an animal remains uncaptured.
Diffusive dispersal movements tend to flatten the distribution.

19Binary or count ‘proximity’ detectors in the jargon of secr.

29



f(xj |xj−1) =
f(xj−1)[1 − ps·(xj−1)]

∫

R2 f(xj−1)[1 − ps·(xj−1)] dx
∗ h.

For the spatiotemporal model the effective sampling area a may be defined in relation to the superpopulation
using p·(x).

14.4 Implementation

In the development above, integrations have been across the plane (R2). In practice, integration will usually
be restricted to a finite area A, for both computational and biological reasons. For sampling in continuous
habitat, when there is no natural limit to A, the extent of A is usually set by considering the probability of
detecting more distant animals (these should be ignorable) – choosing A that is too small results in positive
bias in estimated density. For models that include dispersal we must also allow for the immigration of more
distant animals during sampling, so a larger region is desirable.
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