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This document provides an overview of secr 2.1, an R package for spatially
explicit capture–recapture analysis (SECR). It includes some background on
SECR, an outline of the package, and a more detailed description of how models
are implemented. See Appendix 1 for a glimpse of secr in action. For details
of how to use secr see the help pages and vignettes.
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Introduction to SECR

SECR is a set of methods for estimating the density of an animal population from
capture–recapture data collected with an array of ‘detectors’. SECR methods
overcome edge effects that are problematic in conventional capture–recapture es-
timation of animal populations (Otis et al. 1978). Detectors may be live-capture
traps, with animals uniquely tagged, sticky traps or snags that passively sample
hair, from which individuals are distinguished by their microsatellite DNA, or
cameras that take photographs from which individuals are recognized by their
natural marks. The concept of a detector extends to polygons or transects that
are searched for animals or their sign.

The primary data for SECR are (i) the locations of the detectors, and (ii)
detections of known individuals on one or more sampling occasions (i.e. their
detection histories). The generic terms ‘detector’ and ‘detections’ cover several
possibilities (see ‘Detector types’ below); we use them interchangeably with the
more specific and familiar terms ‘traps’ and ‘captures’. Table 1 gives a concrete
example of trapping data (the structure differs for detectors that are not traps).

Table 1: Example of spatially explicit detection data2. Each entry (e.g. A9)

records the detector at which a known animal (ID) was observed at each sam-

ple time (occasion). ‘.’ indicates no detection. Each detector has known x-y

coordinates.

Occasions

ID 1 2 3 4 5

1 A9 . . . .

2 A12 A12 . . .

3 . . C6 B5 .

4 . . G3 . F3

etc.

In SECR, a spatial model of the population and a spatial model of the
detection process are fitted to the spatial detection histories. The resulting
estimates of population density are unbiased by edge effects and incomplete
detection (other sources of bias may remain). Inverse prediction (IP SECR)
and maximum likelihood (ML SECR) are alternative methods for fitting the
spatial detection model (Efford 2004, Borchers and Efford 2008). Of these, ML
SECR is the more flexible, with a caveat for data from single-catch traps. Data
augmentation and Markov chain Monte Carlo (MCMC) methods have also been
used for SECR (Royle and Young 2008, Royle et al. 2009, Singh et al. 2010),
but this approach is orders of magnitude slower than ML SECR and easy to
misuse; it is not considered here.
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State and observation models

Like other statistical methods for estimating animal abundance (Borchers et
al. 2002), SECR combines a state model and an observation model. The state
model describes the distribution of animal home ranges in the landscape, and
the observation model (a spatial detection model) relates the probability of
detecting an individual at a particular detector to the distance of the detector
from a central point in each animal’s home range. The distances are not observed
directly (usually we don’t know the range centres), so conventional distance
sampling methods do not apply.

Distribution of home-range centres

The distribution of range centres in the population (Borchers and Efford 2008)
will usually be treated as a homogeneous Poisson point process (Fig. 1). Density
is the sole parameter of a Poisson process. An inhomogeneous distribution may
also be fitted; this provides a means to evaluate the effects of habitat variables
on density.
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Figure 1: Hypothetical Poisson distribution of range centres near an array of

detectors. We estimate the intensity (density) of this distribution.

Detection functions

A detection model uses one of several possible parametric forms for the decline
in detection probability with distance (d) from the home-range centre (Table
2, Fig. 2). The probability g(d) is for the ‘ideal’ case of just one animal and
one detector; the actual probability may differ (see discussion of ‘traps’ under
Detector Types).
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Table 2: Two functions relating the probability of detection to distance (d). See

?detectfn for more.

Halfnormal g(d) = g0 exp
(

−d2
2σ2

)
Exponential g(d) = g0 exp

(
− d
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)
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Figure 2: Alternative shapes for a function relating the probability of detection

to distance from range centre.

Detector types

The properties of detectors are an important part of the SECR observation
model. Inside secr, data are tagged with a detector type to ensure they are
printed, plotted and analysed appropriately.

Some common detectors (camera ‘traps’ and hair snags for DNA) do not
capture animals, but merely record when they pass by. These ‘proximity’ de-
tectors can be considered to act independently of each other. With proximity
detectors, each animal × occasion ‘cell’ of a detection history potentially con-
tains several positive records. In the simplest case each cell contains a binary
vector coding presence or absence at each detector. A ‘count’ detector is a
generalised proximity detector in which the data are vectors of counts, one per
detector. Models for ‘count’ data will specify a distribution for the counts (the
‘binomN’ argument of secr.fit, where binomN=0 indicates Poisson, binomN=1
Bernoulli etc.).

Detectors that are true traps do not act independently because capture of an
animal in one trap prevents it being caught in another trap until it is released.
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Traps expose animals to competing risks of capture. The per-trap probability
of capture may be adjusted for the competing risk from other traps by using an
additive hazard model (Borchers and Efford 2008). However, if the detectors
are traps that catch only one animal at a time then there is a further level of
competition – between animals for traps. Multi-catch and single-catch traps
therefore represent distinct detector types. No general adjustment has been
found for the per-trap probability of capture in the single-catch case (it’s an open
research question), and there is strictly no known maximum likelihood estimator.
However, density estimates using the multi-catch likelihood for single-catch data
appear only slightly biased (Efford, Borchers and Byrom 2009).

Polygon and transect detectors are for binary or count detection data (e.g.,
number of detections per animal per polygon per occasion) supplemented with
the x-y coordinates of each detection (in the case of a transect it is enough to
record the distance along the line). When a study uses multiple search areas
or multiple transects, detections may be either independent or dependent (e.g.,
maximum one per animal per polygon per occasion) as with traps. The depen-
dent or ‘exclusive’ type is indicated by the suffix ‘X’; in this case the counts are
necessarily binary. Using the ‘polygonX’ or ‘transectX’ detector type ensures
that a competing-risk model is fitted.

Acoustic ‘signal strength’ detectors produce a binary detection vector sup-
plemented by measurements of signal strength, as from an array of microphones.

Table 3: Detector types

single traps that catch one animal at a time

multi traps that may catch more than one animal at a time

proximity records presence at a point without restricting movement

count proximity detector allowing >1 detection per animal per time

polygon counts from searching one or more areas

transect counts from searching one or more transects

polygonX binary data from mutually exclusive areas

transectX binary data from mutually exclusive transects

signal detections and signal strengths at multiple microphones

Origins and outline of the package ‘secr’

The program DENSITY (Efford et al. 2004, Efford 2009) provides a graphical
interface to SECR methods that has been accepted by many biologists. How-
ever, DENSITY has significant drawbacks: it requires the Windows operating
system and is increasingly difficult to maintain, its algorithms are not always
transparent or well-documented, it fits only homogeneous Poisson models, and
it omits some recent advances in SECR.

The R package secr was written to address these weaknesses and allow
for further development. It implements almost all the methods described by
Borchers and Efford (2008) and Efford et al. (2009), and others yet to be
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published. secr uses external C code for computationally intensive operations.
Appendix 2 compares the features of DENSITY and secr. The important func-
tions of secr are listed in Appendix 3.

How secr works

secr defines a set of R classes3 and methods for data from detector arrays. The
essential classes are:

traps locations of detectors; detector type (‘proximity’, ‘multi’, etc.)
capthist spatial detection histories, including a traps object
mask points on habitat mask
secr fitted SECR model.

To perform an SECR analysis you explicitly or implicitly construct each
of these objects in turn, using the functions provided (e.g., read.capthist4,
secr.fit). Fig. 3 summarizes the relationships among the core object classes.
The classes traps (not shown), capthist and mask may optionally store co-
variates specific to detectors, animals and habitat points respectively. Each set
of covariates is saved in a dataframe that is an attribute of the corresponding
object; the covariates method is used to extract or replace covariates.

Input

Data input is covered in the separate document ‘secr-datainput.pdf’. One option
is to use text files in the formats used by DENSITY; these accommodate most
types of data. Two files are required, one of detector (trap) locations and
one of the detections (captures) themselves; the function read.capthist reads
both files and constructs a capthist object. Previously (before secr 1.4) it was
necessary to construct the capthist object in two stages, first making a traps
object (with read.traps) and a captures dataframe, and then combining these
with make.capthist. This route is still available for tricky datasets.

Output

The output from the function secr.fit is an object of class secr. This is an R
list with many components. Assigning the output to a named object (such as
secr0 or secrb in the example of Appendix 1) saves both the fit and the data for
further manipulation. Typing the name at the R prompt invokes print.secr

which formats the key results. These include the dataframe of estimates from the
predict method for secr objects. Functions are provided for further compu-
tations on secr objects (e.g., profile-likelihood confidence intervals, AIC model

3Technically, these are S3 classes. A ‘class’ specifies a particular type of data object and

the functions (methods) by which it is manipulated (computed, printed, plotted etc). See the

R documentation for further explanation
4Text in teletype font refers to R objects that are documented in online help for the secr

package, or in base R. A good place to start is the page for secr.fit
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capthist
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Capture data file

Trap layout file
secr
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coef
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derived
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confint
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Figure 3: Essentials of the secr package. Each object class (shaded box) comes
with methods to display and manipulate the data it contains (e.g. print, sum-
mary, plot, rbind, subset). The function read.capthist forms a traps object
from the trap layout data and saves it as an attribute along with the capture
data in a capthist object. If a habitat mask is not provided, one will be gen-
erated automatically by secr.fit. Any of the objects input to secr.fit may
include a dataframe of covariates whose names may be used in a model formula.
Fitted secr models may be further manipulated with the methods shown on the
right. Additional functions (not shown) construct a regular detector array (e.g.
make.grid, make.circle), form a mask from a traps object (make.mask), or
simulate detection of a known population (sim.capthist).

selection, model averaging, likelihood-ratio and score tests). Many of these are
listed in Appendix 3.

One system of units is used throughout secr. Distances are in metres and
areas are in hectares (ha). The unit of density is animals per hectare. 1 ha =
10000 m2 = 0.01 km2. To convert density to animals / km2, multiply by 100.

Documentation

The primary documentation for secr is in the help pages that accompany the
package. Help for a function is obtained in the usual way by typing a question
mark at the R prompt, followed by the function name. Note the ‘Index’ link at
the bottom of each help page – you will probably need to scroll down to find it.

The consolidated help pages are also distributed as a pdf file that may be
accessed from within R using

> RShowDoc("secr-manual", package = "secr")

Other documentation in the form of pdf files based on Sweave vignettes will
be added from time to time. The ‘directory’ link in the package help index lists
available files. Each pdf file may be accessed by clicking on the link or with
RShowDoc() as above. These vignettes are included in secr 2.15:

5The Sweave Rnw files are available on request
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secr-overview.pdf this document
secr-datainput.pdf data formats and input functions
secr-finitemixtures.pdf mixture models for individual heterogeneity
secr-sound.pdf analysing data from microphone arrays
secr-polygondetectors.pdf using polygon and transect detector types

The web page http://www.otago.ac.nz/density/ should be checked for
news of bug fixes and new releases. New versions will be posted on CRAN
http://cran.r-project.org/, but there may be a delay of a few days. Help
may be sought at http://www.phidot.org/forum; see also the FAQ there for
DENSITY and secr. For information on changes in each version type

> news(package = "secr")

Models in secr

The next three sections are fairly heavy going: on your first time through you
may want to skip to ‘Specifying effects on detection parameters’.

A family of capture–recapture models, such as the Cormack-Jolly-Seber
models for survival, may include submodels6 that allow for variation in core
(‘real’) parameters, including the effects of covariates. Annual survival, for ex-
ample, may vary with the severity of winter weather, so it often makes sense
to include a measure of winter severity as a covariate. Gary White’s MARK
software has been particularly successful in packaging open-population models
for biologists, and secr aims for similar flexibility.

The language of generalised linear models is convenient for describing sub-
models (e.g. Huggins 1989, Lebreton et al. 1992). Each parameter is treated
as a linear combination of predictor variables on its transformed (‘link’) scale.
This is useful for combining effects because, given a suitable link function, any
combination maps to a feasible value of the parameter. The logit scale has this
property for probabilities in (0, 1), and the natural log scale works for positive
parameters i.e. (0, +∞). These are the link functions used most often in secr,
but there are others, including the identity (null) link.7

Submodels are defined symbolically in secr using R formula notation. A
separate linear predictor is used for each core parameter. Core parameters are
‘real’ parameters in the terminology of MARK, and secr uses that term because
it will be familiar to biologists. Four real parameters are commonly modelled
in secr 2.1; these are denoted D (for density), g0, sigma and z. Only the last
three real parameters, which jointly define the model for detection probability
as a function of location, can be estimated directly when the model is fitted
by maximizing the conditional likelihood (CL = TRUE in secr.fit). D is then
a derived parameter that is computed from an secr object with the function
derived or one of its siblings (derived.cluster etc.). ‘z’ is a shape parameter
that is used only when the detection function has three parameters (annular
halfnormal, cumulative gamma, hazard-rate etc. – see ?detectfn).

6This use of ‘submodel’ is non-standard – maybe we’ll find a better term
7Set link functions with the link argument of secr.fit.
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For each real parameter there is a linear predictor of the form y = Xβ,
where y is a vector of parameter values on the link scale, X is a design matrix
of predictor values, and β is a vector of coefficients. Each element of y and
corresponding row of X relates to the value of the real parameter in a particular
circumstance (e.g. density at a particular point in space, or detection probabil-
ity of an animal on a particular occasion). The elements of β are coefficients
estimated when we fit the model. In MARK these are called ‘beta parameters’
to distinguish them from the transformed ‘real’ parameter values in y. secr
acknowledges this usage, but also refers to beta parameters as ‘coefficients’ and
real parameters as ‘fitted values’, a usage more in line with other statistical
modelling in R. X has one column for each element of β. Design matrices are
described in more detail in the next section.

Design matrices

A design matrix is specific to a ‘real’ parameter. Each design matrix X contains
a column of ‘1’s (for the constant or intercept term) and additional columns as
needed to describe the effects in the submodel for the parameter. Depending on
the model, these may be continuous predictors (e.g. air temperature to predict
occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal i was
caught before occasion s, 0 otherwise), or coded factor levels. Within secr.fit,
each design matrix is constructed automatically from the input data and the
model formula in a 2-stage process.

First, a data frame is built containing ‘design data’ with one column for
each variable in the formula. Second, the R function model.matrix is used to
construct the design matrix. This process is hidden from the user. The design
matrix will have at least one more column than the design data; there may be
more if the formula includes interactions or factors with more than two levels.
For a good description of this general approach see the documentation for RMark
(Laake and Rexstad 2008). The necessary design data are either extracted from
the inputs or generated automatically, as explained in later sections. ‘Real’
parameters fall into two groups: density (D) and detection (g0, sigma and z).
Density and detection parameters are subject to different effects, so they use
different design matrices as described in the next three sections.

Detection submodels

For SECR, we want to model the detection of each individual i on occasion s at
detector k. Given n observed individuals on S occasions at K detectors, there
are therefore nSK detection probabilities of interest. We treat these as elements
in a 3-dimensional array. Strictly, we are also interested in the detection proba-
bilities of unobserved individuals, but these are estimated only by extrapolation
from those observed so we do not include them in the array.

In a null model, all nSK detection probabilities are assumed to be the same.
The conventional sources of variation in capture probability (Otis et al. 1978)
appear as variation either in the n dimension (‘individual heterogeneity’ h), or
in the S dimension (‘time variation’ t), or as a particular interaction in these two
dimensions (‘behavioural response to capture’ b). Combined effects are possible.
SECR introduces additional complexity.
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Detection probability in SECR is no longer a scalar (even for a particular
animal-occasion-detector combination); it is described by a ‘detection function’.
The detection function may have two parameters (e.g. g0, sigma for a half-
normal function), or three parameters (e.g. g0, sigma, z). Any of the parameters
of the detection function may vary with respect to individual (subscript i),
occasion (subscript s) or detector (subscript k).

The full design matrix for each detection submodel has one row for each
combination of i, s and k. Allowing a distinct probability for each animal (the
n dimension) may seem excessive, and truly individual-specific covariates are
feasible only when a model is fitted by maximizing the conditional likelihood (cf
Huggins 1989). However, the full nSK array is convenient for coding both group
membership (Lebreton et al. 1992, Cooch and White 2008) and experience of
capture, even when individual-specific covariates cannot be modelled.

The programming gets even more complex. Analyses may combine data from
several independent samples, dubbed ‘sessions’. This adds a fourth dimension
of length equal to the number of sessions. When finite mixture models are used
for detection parameters there is even a fifth dimension, with the preceding
structure being replicated for each mixture class. Fortunately, secr handles all
this out of view: as a user you only need to know how to specify the detection
model, which we describe next.

Specifying effects on detection parameters

Effects on parameters of detection probability are specified with R formulae.
The variable names used in formulae are either names for standard effects (Table
4) or the names of user-supplied covariates. Groups (‘g’) are needed only in
models fitted by maximizing the full likelihood; for conditional likelihood models
use a factor covariate to achieve the same effect.

Table 4: Automatically generated predictor variables used in detection models

Variable Description Notes

g group interaction of the capthist individual covari-

ates listed in argument groups of secr.fit

t time factor one level for each occasion

T time trend linear trend over occasions on link scale

b learned response step change in parameter after first detection

of animal

B transient response parameter depends on detection at previous

occasion (Markovian response)

session session factor one level for each session

h2 2-class mixture finite mixture model with 2 latent classes

Any name in a formula that is not a variable in Table 4 is assumed to refer to
a user-supplied covariate. secr.fit looks for user-supplied covariates in data
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Table 5: User-provided covariates used in detection models. The names of

columns in the respective dataframes may be used in model formulae

Covariate type Data source Notes

Individual covariates(capthist) conditional likelihood

Time timecov argument

Detector covariates(traps(capthist))

Session sessioncov argument

Table 6: Some examples of the model argument in secr.fit

Model Description

g0 ∼ 1 g0 is constant across animals, occasions and detec-

tors

g0 ∼ b learned response affects g0

list(g0∼b, sigma∼b) learned response affects both g0 and sigma

g0 ∼ h2 2-class finite mixture for heterogeneity in g0

g0 ∼ b + T learned response in g0 combined with trend over oc-

casions

sigma ∼ g detection scale sigma differs between groups

sigma ∼ g*T group-specific trend in sigma

D ∼ cover density varies with ’cover’ given in covari-

ates(mask)

list(D∼g, g0∼g) both density and g0 differ between groups

D ∼ session session-specific density

frames embedded in the capthist argument or supplied in the timecov and
sessioncov arguments, using the first match (Table 5).

The formula for any detection parameter (g0, sigma, z) may be constant
(∼1, the default) or some combination of terms in standard R formula notation
(see ?formula). For example, g0 ∼ b + T specifies a model with a learned
response and a linear time trend in g0; the effects are additive on the link scale.
See Table 6 for other examples.

For other effects, the design matrix for detection parameters may also be pro-
vided manually in the argument dframe of secr.fit. This feature is untested.

Density submodels

The SECR log likelihood is evaluated by summing values at points on a ‘habitat
mask’ (the mask argument of secr.fit). Each point in a habitat mask repre-
sents a grid cell of potentially occupied habitat (their combined area may be
almost any shape). The full design matrix for density (D) has one row for each
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point in the mask. As for the detection submodels, the design matrix has one
column for the intercept (constant) term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ‘x’ for an east-west
trend), a continuous habitat variable (e.g. vegetation cover) or a categorical
(factor) habitat variable. Predictors must be known for all points in the mask
(non-habitat excluded). The variables ‘x’ and ‘y’ are the coordinates of the
habitat mask and are automatic, as are ‘x2’, ‘y2’, and ‘xy’. Other spatial co-
variates should be named columns in the covariates attribute of the habitat
mask.

Model fitting and estimation

Models are fitted in secr.fit by numerically maximizing the likelihood. The
likelihood involves integration over the unknown locations of the animals’ range
centres. This is achieved in practice by summation over points in the habitat
mask, which has some implications for the user. Computation may be slow,
especially if there are many points in the mask, and estimates may be sensitive
to the particular choice of mask (either explicitly in make.mask or implicitly via
the buffer argument).

The default maximization algorithm is Newton-Raphson in the function
stats::nlm. By default, all reported variances, covariances, standard errors
and confidence limits are asymptotic and based on a numerical estimate of the
information matrix. The Newton-Raphson algorithm is fast, but it sometimes
fails to compute the information matrix correctly, causing some standard errors
to be set to ‘NA’; see the ‘method’ argument of secr.fit for alternatives. Use
confint.secr for profile likelihood intervals and simulate.secr for parametric
bootstrap intervals (both are slow).

Habitat masks

We have already introduced the idea of a habitat mask. The SECR likelihood
is evaluated by summing values at points on a mask8; each point represents a
grid cell of potentially occupied habitat. Masks may be constructed by placing
a buffer of arbitrary width around the detectors, possibly excluding known non-
habitat. How wide should the buffer be? The general answer is ‘Wide enough
not to cause bias in estimated densities’. This depends on the scale of move-
ment of your animal, and on the chosen detection function. For specifics, see the
help for mask and the various mask-related functions (make.mask, mask.check,
suggest.buffer, and esa.plot). Heavy-tailed detection functions such as the
hazard-rate and lognormal can be problematic because they require an unrea-
sonably large buffer for stable density estimates.

Detector clusters

For surveying large areas it is efficient to use groups of detectors: within a group
the detectors are close enough that animals may be re-detected at multiple
points, while groups of detectors may be distributed across a region according
to a probability design. From version 2.1 secr allows for detector groups with

8A ‘mask’ in secr is equivalent to a ‘mesh’ in DENSITY
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the ‘cluster’ data structure. This is an attribute of a traps object that records
which detectors belong to which cluster9.

Functions are provided to generate detector arrays with a clustered structure
(trap.builder, make.systematic), to extract or replace the cluster attribute
(clusterID), to compute the geometric centres and numbers of detections per
cluster (cluster.centres, cluster.counts), etc.

Data from a large, clustered design may often be analysed more quickly if the
capthist object is first collapsed into one using the geometry of a single cluster
(the object retains a memory of the number of individuals from each original
cluster in the attribute n.mash). Use the function mash for this. Functions
derived, derived.mash and the method predict.secr use n.mash to adjust
their output densitiy, SE, and confidence limits.
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Appendix 1. A simple secr analysis

A simple analysis might look like this. We start by loading the package, setting
the working folder, and constructing an object myCH that contains both the
captures and the trap locations.

> library(secr)

> setwd(system.file("extdata", package = "secr"))

> myCH <- read.capthist("capt.txt", "trap.txt", fmt = "XY")

No errors found :-)

Next we fit two simple models and compare them with AIC. We set trace =

FALSE to reduce the volume of output, but the default trace = TRUE is usually
better.

> secr0 <- secr.fit(myCH, model = g0 ~ 1, trace = FALSE)

> secrb <- secr.fit(myCH, model = g0 ~ b, trace = FALSE)

> AIC(secr0, secrb)
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model detectfn npar logLik AIC AICc

secr0 D~1 g0~1 sigma~1 halfnormal 3 -759.0198 1524.040 1524.373

secrb D~1 g0~b sigma~1 halfnormal 4 -759.0106 1526.021 1526.584

dAICc AICwt

secr0 0.000 0.7513

secrb 2.211 0.2487

A model with learned trap response (g0∼b) showed no improvement in fit
over a null model (g0∼1). In this instance the estimates of density from the
two models were also very close (not shown) and we rely on the null model
for estimation. Before displaying the estimates we check that the likelihood is
stable as we vary the mask buffer width (rows) and spacing (columns)

> mask.check(secr0)

Computing log likelihoods...

7.34375 5.5078125 3.671875

100 -759.0258 -759.0248 -759.0256

150 -759.0165 -759.0165 -759.0165

200 -759.0165 -759.0165 -759.0165

It seems we would have been better to use a buffer slightly wider than the
default (100 m), so we repeat the fit and display the results:

> secr.fit(myCH, model = g0 ~ 1, buffer = 150, trace = FALSE)

secr.fit( capthist = myCH, model = g0 ~ 1, buffer = 150, trace =

FALSE )

secr 2.1.0, 07:10:33 15 Jun 2011

Detector type multi

Detector number 100

Average spacing 30 m

x-range 365 635 m

y-range 365 635 m

N animals : 76

N detections : 235

N occasions : 5

Mask area : 32.49 ha

Model : D~1 g0~1 sigma~1

Fixed (real) : none

Detection fn : halfnormal

Distribution : poisson
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N parameters : 3

Log likelihood : -759.0165

AIC : 1524.033

AICc : 1524.366

Beta parameters (coefficients)

beta SE.beta lcl ucl

D 1.700149 0.11771581 1.469430 1.9308674

g0 -0.978524 0.13620920 -1.245489 -0.7115589

sigma 3.380009 0.04445187 3.292885 3.4671327

Variance-covariance matrix of beta parameters

D g0 sigma

D 0.013857012 0.000184294 -0.001013496

g0 0.000184294 0.018552946 -0.003342484

sigma -0.001013496 -0.003342484 0.001975969

Fitted (real) parameters evaluated at base levels of covariates

link estimate SE.estimate lcl ucl

D log 5.4747612 0.646705 4.346756 6.8954889

g0 logit 0.2731847 0.027045 0.223482 0.3292545

sigma log 29.3710257 1.306242 26.920406 32.0447299

The density estimate is 5.48 ha–1 (95% confidence interval 4.35–6.90 ha–1).
We can compare these estimates to those from the initial fit with a narrower
buffer; estimated density differs only in the third decimal place:

> predict(secr0)

link estimate SE.estimate lcl ucl

D log 5.4788253 0.64671194 4.350712 6.899452

g0 logit 0.2731609 0.02705179 0.223447 0.329246

sigma log 29.3695558 1.30602166 26.919338 32.042795
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Appendix 2. Software feature comparisons

� full implementation; � incomplete or inferior implementation.

Feature DENSITY 4.4 secr 2.0 secr 2.1

General

Graphical interface � � �

Inverse prediction (IP SECR) � � �

Maximum likelihood estimation (ML SECR) � � �

Non-spatial closed-population estimators � �

Simulation of spatial sampling � � �

Build detector arrays � � �

Control of random number generator � � �

Closure tests � � �

Import or export DENSITY text files � � �

Import or export SPACECAP text files � �

Convert BUGS data � �

GIS polygons as habitat mask � � �

Clustered detector layouts �

Mash data from clustered layouts �

Upload coordinates to GPS �

ML SECR

Profile likelihood confidence intervals � � �

Detectors used may vary with occasion � � �

Fixed parameters � � �

Parametric bootstrap � � �

Between-session models � � �

Mixture models for individual heterogeneity � � �

Confidence ellipses � � �

Formula-based model notation � �

Density models (inhomogeneous 2-D Poisson) � �

Groups (e.g. males & females) � �

Score tests for model selection � �

Model averaging � �

Structural relationships between parameters � �

Plot likelihood surface � �

Empirical variance from replicate units � �

Mask diagnostics � � �

Suggested buffer width � �

Contours of detection probability � � �

Compute pdf for individual’s range centre � � �

Regional population size (regionN) �

Detector types

Single-catch trap1
� � �

Multi-catch trap � � �
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Proximity � � �

Signal strength (acoustic) � �

Count � �

Polygon � �

Transect � �

Polygon (exclusive) � �

Transect (exclusive) � �

Detection functions

Halfnormal � � �

Hazard rate2 � � �

Exponential � � �

Compound halfnormal � �

Uniform1
� � �

w-exponential � �

Annular halfnormal � �

Binary signal strength � �

Signal strength � �

Signal strength spherical � �

Cumulative lognormal2 � �

Cumulative gamma � �

1Not fitted by ML SECR
2Not recommended because of heavy tail
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Appendix 3. Functions in secr arranged accord-

ing to use

This list groups the main functions of secr 2.1. Many functions for data ma-
nipulation and plotting are omitted. S3 methods are marked with an asterisk
*

Manipulate core objects

make.grid construct detector array
make.capthist form capthist from traps and detection data
make.mask construct habitat mask (mesh)
read.capthist input captures and trap layout from Density format, one

call
read.traps input detector locations from text file
sim.capthist simulate capture histories
trap.builder construct various complex designs
make.systematic construct random systematic design
verify* check capthist, traps or mask for internal consistency

Extract or replace attributes of traps object

covariates* detector-level covariates
detector* detector type (‘multi’, ‘proximity’ etc.)
usage* disable detectors (occasion- and detector-specific )
clusterID* polygon or transect identifier
polyID* polygon or transect identifier

Extract or replace attributes of capthist object

covariates* individual-level covariates, including grouping factors
session* session identifier(s)
traps* embedded traps object(s)
xy* detection coordinates (polygon and transect detectors)

Fit SECR model

ip.secr fit simple SECR model by simulation & inverse prediction
secr.fit maximum likelihood fit; result is a fitted secr object

Operate on fitted secr object(s)

AIC* model selection, model weights
coef* ‘beta’ parameters
collate tabulate estimates from several models
confint* profile likelihood confidence intervals
derived density from conditional likelihood models
deviance* model deviance
df.residual* degrees of freedom for deviance
derived.nj variance from replicated sampling units
derived.cluster variance from replicated sampling units
derived.external variance from replicated sampling units
fxi.secr probability density of home-range centre
logLik* log-likelihood of fitted model
LR.test likelihood-ratio test of two models
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model.average combine estimates using AICc weights
plot* plot detection functions with confidence bands
predict* ‘real’ parameters for arbitrary levels of predictor variables
score.test model selection with score statistic using observed informa-

tion
simulate* generate realisations of fitted model
sim.secr parametric bootstrap
vcov* variance-covariance matrix of ‘beta’ or ‘real’ parameters

Mask diagnostics

suggest.buffer find buffer width to keep bias within bounds
esa.plot cumulative plot esa vs buffer width
mask.check likelihood or estimates vs. buffer width and spacing

Specialised graphics

fxi.contour contour plot of home-range centre pdf(s)
pdot.contour contour plot of detection probability
buffer.contour concave and convex boundary strips

Miscellaneous

ARL asymptotic range length
autoini generate starting values of D, g0 and sigma for secr.fit
closure.test closure tests of Otis et al. (1978) and Stanley & Burnham

(1999)
closedN closed population size by various conventional estimators
counts summary data from capthist object
dbar mean distance between capture locations
distancetotrap from an arbitrary set of points
MMDM mean maximum distance moved
moves distances between capture locations
nearesttrap from an arbitrary set of points
pdot location-specific net probability of detection
RPSV ‘root pooled spatial variance’, a simple measure of home-

range size

Datasets – see ?datasetname for details

deermouse Peromyscus maniculatus live-trapping data of V. H. Reid
published as a CAPTURE example by Otis et al. (1978)
Wildlife Monographs 62

hornedlizard repeated searches of a quadrat in Arizona for flat-tailed
horned lizards Phrynosoma mcallii (Royle & Young Ecology
89, 2281–2289)

housemouse Mus musculus live-trapping data of H. N. Coulombe pub-
lished as a CAPTURE example by Otis et al. (1978)
Wildlife Monographs 62

ovenbird multi-year mist-netting study of ovenbirds Seiurus auro-
capilla at a site in Maryland, USA.

ovensong acoustic detections of ovenbirds (Dawson & Efford Journal
of Applied Ecology 46, 1201–1209)
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possum brushtail possum Trichosurus vulpecula live trapping at
Waitarere, North Island, New Zealand April 2002 (Efford
et al. 2005 Wildlife Society Bulletin 33, 731–738)

secrdemo simulated data captdata and some fitted models
skink multi-session lizard (Oligosoma infrapunctatum and O. li-

neoocellatum) pitfall trapping data from Lake Station, Up-
per Buller Valley, South Island, New Zealand (M. G. Efford,
B. W. Thomas and N. J. Spencer unpublished).

stoatDNA stoat Mustela erminea hair tube DNA data from Matak-
itaki Valley, South Island, New Zealand (Efford, Borchers
and Byrom 2009).
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