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This document provides an overview of secr 2.10, an R package for spatially explicit capture–recapture
analysis (SECR). It includes some background on SECR, an outline of the package, and a more detailed
description of how models are implemented. See Appendix 1 for a glimpse of secr in action (this is a good
place to start if you are new to secr). For details of how to use secr see the help pages and vignettes.

Two add-on packages extend the capability of secr and are documented separately. secrlinear enables
the estimation of linear density (e.g., animals per km) for populations in linear habitats such as stream
networks (secrlinear-vignette.pdf). secrdesign enables the assessment of alternative study designs by Monte
Carlo simulation; scenarios may differ in detector (trap) layout, sampling intensity, and other characteristics
(secrdesign-vignette.pdf).

Introduction to SECR

Spatially explicit capture–recapture (SECR) is a set of methods for modelling animal capture–recapture data
collected with an array of ‘detectors’. The methods are used primarily to estimate population density, but
they also have advantages over non-spatial methods when the goal is to estimate population size (Efford and
Fewster 2013). SECR methods overcome edge effects that are problematic in conventional capture–recapture
estimation of animal populations (Otis et al. 1978). Detectors may be live-capture traps, with animals
uniquely tagged, sticky traps or snags that passively sample hair, from which individuals are distinguished
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by their microsatellite DNA, or cameras that take photographs from which individuals are recognized by
their natural marks. The concept of a detector extends to area (polygons) or transects that are searched for
animals or their sign.

The primary data for SECR are (i) the locations of the detectors, and (ii) detections of known individuals on
one or more sampling occasions (i.e. their detection histories). The generic terms ‘detector’ and ‘detections’
cover several possibilities (see ‘Detector types’ below); we use them interchangeably with the more specific
and familiar terms ‘traps’ and ‘captures’. Table 1 gives a concrete example of trapping data (the structure
differs for detectors that are not traps).

Table 1. Some spatially explicit detection data. Each entry (e.g., A9) records the detector at which a known
animal (ID) was observed at each sample time (occasion). ‘.’ indicates no detection. Each detector has known
x-y coordinates. Formats for data input are described in secr-datainput.pdf.

Occasion

ID 1 2 3 4 5

----- ----- ----- ----- ----- -----

1 A9 . . . .

2 A12 A12 . . .

3 . . C6 B5 .

4 . . G3 . F3

etc.

In SECR, a spatial model of the population and a spatial model of the detection process are fitted to the
spatial detection histories. The resulting estimates of population density are unbiased by edge effects and
incomplete detection (other sources of bias may remain). Inverse prediction (IP SECR) and maximum
likelihood (ML SECR) are alternative methods for fitting the spatial detection model (Efford 2004, Borchers
and Efford 2008). Of these, ML SECR is the more flexible, with a caveat for data from single-catch traps.
Data augmentation and Markov chain Monte Carlo (MCMC) methods have also been used for SECR (Royle
and Young 2008, Royle et al. 2009, Singh et al. 2010, Royle and Gardner 2011, Royle et al. 2014), but this
approach is much slower than ML SECR; it is not considered here.

State and observation models

Like other statistical methods for estimating animal abundance (Borchers et al. 2002), SECR combines a
state model and an observation model. The state model describes the distribution of animal home ranges in
the landscape, and the observation model (a spatial detection model) relates the probability of detecting an
individual at a particular detector to the distance of the detector from a central point in each animal’s home
range. The distances are not observed directly (usually we don’t know the range centres), so conventional
distance sampling methods do not apply.

Distribution of home-range centres

The distribution of range centres in the population (Borchers and Efford 2008) will usually be treated as a
homogeneous Poisson point process (Fig. 1). Density (= intensity) is the sole parameter of a homogeneous
Poisson process. An inhomogeneous Poisson distribution may also be fitted; this provides a means to evaluate
the effects of habitat variables on density.

library(secr)

par(mfrow=c(1,1), pty='s', mar=c(2,2,2,2), cex=1.2)

plot(sim.popn(D=5, core=make.grid(), buffer=150), cex=1)

plot(make.grid(),add=T, detpar=list(col = "red", pch = 3, cex = 1.2))
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Fig. 1. Hypothetical Poisson distribution of range centres near an array of detectors. Each dot represents
one individual. SECR estimates the density of this distribution.

Detection functions

A detection model describes the decline in detection probability with distance (d) from the home-range centre
(Fig. 2). The probability g(d) is for the ‘ideal’ case of just one animal and one detector; the actual probability
may differ (see discussion of ‘traps’ under Detector Types).

Fig. 2. Alternative detection functions. The halfnormal is defined by g(d) = g0 exp
(

−d
2

2σ2

)

and the

exponential by g(d) = g0 exp
(

−
d

σ

)

. See ?detectfn for more (also the list in Appendix 2).

Detector types

The properties of detectors are an important part of the SECR observation model (Table 2). Inside secr,
data are tagged with a detector type to ensure they are printed, plotted and analysed appropriately.

Some common detectors (camera ‘traps’ and hair snags for DNA) do not capture animals, but merely record
that an animal has visited a site. These ‘proximity’ detectors can be considered to act independently of each
other. With proximity detectors, each animal × occasion ‘cell’ of a detection history potentially contains
several positive records. In the simplest case each cell contains a binary vector coding presence or absence at
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each detector (for such binary proximity detectors each observation has a Bernoulli distribution). A ‘count’
detector is a generalised proximity detector in which the data are vectors of counts, one per detector. Models
for ‘count’ data will specify a distribution for the counts via the ‘binomN’ argument of secr.fit (binomN =
0 indicates Poisson; binomN > 1 indicates binomial with size = binomN; binomN = 1 indicates binomial
with size given by the ‘usage’ attribute for the detector and occasion).

Detectors that are true traps do not act independently because capture of an animal in one trap prevents it
being caught in another trap until it is released. Traps expose animals to competing risks of capture. The
per-trap probability of capture may be adjusted for the competing risk from other traps by using an additive
hazard model (Borchers and Efford 2008). However, if the detectors are traps that catch only one animal at
a time then there is a further level of competition – between animals for traps. Multi-catch and single-catch
traps therefore represent distinct detector types. No general adjustment has been found for the per-trap
probability of capture in the single-catch case (it’s an open research question), and there is strictly no known
maximum likelihood estimator. However, density estimates using the multi-catch likelihood for single-catch
data appear only slightly biased (Efford, Borchers and Byrom 2009).

Polygon and transect detectors are for binary or count detection data (e.g., number of detections per animal
per polygon per occasion) supplemented with the x-y coordinates of each detection (in the case of a transect
it is enough to record the distance along the line). When a study uses multiple search areas or multiple
transects, detections may be either independent or dependent (e.g., maximum one per animal per polygon
per occasion) as with traps. The dependent or ‘exclusive’ type is indicated by the suffix ‘X’; in this case the
counts are necessarily binary. Using the ‘polygonX’ or ‘transectX’ detector type ensures that a competing-risk
model is fitted.

Acoustic ‘signal strength’ detectors produce a binary detection vector supplemented by measurements of
signal strength, as from an array of microphones.

There is some support in secr for ‘unmarked’, ‘presence’ and ‘telemetry’ detector types, but these are not yet
fully documented. The ‘telemetry’ detector type is like a ‘polygon’ detector (detections have x-y coordinates);
perimeter coordinates are required, but they are not at present used in analyses. Telemetry data are used to
augment capture–recapture data (see addTelemetry).

Table 2. Detector types in secr

Detector Description

single traps that catch one animal at a time
multi traps that may catch more than one animal at a time
proximity records presence at a point without restricting movement
count proximity detector allowing >1 detection per animal per time
polygon counts from searching one or more areas
transect counts from searching one or more transects
polygonX binary data from mutually exclusive areas
transectX binary data from mutually exclusive transects
signal detections and signal strengths at multiple microphones
telemetry locations from radiotelemetry

Origins and outline of the package secr

The program DENSITY (Efford et al. 2004, Efford 2012) provides a graphical interface to SECR methods
that has been accepted by many biologists. However, DENSITY has significant drawbacks: it requires
the Windows operating system, its algorithms are not always transparent or well-documented, it fits only
homogeneous Poisson models, and it omits some recent advances in SECR.

The R package secr was written to address these weaknesses and allow for further development. It implements
almost all the methods described by Borchers and Efford (2008), Efford et al. (2009), Efford (2011), Efford
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and Fewster (2013), Efford et al. (2013) and Efford and Mowat (2014). secr uses external C code for
computationally intensive operations. Appendix 2 compares the features of DENSITY and secr. The most
important functions of secr are listed in Appendix 3.

How secr works

secr defines a set of R classes1 and methods for data from detector arrays and models fitted to those data.

Table 3. Essential classes in secr.

Class Data

traps locations of detectors; detector type (‘proximity’, ‘multi’, etc.)
capthist spatial detection histories, including a ‘traps’ object
mask raster map of habitat near the detectors
secr fitted SECR model

To perform an SECR analysis you explicitly or implicitly construct each of these objects in turn. Fig. 3
summarizes the relationships among the classes.

Fig. 3. Essentials of the secr package.

• Each object class (shaded box) comes with methods to display and manipulate the data it contains (e.g.
print, summary, plot, rbind, subset)2.

• The function read.capthist forms a ‘traps’ object from the detector layout data and saves it as an
attribute, along with capture data read from another file, in a ‘capthist’ object.

• By default, a habitat mask is generated automatically by secr.fit using a specified buffer around the
detectors (traps). The function make.mask gives greater control over this step.

• Any of the objects input to secr.fit (traps, capthist, mask) may include a dataframe of covariates
saved as an attribute. Covariate names may be used in model formulae; the covariates method is
used to extract or replace covariates.

• Fitted secr models may be further manipulated with the methods shown on the right and others listed
in Appendix 4.

1Technically, these are S3 classes. A ‘class’ in R specifies a particular type of data object and the functions (methods) by
which it is manipulated (computed, printed, plotted etc). See the R documentation for further explanation.

2Text in this font refers to R objects that are documented in online help for the secr package, or in base R.
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Input

Data input is covered in the separate document secr-datainput.pdf. One option is to use text files in the
formats used by DENSITY; these accommodate most types of data. Two files are required, one of detector
(trap) locations and one of the detections (captures) themselves; the function read.capthist reads both files
and constructs a capthist object. It is also possible to construct the capthist object in two stages, first making
a traps object (with read.traps) and a captures dataframe, and then combining these with make.capthist.
This more general route may be needed for unusual datasets.

Output

The output from the function secr.fit is an object of class secr. This is an R list with many components.
Assigning the output to a named object (such as secr0 or secrb in the example of Appendix 1) saves both
the fit and the data for further manipulation. Typing the name at the R prompt invokes print.secr which
formats the key results. These include the dataframe of estimates from the predict method for secr objects.
Functions are provided for further computations on secr objects (e.g., AIC model selection, model averaging,
profile-likelihood confidence intervals, and likelihood-ratio tests). Many of these are listed in Appendix 4.

One system of units is used throughout secr. Distances are in metres and areas are in hectares (ha). The
unit of density for 2-dimensional habitat is animals per hectare. 1 ha = 10000 m2 = 0.01 km2. To convert
density to animals per km2, multiply by 100. Density in linear habitats (see package secrlinear) is expressed
in animals per km.

Documentation

The primary documentation for secr is in the help pages that accompany the package. Help for a function is
obtained in the usual way by typing a question mark at the R prompt, followed by the function name. Note
the ‘Index’ link at the bottom of each help page – you will probably need to scroll down to find it. The index
may also be accessed with help(package = secr).

The consolidated help pages are also distributed as the file secr-manual.pdf. Searching this text is a powerful
way to locate a function for a particular task. It may be accessed from within R using

RShowDoc ("secr-manual", package = "secr")

Other documentation, in the form of pdf vignettes built with knitr, will be added from time to time. The
‘User guides. . . ’ link in the package help index lists available files. The vignettes in Table 4 are included in
secr 2.10 or may be found on the Density website.
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Table 4. Vignettes for secr 2.10.

Vignette Topic

secr-overview.pdf introduction (this document)
secr-datainput.pdf data formats and input functions
secr-densitysurfaces.pdf modelling density surfaces
secr-finitemixtures.pdf mixture models for individual heterogeneity
secr-markresight.pdf mark–resight models (experimental in 2.10)
secr-noneuclidean.pdf non-Euclidean distance models
secr-parameterisations.pdf alternative parameterisations of detection
secr-polygondetectors.pdf using polygon and transect detector types
secr-sound.pdf analysing data from microphone arrays
secr-varyingeffort.pdf variable effort (usage) in SECR models

The web page http://www.otago.ac.nz/density/ should be checked for news of bug fixes and new releases.
New versions will be posted on CRAN, but there may be a delay of a few days. Help may be sought at
phidot; see also the FAQ there for DENSITY and secr. Another forum intended for both software issues and
wider discussion is secrgroup. For information on changes in each version, type at the R prompt:

news (package = "secr")

Defining models with the ‘model’ argument of secr.fit

By default, the parameters of SECR models are assumed to be constant. We specify more interesting, and
often better-fitting, models with the ‘model’ argument of secr.fit. Here ‘models’ relates to variation in the
parameters that may be explained by known factors and covariates. Read Appendix 6 to make sense of this
statement. If you just want to know how to use models, read on.

Models are defined symbolically in secr using R formula notation. A separate linear predictor is used for
each core parameter. Core parameters are ‘real’ parameters in the terminology of MARK, and secr uses that
term because it will be familiar to biologists.

Three real parameters are commonly modelled in secr 2.10; these are denoted ‘D’ (for density), ‘g0’ (or
‘lambda0’) and ‘sigma’. Only the last two real parameters, which jointly define the model for detection
probability as a function of location, can be estimated directly when the model is fitted by maximizing the
conditional likelihood (CL = TRUE in secr.fit). D is then a derived parameter that is computed from an
secr object with the function derived or one of its siblings (derived.cluster etc.).

Here is a simple example of the model argument in use (see also Appendix 1)

secr.fit(captdata, model = g0~t)

The real parameter g0 is no longer constant, but takes a unique value on each sampling occasion (t).

Other ‘real’ parameters appear in particular contexts. ‘z’ is a shape parameter that is used only when the
detection function has three parameters (annular halfnormal, cumulative gamma, hazard-rate etc. – see
?detectfn). Some detection functions primarily model ‘exposure’ or the cumulative hazard of detection,
rather than the probability of detection; these use the real parameter ‘lambda0’ in place of ‘g0’ (see ?detectfn).
‘lambda0’ is also used with count detectors. A further ‘real’ parameter is the mixing proportion ‘pmix’, used
in finite mixture models and hybrid mixture models (see ?hcov).

Sometimes it is illuminating and efficient to parameterise the detection function using a function of the
primary ‘real’ parameters described above. This gives rise to the surrogate ‘real’ parameters a0 and sigmak;
see the vignette secr-parameterisations.pdf for details and references.

Detection parameters and density parameters are modelled separately, as we now describe.
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Detection parameters

Effects on parameters of detection probability are specified via R formulae. The variable names used in
formulae are either names for standard effects (Table 5) or the names of user-supplied covariates. Effects ‘b’,
‘B’, ‘bk’, and ‘Bk’ refer to individuals whereas ‘k’ and ‘K’ refer only to sites. Groups (‘g’) are used only in
models fitted by maximizing the full likelihood; for conditional likelihood models use a factor covariate to
achieve the same effect. See also the later section on modelling sex differences.

Table 5. Automatically generated predictor variables used in detection models

Variable Description Notes

g group individual covariates listed in secr.fit argument ‘groups’
t time factor one level for each occasion
T time trend linear trend over occasions on link scale
b learned response step change after first detection
B transient response depends on detection at preceding occasion (Markovian response)
bk animal x site response site-specific step change
Bk animal x site response site-specific transient response
k site learned response site effectiveness changes once any animal caught
K site transient response site effectiveness depends on preceding occasion
session session factor one level for each session
Session session trend linear trend on link scale
h2 2-class mixture finite mixture model with 2 latent classes
ts marking vs sighting two levels (marking and sighting occasions)

Any name in a formula that is not a variable in Table 5 is assumed to refer to a user-supplied covariate.
secr.fit looks for user-supplied covariates in data frames embedded in the ‘capthist’ argument, or supplied
in the ‘timecov’ and ‘sessioncov’ arguments, or named with the ‘timevaryingcov’ attribute of a traps object,
using the first match (Table 6).

Table 6. Types of User-provided covariate for in detection models. The names of columns in the respective
dataframes, and names of components in the ‘timevaryingcov’ attribute, may be used in model formulae

Covariate type Data source Notes

Individual covariates(capthist) conditional likelihood only
Time timecov argument
Detector covariates(traps(capthist))
Detector x Time covariates(traps(capthist)) see ?timevaryingcov
Session sessioncov argument

The formula for any detection parameter (e.g., g0, lambda0 or sigma) may be constant (∼ 1, the default) or
some combination of terms in standard R formula notation (see ?formula). For example, g0 ∼ b + T specifies
a model with a learned response and a linear time trend in g0; the effects are additive on the link scale. See
Table 7 for other examples.

Table 7. Some examples of the ‘model’ argument in secr.fit

Formula Effect

g0 ∼ 1 g0 is constant across animals, occasions and detectors
g0 ∼ b learned response affects g0
list(g0 ∼ b, sigma ∼ b) learned response affects both g0 and sigma
g0 ∼ h2 2-class finite mixture for heterogeneity in g0
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Formula Effect

g0 ∼ b + T learned response in g0 combined with trend over occasions
sigma ∼ g detection scale sigma differs between groups
sigma ∼ g*T group-specific trend in sigma
D ∼ cover density varies with ‘cover’, a variable in covariates(mask)
list(D ∼ g, g0 ∼ g) both density and g0 differ between groups
D ∼ session session-specific density

For other effects, the design matrix for detection parameters may also be provided manually in the argument
dframe of secr.fit. This feature is untested.

Inhomogeneous density models

The SECR log likelihood is evaluated by summing values at points on a ‘habitat mask’ (the ‘mask’ argument
of secr.fit). Each point in a habitat mask represents a grid cell of potentially occupied habitat (their
combined area may be almost any shape). The full design matrix for density (D) has one row for each point
in the mask. As for the detection submodels, the design matrix has one column for the intercept (constant)
term and one for each predictor.

Predictors may be based on Cartesian coordinates (e.g. ‘x’ for an east-west trend), a continuous habitat
variable (e.g. vegetation cover) or a categorical (factor) habitat variable. Predictors must be known for all
points in the mask (non-habitat excluded). The variables ‘x’ and ‘y’ are the coordinates of the habitat mask
and are automatic, as are ‘x2’, ‘y2’, and ‘xy’. Other spatial covariates should be named columns in the
‘covariates’ attribute of the habitat mask.

Regression splines are particularly effective for modelling spatial trend. For these and general guidance on
fitting and displaying density surfaces, see the vignette secr-densitysurfaces.pdf.

Model fitting and estimation

Models are fitted in secr.fit by numerically maximizing the likelihood. The likelihood involves integration
over the unknown locations of the animals’ range centres. This is achieved in practice by summation over
points in the habitat mask, which has some implications for the user. Computation may be slow, especially if
there are many points in the mask, and estimates may be sensitive to the particular choice of mask (either
explicitly in make.mask or implicitly via the ‘buffer’ argument).

The default maximization algorithm is Newton-Raphson in the function stats::nlm. By default, all reported
variances, covariances, standard errors and confidence limits are asymptotic and based on a numerical estimate
of the information matrix. The Newton-Raphson algorithm is fast, but it sometimes fails to compute the
information matrix correctly, causing some standard errors to be set to NA; see the ‘method’ argument
of secr.fit for alternatives. Use confint.secr for profile likelihood intervals and simulate.secr for
parametric bootstrap intervals (both are slow, but note the ncores argument of simulate.secr).

Habitat masks

We have already introduced the idea of a habitat mask. The SECR likelihood is evaluated by summing
values at points on a mask3; each point represents a grid cell of potentially occupied habitat. Masks may be
constructed by placing a buffer of arbitrary width around the detectors, possibly excluding known non-habitat.
How wide should the buffer be? The general answer is ‘Wide enough not to cause bias in estimated densities’.
This depends on the scale of movement of the animal, and on the chosen detection function. For specifics,

3A ‘mask’ in secr is equivalent to a ‘mesh’ in DENSITY
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see the help for ‘mask’ and the various mask-related functions (make.mask, mask.check, suggest.buffer,
and esa.plot). Heavy-tailed detection functions such as the hazard-rate and lognormal can be problematic
because they require an unreasonably large buffer for stable density estimates.

Miscellaneous topics

Modelling sex differences

There are many ways to model sex differences in secr. Here we sketch some possibilities, in order of usefulness
(your mileage may vary).

1. Fit a hybrid mixture model as described in the online help (?hcov). This accommodates occasional
missing values and estimates the sex ratio (pmix).

2. Use conditional likelihood (CL = TRUE) and include a categorical (factor) covariate in model formulae
(e.g., g0 ∼ sex). To get sex-specific densities then specify groups = "sex" in derived.

3. Use full likelihood (CL = FALSE) and separate data for the two sexes as different sessions (most easily,
by coding ‘female’ or ‘male’ in the first column of the capture file read with read.capthist). Then
include a group term ‘session’ in relevant model formulae (e.g., g0 ∼ session).

4. Use full likelihood (CL = FALSE), define groups = "sex" or similar, and include a group term ‘g’ in
relevant formulae (e.g., g0 ∼ g).

‘CL’ and ‘groups’ are arguments of secr.fit. Possibilities 1–4 should not be mixed for comparing AIC.
Sex differences in home-range size (and hence sigma) may be mitigated by compensatory variation in g0 or
lambda0 (Efford and Mowat 2014).

Varying effort

The probability of observing an individual at a particular detector may depend directly on a known quantity
such as how long the detector was exposed on a particular occasion. In the extreme, a detector may not have
been operated. The terms ‘effort’ and ‘usage’ are used here interchangeably for variation in the duration
of exposure and similar known effects. Usage is an attribute of the detectors in a traps object (a traps x
occasions matrix); it may be entered with the detector coordinates in a trap layout file or added later (see
?usage). Models fitted to data including a usage attribute will adjust automatically for varying usage across
detectors and occasions. Usage may take any non-negative value (previously binary). This simplifies the
modelling of data aggregated over varying numbers of occasions or nearby sites.

See the separate document secr-varyingeffort.pdf and Efford et al. (2013) for more.

Mark–resight

Mark–resight data include sampling occasions on which previously marked animals were recorded, but new
animals were not distinguished from each other. secr 2.10.0 introduces a suite of spatial models for these
data, as documented in secr-markresight.pdf; they may change in later versions. Two general classes of spatial
mark–resight model are included: those in which the marking process is modelled (we consider these ‘true’
mark–resight models), and those in which the process is not modelled and pre-marked animals are assumed
to follow some distribution (e.g., uniform across a known area) (‘sighting-only models’). Mark–resight models
in secr 2.10 discard some spatial information in the unmarked sightings – information that is used in the
models of Chandler and Royle (2013) and Sollmann et al. (2013). This results in some (probably small) loss
of precision, and requires an adjustment for overdispersion to ensure confidence intervals have good coverage
properties. The vignette secr-markresight.pdf should be consulted.
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Detector clusters

For surveying large areas it is efficient to use groups of detectors: within a group the detectors are close
enough that animals may be re-detected at multiple points, while groups of detectors may be distributed
across a region according to a probability design to sample possible spatial variation in density. secr allows
for detector groups with the ‘cluster’ data structure. This is an attribute of a traps object that records which
detectors belong to which cluster4.

Functions are provided to generate detector arrays with a clustered structure (trap.builder,
make.systematic), to extract or replace the cluster attribute (clusterID), to compute the geomet-
ric centres and numbers of detections per cluster (cluster.centres, cluster.counts), etc.

Data from a large, clustered design may often be analysed more quickly if the ‘capthist’ object is first collapsed
into one using the geometry of a single cluster (the object retains a memory of the number of individuals
from each original cluster in the attribute ‘n.mash’). Use the function mash for this. Functions derived,
derived.mash and the method predict.secr use ‘n.mash’ to adjust their output density, SE, and confidence
limits.

Parallel processing

It is possible to use multiple cores to speed up certain computations. The greatest benefit is seen with simu-
lations (sim.secr, ip.secr) (see ?Parallel). The functions par.secr.fit, par.region.N and par.derived

allow a collection of models to be fitted or analysed simultaneously using multiple cores.

Regression splines

The standard models for ‘real’ parameters in secr are linear on the link scale, much like a generalised
linear model. For more flexibility is possible to use semi-parametric ‘regression spline’ smooths. These are
implemented in secr using a method suggested by Borchers and Kidney (in prep.): Simon Wood’s R package
mgcv is used to parse s() and te() terms in model formulae and construct basis functions that are used like
linear covariates within secr. Any ‘real’ parameter may be modelled with regression splines (D, lambda0,
sigma, noneuc etc.). For details see the help page (?smooths) and the documentation for mgcv.

Non-Euclidean distances

‘Distance’ in SECR models usually, and by default, means the Euclidean distance d =
√

(x1 − x2)2 + (y1 − y2)2.
The observation model can be customised by replacing the Euclidean distance with one that ‘warps’ space in
some ecologically meaningful way. There are innumerable ways to do this. Royle et al. (2013) envisioned an
‘ecological distance’ that is a function of landscape covariates. Redefining distance is a way to model spatial
variation in the size of home ranges, and hence the spatial scale of movement σ; Efford et al. (in review) use
this to model inverse covariation between density and home range size. Distances measured along a linear
habitat network such as a river system are also non-Euclidean (see package secrlinear).

secr provides general tools for specifying and modelling non-Euclidean distance, via the secr.fit details com-
ponent ‘userdist’. This may be a user-specified function or a pre-computed matrix. See secr-noneuclidean.pdf
for a full explanation and examples.
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Appendix 1. A simple secr analysis

A simple analysis might look like this. We start by loading the package, setting the working folder, and
constructing an object ‘myCH’ that contains both the captures and the trap locations. The file capt.txt from
DENSITY uses an old data format ‘XY’ in which each detection has x-y coordinates that must be matched
to x-y coordinates in trap.txt. The more usual format is ‘trapID’, which matches the detector identifier.

## No errors found :-)

library(secr) # load package

oldwd <- setwd(system.file('extdata', package = 'secr')) # change working folder

myCH <- read.capthist('capt.txt','trap.txt', fmt = 'XY') # import data using XY format

setwd(oldwd) # reset working folder

Next we fit two simple models and compare them with AIC. We set trace = FALSE to reduce the volume of
output. The warning reminds us to check the buffer width, which we do later.

secr0 <- secr.fit(myCH, model = g0~1, buffer = 100, trace = FALSE) # null model

secrb <- secr.fit(myCH, model = g0~b, buffer = 100, trace = FALSE) # trap response model

AIC (secr0, secrb) # compare

## model detectfn npar logLik AIC AICc dAICc AICcwt

## secr0 D~1 g0~1 sigma~1 halfnormal 3 -759.026 1524.05 1524.38 0.000 0.7513

## secrb D~1 g0~b sigma~1 halfnormal 4 -759.016 1526.03 1526.60 2.211 0.2487

A model with learned trap response (g0 ∼ b) showed no improvement in fit over a null model (g0 ∼ 1). In
this instance the estimates of density from the two models were also very close (not shown) and we rely on
the null model for estimation. Before displaying the estimates we check that the likelihood is stable as we
vary the mask buffer width (rows) and spacing (columns)

mask.check (secr0)

## Computing log likelihoods...

## spacing

## buffer 7.34375 5.5078125 3.671875

## 98.488 -759.028 -759.028 -759.027

## 147.732 -759.017 -759.017 -759.017

## 196.976 -759.017 -759.017 -759.017

It seems we would have been better to use a slightly wider buffer, so we repeat the fit and display the results:

secr.fit(myCH, model = g0~1, buffer = 150, trace = FALSE)

##

## secr.fit(capthist = myCH, model = g0 ~ 1, buffer = 150, trace = FALSE)

## secr 2.10.0, 15:27:25 17 Nov 2015

##

## Detector type multi

## Detector number 100
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## Average spacing 30 m

## x-range 365 635 m

## y-range 365 635 m

##

## N animals : 76

## N detections : 235

## N occasions : 5

## Mask area : 30.5546 ha

##

## Model : D~1 g0~1 sigma~1

## Fixed (real) : none

## Detection fn : halfnormal

## Distribution : poisson

## N parameters : 3

## Log likelihood : -759.017

## AIC : 1524.03

## AICc : 1524.37

##

## Beta parameters (coefficients)

## beta SE.beta lcl ucl

## D 1.700149 0.1177157 1.46943 1.930867

## g0 -0.978523 0.1362088 -1.24549 -0.711559

## sigma 3.380008 0.0444517 3.29288 3.467132

##

## Variance-covariance matrix of beta parameters

## D g0 sigma

## D 0.013856993 0.000184255 -0.00101348

## g0 0.000184255 0.018552848 -0.00334245

## sigma -0.001013480 -0.003342452 0.00197595

##

## Fitted (real) parameters evaluated at base levels of covariates

## link estimate SE.estimate lcl ucl

## D log 5.474761 0.6467045 4.346757 6.895488

## g0 logit 0.273185 0.0270449 0.223482 0.329255

## sigma log 29.371020 1.3062371 26.920410 32.044713

The density estimate is 5.475 / ha (95% confidence interval 4.35–6.90 / ha). We can compare these estimates
to those from the initial fit with a narrower buffer; estimated density differs only in the third decimal place:

predict(secr0)

## link estimate SE.estimate lcl ucl

## D log 5.47980 0.6467404 4.351618 6.900467

## g0 logit 0.27319 0.0270513 0.223477 0.329274

## sigma log 29.36585 1.3049394 26.917585 32.036790
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Appendix 2. Software feature comparisons

• full implementation

◦ incomplete or inferior implementation.

Feature DENSITY 5.0 secr 2.10

General
Graphical interface • ◦
Inverse prediction (IP SECR) • •
Maximum likelihood estimation (ML SECR) • •
Non-spatial closed-population estimators • •
Simulation of spatial sampling • ◦
Build detector arrays • •
Control of random number generator ◦ •
Closure tests ◦ •
Import or export DENSITY text files • •
Import or export SPACECAP text files •
Convert BUGS data ◦
GIS polygons as habitat mask • •
Clustered detector layouts •
Mash data from clustered layouts •
Upload coordinates to GPS (uses GPSBabel) •
Multi-core processing ◦
ML secr
Density models (inhomogeneous 2-D Poisson) •
Regional population size (region.N) •
Varying effort (detector usage) ◦ •
Fixed parameters ◦ •
Parametric bootstrap ◦ •
Between-session models • •
Profile likelihood confidence intervals • •
Mixture models for individual heterogeneity • •
Confidence ellipses • •
Formula-based model notation •
Plot density models •
Groups (e.g. males & females) •
Score tests for model selection •
Model averaging •
Plot likelihood surface •
Empirical variance from replicate units •
Mask diagnostics ◦ •
Suggested buffer width •
Contours of detection probability • •
Compute pdf for individual’s range centre • •
Time-varying detector covariates •
Hybrid mixture models (hcov) •
Compensation (a0 parameterization) •
Density-dependent sigma (sigmak parameterization) •
Variance-only mode (method = ‘none’) •
Combined telemetry-detection models •
Regression splines •
Non-Euclidean distance •
Mark–resight •
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Feature DENSITY 5.0 secr 2.10

Detector types
Single-catch trapa ◦ ◦
Multi-catch trap • •
Proximity • •
Signal strength (acoustic) •
Count •
Polygon •
Transect •
Polygon (exclusive) •
Transect (exclusive) •
Telemetry •
Unmarked ◦
Presence/absence ◦
Detection functions
Halfnormal • •
Hazard rateb • •
Exponential • •
Compound halfnormal •
Uniforma ◦ ◦
w-exponential •
Annular halfnormal •
Binary signal strength •
Signal strength •
Signal strength spherical •
Cumulative lognormalb •
Cumulative gamma •
Hazard halfnormal •
Hazard hazard rateb •
Hazard exponential •
Hazard annular halfnormal •
Hazard cumulative gamma •

a. Not fitted by ML secr

b. Not recommended because of heavy tail
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Appendix 3. Core functions of secr

These are the core functions of secr 2.10 – the ones that you are most likely to use. S3 methods are marked
with an asterisk.

Function Purpose

AIC* model selection, model weights
covariates* extract or replace covariates of traps, capthist or mask
derived compute density from conditional likelihood models
make.mask construct habitat mask (= mesh)
plot* plot capthist, traps or mask
read.capthist input captures and trap layout from Density format, one call
predict* compute ‘real’ parameters for arbitrary levels of predictor variables
predictDsurface* evaluate density surface at each point of a mask
region.N compute expected and realised population size in specified region
secr.fit maximum likelihood fit; result is a fitted ‘secr’ object
summary* summarise capthist, traps or mask
traps* extract or replace traps object in capthist
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Appendix 4. Classified index to secr functions

Here is an index of secr functions classified by use (some minor functions are omitted). S3 methods are
marked with an asterisk.

• Manipulate core objects

• Attributes of traps object

• Attributes of capthist object

• Data for each detection

• Operate on fitted model(s)

• Mask diagnostics

• Specialised graphics

• Convert or export data

• Miscellaneous

Manipulate data objects
addCovariates add spatial covariates to ‘traps’ or ‘mask’
deleteMaskPoints edit ‘mask’
discretize rasterize area-search capthist data
head* first rows of ‘capthist’, ‘traps’ or ‘mask’
join combine sessions of multi-session ‘capthist’ object
make.grid construct detector array
make.capthist form ‘capthist’ from ‘traps’ and detection data
make.mask construct habitat mask (mesh)
make.systematic construct random systematic design
MS.capthist combine ‘capthist’ objects into one multisession ‘capthist’
plot* plot ‘capthist’, ‘traps’ or ‘mask’
randomHabitat generates habitat mask with random landscape
rbind.capthist append ‘capthist’ objects
read.capthist input captures and trap layout from Density format, one call
read.traps input detector locations from text file
reduce* aggregate detectors or occasions; change detector type
sim.capthist simulate capture histories
snip split transect(s) into equal sections
subset* filter ‘capthist’, ‘traps’ or ‘mask’
summary* summarise ‘capthist’, ‘traps’ or ‘mask’
tail* last rows of ‘capthist’, ‘traps’ or ‘mask’
trap.builder construct various complex designs
verify* check ‘capthist’, ‘traps’ or ‘mask’ for internal consistency
Attributes of traps object
clusterID cluster identifier
clustertrap detector number within cluster
covariates* detector-level covariates
detector* detector type (‘multi’, ‘proximity’ etc.)
markocc vector distinguishing marking and sighting occasions
polyID* polygon or transect identifier
timevaryingcov name time-varying covariate(s)
usage* occasion- and detector-specific effort
Attributes of capthist object
addSightings add sighting data to a ‘proximity’, ‘count’ or ‘polygon’ object
addTelemetry add telemetry data to a ‘proximity’ or ‘count’ object
covariates* individual-level covariates, including grouping factors
session* session identifier(s)
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signalmatrix sound x microphone table
telemetryxy coordinates of telemetry fixes
Tm counts of marked animals that were not identified
traps* embedded traps object(s)
Tu counts of unmarked animals
Data for each detection
alive TRUE/FALSE
animalID individual ID
clusterID cluster identifier
clustertrap detector number within cluster
noise noise (signal detectors)
occasion occasion
signal signal strength (signal detectors)
signalframe whole signal | noise dataframe (rows = detections)
trap detector
xy detection coordinates (polygon and transect detectors)
Fit SECR model(s)
ip.secr fit simple SECR model by simulation | inverse prediction
par.secr.fit parallel secr.fit() (several models, using multiple cores)
secr.fit maximum likelihood fit; result is a fitted secr object
Operate on fitted model(s)
AIC* model selection, model weights
coef* ‘beta’ parameters
collate tabulate estimates from several models
confint* profile likelihood confidence intervals
CVa, CVa0 CV of individual detection from fitted mixture model
derived density from conditional likelihood models
deviance* model deviance
df.residual* degrees of freedom for deviance
derived.nj variance from replicated sampling units
derived.cluster variance from replicated sampling units
derived.external variance from replicated sampling units
ellipse.secr confidence ellipses for estimated parameters
fxi.secr probability density of home-range centre
logLik* log-likelihood of fitted model
LR.test likelihood-ratio test of two models
model.average combine estimates using AIC or AICc weights
par.derived parallel derived()
par.region.N parallel region.N()
plot* plot detection functions with confidence bands
predict* ‘real’ parameters for arbitrary levels of predictor variables
predictDsurface* evaluate density surface at each point of a mask
region.N expected and realised population size in specified region
score.test model selection with score statistic using observed information
secr.test Monte Carlo goodness-of-fit tests
simulate* generate realisations of fitted model
sim.secr parametric bootstrap
vcov* variance-covariance matrix of ‘beta’ or ‘real’ parameters
Mask diagnostics
esa.plot cumulative plot esa vs buffer width
mask.check likelihood or estimates vs. buffer width and spacing
suggest.buffer find buffer width to keep bias within bounds
Specialised graphics
buffer.contour concave and convex boundary strips
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fx.total summed pdfs of home-range centre pdfs (use with plot.Dsurface)
fxi.contour contour plot of home-range centre pdf(s)
pdot.contour contour plot of detection probability
strip.legend add colour legend to existing plot
Convert or export data
RMarkInput convert ‘capthist’ to dataframe for RMark
write.capthist export ‘capthist’ as text files for DENSITY
write.DA convert ‘capthist’ for analysis in WinBUGS
write.SPACECAP export ‘capthist’ as text files for SPACECAP
writeGPS upload coordinates to GPS using GPSBabel
Miscellaneous
ARL asymptotic range length
autoini generate starting values of D, g0 and sigma for secr.fit

clone replicate points to emulate overdispersion
closure.test closure tests of Otis et al. (1978) and Stanley | Burnham (1999)
closedN closed population size by various conventional estimators
counts summary data from ‘capthist’ object
CV coefficient of variation
dbar mean distance between capture locations
distancetotrap from an arbitrary set of points
edist Euclidean distance
MMDM mean maximum distance moved
moves distances between capture locations
nearesttrap from an arbitrary set of points
nedist Non-Euclidean distance
pdot location-specific net probability of detection
PG proportion of telemetry fixes in given polygons
pmixProfileLL profile likelihood as function of mixing proportion
RPSV ‘root pooled spatial variance’, a simple measure of home-range size
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Appendix 5. Datasets

See each help page for details e.g., ?deermouse

deermouse

Peromyscus maniculatus Live-trapping data of V. H. Reid published as a CAPTURE example by Otis et al.
(1978) Wildlife Monographs 62

hornedlizard

Repeated searches of a quadrat in Arizona for flat-tailed horned lizards Phrynosoma mcallii (Royle & Young
Ecology 89, 2281–2289)

housemouse

Mus musculus live-trapping data of H. N. Coulombe published as a CAPTURE example by Otis et al. (1978)
Wildlife Monographs 62

ovenbird

Multi-year mist-netting study of ovenbirds Seiurus aurocapilla at a site in Maryland, USA.

ovensong

Acoustic detections of ovenbirds (Dawson & Efford Journal of Applied Ecology 46, 1201–1209)

OVpossum

Brushtail possum Trichosurus vulpecula live trapping in the Orongorongo Valley, Wellington, New Zealand
1996–1997 (Efford and Cowan In: The Biology of Australian Possums and Gliders Goldingay and Jackson
eds. Pp. 471–483).

possum

Brushtail possum Trichosurus vulpecula live trapping at Waitarere, North Island, New Zealand April 2002
(Efford et al. 2005 Wildlife Society Bulletin 33, 731–738)

secrdemo

Simulated data ‘captdata’, and some fitted models

skink

Multi-session lizard (Oligosoma infrapunctatum and O. lineoocellatum) pitfall trapping data from Lake
Station, Upper Buller Valley, South Island, New Zealand (M. G. Efford, B. W. Thomas and N. J. Spencer
unpublished).

stoatDNA

Stoat Mustela erminea hair tube DNA data from Matakitaki Valley, South Island, New Zealand (Efford,
Borchers and Byrom 2009).
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Appendix 6. More on models in secr

A family of capture–recapture models, such as the Cormack-Jolly-Seber models for survival, may include
submodels5 that allow for variation in core (‘real’) parameters, including the effects of covariates. Annual
survival, for example, may vary with the severity of winter weather, so it often makes sense to include a
measure of winter severity as a covariate. Gary White’s MARK software has been particularly successful in
packaging open-population models for biologists, and secr aims for similar flexibility.

The language of generalised linear models is convenient for describing submodels (e.g. Huggins 1989, Lebreton
et al. 1992). Each parameter is treated as a linear combination of predictor variables on its transformed
(‘link’) scale. This is useful for combining effects because, given a suitable link function, any combination
maps to a feasible value of the parameter. The logit scale has this property for probabilities in (0, 1), and the
natural log scale works for positive parameters i.e. (0, +∞). These are the link functions used most often in
secr, but there are others, including the identity (null) link. Set link functions with the ‘link’ argument of
secr.fit.

Submodels are defined symbolically in secr using R formula notation. A separate linear predictor is used for
each core parameter. Core parameters are ‘real’ parameters in the terminology of MARK, and secr uses
that term because it will be familiar to biologists. Three real parameters are commonly modelled in secr;
these are denoted D (for density), g0, and sigma. Only the last two real parameters, which jointly define the
model for detection probability as a function of location, can be estimated directly when the model is fitted
by maximizing the conditional likelihood (CL = TRUE in secr.fit). D is then a derived parameter that is
computed from an secr object with the function derived or one of its siblings (derived.cluster etc.).

Other ‘real’ parameters appear in particular contexts. ‘z’ is a shape parameter that is used only when the
detection function has three parameters (annular halfnormal, cumulative gamma, hazard-rate etc. – see
?detectfn). ‘lambda0’ substitutes for ‘g0’ when the detection function is defined in terms of cumulative
hazard. ‘pmix’ represents the mixing proportion in finite mixture models (or e.g., the sex ratio in hybrid
mixture models with ‘hcov’).

For each real parameter there is a linear predictor of the form y = Xβ, where y is a vector of parameter values
on the link scale, X is a design matrix of predictor values, and β is a vector of coefficients. Each element
of y and corresponding row of X relates to the value of the real parameter in a particular circumstance
(e.g. density at a particular point in space, or detection probability of an animal on a particular occasion). The
elements of β are coefficients estimated when we fit the model. In MARK these are called ‘beta parameters’
to distinguish them from the transformed ‘real’ parameter values in y. secr acknowledges this usage, but
also refers to beta parameters as ‘coefficients’ and real parameters as ‘fitted values’, a usage more in line with
other statistical modelling in R. X has one column for each element of β. Design matrices are described in
more detail in the next section.

Design matrices

A design matrix is specific to a ‘real’ parameter. Each design matrix X contains a column of ’1’s (for the
constant or intercept term) and additional columns as needed to describe the effects in the submodel for the
parameter. Depending on the model, these may be continuous predictors (e.g. air temperature to predict
occasion-to-occasion variation in g0), indicator variables (e.g. 1 if animal i was caught before occasion s, 0
otherwise), or coded factor levels. Within secr.fit, each design matrix is constructed automatically from
the input data and the model formula in a 2-stage process.

First, a data frame is built containing ‘design data’ with one column for each variable in the formula. Second,
the R function model.matrix is used to construct the design matrix. This process is hidden from the user.
The design matrix will have at least one more column than the design data; there may be more if the formula
includes interactions or factors with more than two levels. For a good description of this general approach see
the documentation for RMark (Laake and Rexstad 2014). The necessary design data are either extracted from
the inputs or generated automatically, as explained in later sections. ‘Real’ parameters fall into two groups:

5This use of ‘submodel’ is non-standard – maybe we’ll find a better term.
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density (D) and detection (g0, sigma and z). Density and detection parameters are subject to different effects,
so they use different design matrices as described in the next three sections.

Detection submodels

For SECR, we want to model the detection of each individual i on occasion s at detector k. Given n observed
individuals on S occasions at K detectors, there are therefore nSK detection probabilities of interest. We
treat these as elements in a 3-dimensional array. Strictly, we are also interested in the detection probabilities
of unobserved individuals, but these are estimated only by extrapolation from those observed so we do not
include them in the array.

In a null model, all nSK detection probabilities are assumed to be the same. The conventional sources of
variation in capture probability (Otis et al. 1978) appear as variation either in the n dimension (‘individual
heterogeneity’ h), or in the S dimension (‘time variation’ t), or as a particular interaction in these two
dimensions (‘behavioural response to capture’ b). Combined effects are possible.

SECR introduces additional complexity. Detection probability in SECR is no longer a scalar (even for a
particular animal-occasion-detector combination); it is described by a ‘detection function’. The detection
function may have two parameters (e.g. g0, sigma for a half-normal function), or three parameters (e.g. g0,
sigma, z). Any of the parameters of the detection function may vary with respect to individual (subscript i),
occasion (subscript s) or detector (subscript k).

The full design matrix for each detection submodel has one row for each combination of i, s and k. Allowing
a distinct probability for each animal (the n dimension) may seem excessive, and truly individual-specific
covariates are feasible only when a model is fitted by maximizing the conditional likelihood (cf Huggins 1989).
However, the full nSK array is convenient for coding both group membership (Lebreton et al. 1992, Cooch
and White 2014) and experience of capture, even when individual-specific covariates cannot be modelled.

The programming gets even more complex. Analyses may combine data from several independent samples,
dubbed ‘sessions’. This adds a fourth dimension of length equal to the number of sessions. When finite
mixture models are used for detection parameters there is even a fifth dimension, with the preceding structure
being replicated for each mixture class. Fortunately, secr handles all this out of view: as a user you only
need to know how to specify the detection model.
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