
Package ‘secr’

June 12, 2013

Type Package

Title Spatially explicit capture-recapture

Version 2.6.0

Depends R (>= 2.12.0), abind, MASS, utils

Suggests nlme, sp, maptools, spsurvey, rgdal, rgeos, raster, parallel

Date 2013-06-11

Author Murray Efford

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Description Functions to estimate the density and size of a spatially distributed animal popula-

tion sampled with an array of passive detectors, such as traps, or by searching polygons or tran-

sects. Models incorporating distance-dependent detection are fitted by maximizing the likeli-

hood. Tools are included for data manipulation and model selection.

License GPL (>= 2)

LazyData yes

LazyDataCompression xz

URL http://www.otago.ac.nz/density

R topics documented:

secr-package . 4

addCovariates . 6

addTelemetry . 7

AIC.secr . 9

autoini . 11

BUGS . 13

capthist . 15

capthist.parts . 16

circular . 18

closedN . 20

closure.test . 23

cluster . 24

1

http://www.otago.ac.nz/density

2 R topics documented:

coef.secr . 25

confint.secr . 26

contour . 28

covariates . 30

D.designdata . 31

deermouse . 32

derived . 33

details . 36

detectfn . 37

detector . 39

deviance . 40

distancetotrap . 42

Dsurface . 43

ellipse.secr . 44

empirical.varD . 45

esa.plot . 49

esa.plot.secr . 51

expected.n . 52

FAQ . 54

fxi . 56

head . 58

homerange . 59

hornedlizard . 61

housemouse . 63

ip.secr . 64

join . 69

LLsurface.secr . 70

logit . 72

logmultinom . 73

LR.test . 74

make.capthist . 75

make.mask . 77

make.systematic . 80

make.traps . 81

make.tri . 84

mask . 85

mask.check . 86

model.average . 89

ms . 92

ovenbird . 93

ovensong . 95

Parallel . 97

pdot . 99

plot.capthist . 100

plot.mask . 103

plot.popn . 106

plot.secr . 107

plot.traps . 109

pointsInPolygon . 110

polyarea . 111

popn . 112

possum . 113

R topics documented: 3

predict.secr . 115

predictDsurface . 117

print.capthist . 119

print.secr . 120

print.traps . 121

randomHabitat . 122

rbind.capthist . 124

rbind.popn . 126

rbind.traps . 127

read.capthist . 128

read.mask . 130

read.traps . 131

rectangularMask . 133

reduce . 134

reduce.capthist . 135

region.N . 137

RMarkInput . 140

score.test . 141

secr.design.MS . 144

secr.fit . 146

secr.make.newdata . 150

secr.model . 151

secr.model.density . 152

secr.model.detection . 154

secrdemo . 156

session . 158

signalmatrix . 159

sim.capthist . 160

sim.popn . 163

sim.secr . 166

skink . 169

snip . 171

sort.capthist . 172

SPACECAP . 173

spacing . 175

speed . 176

stoatDNA . 177

subset.capthist . 179

subset.mask . 181

subset.popn . 183

subset.traps . 184

suggest.buffer . 185

summary.capthist . 187

summary.mask . 189

summary.traps . 190

timevaryingcov . 191

transformations . 192

trap.builder . 194

traps . 198

traps.info . 199

trim . 201

Troubleshooting . 202

4 secr-package

usage . 203

usagePlot . 205

vcov.secr . 206

verify . 207

write.captures . 209

writeGPS . 210

Index 213

secr-package Spatially Explicit Capture–Recapture Models

Description

Functions to estimate the density and size of a spatially distributed animal population sampled with

an array of passive detectors, such as traps, or by searching polygons or transects.

Details

Package: secr

Type: Package

Version: 2.6.0

Date: 2013-06-11

License: GNU General Public License Version 2 or later

Spatially explicit capture–recapture is a set of methods for studying marked animals distributed in

space. Data comprise the locations of detectors (traps, searched areas, etc. described in an object

of class ‘traps’), and the detection histories of individually marked animals. Individual histories are

stored in an object of class ‘capthist’ that includes the relevant ‘traps’ object.

Models for population density (animals per hectare) and detection are defined in secr using sym-

bolic formula notation. Density models may include spatial or temporal trend. Possible predictors

for detection probability include both pre-defined variables (t, b, etc.) corresponding to ‘time’, ‘be-

haviour’ and other effects), and user-defined covariates of several kinds. Habitat is distinguished

from nonhabitat with an object of class ‘mask’.

Models are fitted in secr by maximizing either the full likelihood or the likelihood conditional on

the number of individuals observed (n). Conditional likelihood models are limited to homoge-

neous Poisson density, but allow continuous individual covariates for detection. A model fitted with

secr.fit is an object of class secr. Generic methods (plot, print, summary, etc.) are provided for

each object class.

A link at the bottom of each help page takes you to the help index. Several vignettes complement

the help pages:

../doc/secr-overview.pdf general introduction

../doc/secr-datainput.pdf data formats and input functions

../doc/secr-densitysurfaces.pdf modelling density surfaces

../doc/secr-finitemixtures.pdf mixture models for individual heterogeneity

../doc/secr-polygondetectors.pdf using polygon and transect detector types

../doc/secr-sound.pdf analysing data from microphone arrays

../doc/secr-varyingeffort.pdf variable effort in SECR models

../doc/secr-overview.pdf
../doc/secr-datainput.pdf
../doc/secr-densitysurfaces.pdf
../doc/secr-finitemixtures.pdf
../doc/secr-polygondetectors.pdf
../doc/secr-sound.pdf
../doc/secr-varyingeffort.pdf

secr-package 5

The help pages are also available as ../doc/secr-manual.pdf.

The datasets possum, skink, ovenbird, housemouse, deermouse, ovensong, hornedlizard and stoatDNA

include examples of fitted models.

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/density

for the most recent version of Density). Help is available on the ‘DENSITY | secr’ forum at

www.phidot.org. Feedback on the software is also welcome, including suggestions for additional

documentation or new features consistent with the overall design.

Acknowledgements

David Borchers made many of these methods possible with his work on the likelihood, and I’m

grateful for his continuing advice. Jeff Laake provided encouragement and reviewed an early ver-

sion. Ray Brownrigg got my Windows code running under Unix. Deanna Dawson edited some of

the documentation (the cleaner bits!) and her support and collaboration were important through-

out. Tiago Marques and Mike Meredith suggested many improvements to the documentation and

provided valued criticism and support.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with

area searches. Ecology 92, 2202–2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-

recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture–

recapture. Oikos 122, 918–928.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture–recapture models for estimating

density from trapping arrays. In: A.F. O’Connell, J.D. Nichols \& K.U. Karanth (eds) Camera

Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163–190.

See Also

read.capthist, secr.fit, traps, capthist, mask

Examples

Not run:

generate some data & plot

detectors <- make.grid (nx = 10, ny = 10, spacing = 20,

../doc/secr-manual.pdf
http://www.otago.ac.nz/density/index.html
http://www.phidot.org/forum/index.php

6 addCovariates

detector = "multi")

plot(detectors, label = TRUE, border = 0, gridspace = 20)

detections <- sim.capthist (detectors, noccasions = 5,

popn = list(D = 5, buffer = 100),

detectpar = list(g0 = 0.2, sigma = 25))

session(detections) <- "Simulated data"

plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

generate habitat mask

mask <- make.mask (detectors, buffer = 100, nx = 48)

fit model and display results

secr.model <- secr.fit (detections, model = g0~b, mask = mask)

secr.model

End(Not run)

addCovariates Add Covariates to Mask or Traps

Description

Tools to construct spatial covariates for existing mask or traps objects from a spatial data source.

Possible sources include GIS data such as ESRI polygon shapefiles input using maptools.

Usage

addCovariates(object, spatialdata, columns = NULL)

Arguments

object mask or traps object

spatialdata spatial data source (see Details)

columns character vector naming columns to include (all by default)

Details

The goal is to obtain the value(s) of one or more spatial covariates for each point (i.e. row) in

object. The procedure depends on the data source spatialdata, which may be either a spatial

coverage (raster or polygon) or an object with covariate values at points (another mask or traps

object). In the first case, an overlay operation is performed to find the pixel or polygon matching

each point. In the second case, a search is conducted for the closest point in spatialdata.

If spatialdata is a character value then it is interpreted as the name of a polygon shape file (ex-

cluding ‘.shp’).

If spatialdata is a SpatialPolygonsDataFrame or a SpatialGridDataFrame then it will be used in

an overlay operation as described.

If spatialdata is a mask or traps object then it is searched for the closest point to each point in

object, and covariates are drawn from the corresponding rows in covariates(spatialdata).

addTelemetry 7

Value

An object of the same class as object with new or augmented covariates attribute. Column

names and types are derived from the input.

Warning

Use of a SpatialGridDataFrame for spatialdata is untested.

Note

The package maptools is needed to read a shapefile, and the package sp is needed for spatial

overlay.

See Also

make.mask, read.mask, read.traps

Examples

In the Lake Station skink study (see ?skink), habitat covariates were

measured only at trap sites. Here we extrapolate to a mask, taking

values for each mask point from the nearest trap.

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer")

tempmask <- addCovariates(LSmask, LStraps)

show first few lines

head(covariates(tempmask))

addTelemetry Combine Telemetry and Detection Data

Description

Animal locations determined by radiotelemetry can be used to augment capture–recapture data.

The procedure in secr is first to form a capthist object containing the telemetry data and then to

combine this with true capture–recapture data (e.g. detections from hair-snag DNA) in another

capthist object. secr.fit automatically detects the telemetry data in the new object.

Usage

addTelemetry (detectionCH, telemetryCH)

Arguments

detectionCH single-session capthist object, detector type ‘proximity’ or ‘count’

telemetryCH single-session capthist object, detector type ‘telemetry’

8 addTelemetry

Details

It is assumed that a number of animals have been radiotagged in the vicinity of the detector ar-

ray, and their telemetry data (xy-coordinates) have been input to telemetryCH, perhaps using

read.capthist with detector = "telemetry" and fmt = "XY".

A new capthist object is built comprising all the detection histories in detectionCH, plus empty

(all-zero) histories for every telemetered animal not in detectionCH. The telemetry locations are

carried over from telemetryCH as attribute ‘xylist’ (each component of xylist holds the coordinates

of one animal).

Value

A single-session capthist object with the same detector type as detectionCH, but possibly with

empty rows and an ‘xylist’ attribute.

Note

Telemetry provides independent data on the location and presence of a sample of animals. These

animals may be missed in the main sampling that gives rise to detectionCH i.e., they may have

all-zero detection histories.

The ‘telemetry’ detector type is like a ‘polygon’ detector (detections have x-y coordinates). Al-

though perimeter coordinates are required they are not at present used in analyses.

Combining telemetry and detection data is new in secr 2.4.0, and not yet fully documented.

See Also

capthist, make.telemetry

Examples

Not run:

Generate some detection and telemetry data, combine them using

addTelemetry, and perform analyses

detectors

te <- make.telemetry()

tr <- make.grid(detector = ’proximity’)

simulated population and 50% telemetry sample

totalpop <- sim.popn(tr, D = 20, buffer = 100)

tepop <- subset(totalpop, runif(nrow(totalpop)) < 0.5)

simulated detection histories and telemetry

trCH <- sim.capthist(tr, popn = totalpop, renumber = FALSE)

teCH <- sim.capthist(te, popn = tepop, renumber=FALSE,

detectpar = list(g0 = 3, sigma = 25))

combinedCH <- addTelemetry(trCH, teCH)

summarise and display

summary(combinedCH)

plot(combinedCH, border = 150)

ncapt <- apply(combinedCH,1,sum)

AIC.secr 9

points(totalpop[row.names(combinedCH)[ncapt==0],], pch = 1)

points(totalpop[row.names(combinedCH)[ncapt>0],], pch = 16)

fit.tr <- secr.fit(trCH, CL = TRUE) ## trapping alone

fit.te <- secr.fit(teCH, CL = TRUE, start = log(20)) ## telemetry alone

fit2 <- secr.fit(combinedCH, CL = TRUE) ## combined

fit2a <- secr.fit(combinedCH, CL = TRUE, ## combined, using info

details = list(telemetrysigma = TRUE)) ## on sigma from telemetry

improved precision when focus on realised population

(compare CVD)

derived(fit.tr, distribution = ’binomial’)

derived(fit2, distribution = ’binomial’)

may also use CL = FALSE

End(Not run)

AIC.secr Compare SECR Models

Description

Terse report on the fit of one or more spatially explicit capture–recapture models. Models with

smaller values of AIC (Akaike’s Information Criterion) are preferred.

Usage

S3 method for class ’secr’

AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c(’AICc’,’AIC’))

S3 method for class ’secrlist’

AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c(’AICc’,’AIC’))

S3 method for class ’secr’

logLik(object, ...)

secrlist(...)

Arguments

object secr object output from the function secr.fit, or a list of such objects with

class c("list","secrlist")

... other secr objects

sort logical for whether rows should be sorted by ascending AICc

k numeric, penalty per parameter to be used; always k = 2 in this method

dmax numeric, maximum AIC difference for inclusion in confidence set

criterion character, criterion to use for model comparison and weights

10 AIC.secr

Details

Models to be compared must have been fitted to the same data and use the same likelihood method

(full vs conditional).

AIC with small sample adjustment is given by

AICc = −2 log(L(θ̂)) + 2K +
2K(K + 1)

n−K − 1

where K is the number of "beta" parameters estimated. The sample size n is the number of indi-

viduals observed at least once (i.e. the number of rows in capthist).

Model weights are calculated as

wi =
exp(−∆i/2)∑
exp(−∆i/2)

, where ∆ refers to differences in AIC or AICc depending on the argument ‘criterion’.

Models for which delta > dmax are given a weight of zero and are excluded from the summation.

Model weights may be used to form model-averaged estimates of real or beta parameters with

model.average (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.

secrlist forms a list of fitted models (an object of class ‘secrlist’) from the fitted models in

Arguments may include secrlists. If secr components are named the model names will be retained

(see Examples).

Value

A data frame with one row per model. By default, rows are sorted by ascending AICc.

model character string describing the fitted model

detectfn shape of detection function fitted (halfnormal vs hazard-rate)

npar number of parameters estimated

logLik maximized log likelihood

AIC Akaike’s Information Criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

And depending on criterion:

dAICc difference between AICc of this model and the one with smallest AICc

AICcwt AICc model weight

or

dAIC difference between AIC of this model and the one with smallest AIC

AICwt AIC model weight

logLik.secr returns an object of class ‘logLik’ that has attribute df (degrees of freedom = number

of estimated parameters).

autoini 11

Note

It is not be meaningful to compare models by AIC if they relate to different data or habitat masks.

For example, an ‘secrlist’ generated and saved to file by mask.check may be supplied as the object

argument of AIC.secrlist, but the results are not informative. Likewise, models fitted by the

conditional likelihood (CL = TRUE) and full likelihood (CL = FALSE) methods cannot be compared.

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-

dressed (cf QAIC in MARK).

From version 2.6.0 the user may select between AIC and AICc for comparing models, whereas

previously only AICc was used and AICc weights were reported as ‘AICwt’). There is evidence

that AIC may be better for model averaging even when samples are small sizes - Turek and Fletcher

(2012).

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of

inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.

Biometrika 76, 297–307.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-

tics and data analysis 56, 2809–2815.

See Also

model.average, AIC, secr.fit, print.secr, score.test, LR.test, deviance.secr

Examples

Compare two models fitted previously

secrdemo.0 is a null model

secrdemo.b has a learned trap response

AIC(secrdemo.0, secrdemo.b)

Form secrlist and pass to AIC.secr

temp <- secrlist(null = secrdemo.0, learnedresponse = secrdemo.b)

AIC(temp)

autoini Initial Parameter Values for SECR

Description

Find plausible initial parameter values for secr.fit. A simple SECR model is fitted by a fast ad

hoc method.

12 autoini

Usage

autoini(capthist, mask, detectfn = 0, thin = 0.2, tol = 0.001,

binomN = 1, adjustg0 = TRUE, ignoreusage = FALSE)

Arguments

capthist capthist object

mask mask object compatible with the detector layout in capthist

detectfn integer code or character string for shape of detection function 0 = halfnormal

thin proportion of points to retain in mask

tol numeric absolute tolerance for numerical root finding

binomN integer code for distribution of counts (see secr.fit)

adjustg0 logical for whether to adjust g0 for usage (effort) and binomN

ignoreusage logical for whether to discard usage information from traps(capthist)

Details

Plausible starting values are needed to avoid numerical problems when fitting SECR models. Actual

models to be fitted will usually have more than the three basic parameters output by autoini;

other initial values can usually be set to zero for secr.fit. If the algorithm encounters problems

obtaining a value for g0, the default value of 0.1 is returned.

Only the halfnormal detection function is currently available in autoini (cf other options in e.g.

detectfn and sim.capthist).

autoini implements a modified version of the algorithm proposed by Efford et al. (2004). In

outline, the algorithm is

1. Find value of sigma that predicts the 2-D dispersion of individual locations (see RPSV)

2. Find value of g0 that, with sigma, predicts the observed mean number of captures per individ-

ual (by algorithm of Efford et al. (2009, Appendix 2))

3. Compute the effective sampling area from g0, sigma, using thinned mask (see esa)

4. Compute D = n/esa(g0, sigma), where n is the number of individuals detected

Here ‘find’ means solve numerically for zero difference between the observed and predicted values,

using uniroot.

If RPSV cannot be computed the algorithm tries to use observed mean recapture distance d̄. Com-

putation of d̄ fails if there no recaptures, and all returned values are NA.

If the mask has more than 100 points then a proportion 1–thin of points are discarded at random to

speed execution.

The argument tol is passed to uniroot. It may be a vector of two values, the first for g0 and the

second for sigma.

If traps(capthist) has a usage attribute (defining effort on each occasion at each detector) then

the value of g0 is divided by the mean of the non-zero elements of usage. This adjustment is not

precise.

If adjustg0 is TRUE then an adjustment is made to g0 depending on the value of binomN. For Pois-

son counts (binomN = 0) the adjustment is linear on effort (adjusted.g0 = g0 / usage). Otherwise,

the adjustment is on the hazard scale (adjusted.g0 = 1 – (1 – g0) ^ (1 / (usage x binomN))). An

arithmetic average is taken over all non-zero usage values (i.e. over used detectors and times). If

usage is not specified it is taken to be 1.0.

BUGS 13

Value

A list of parameter values :

D Density (animals per hectare)

g0 Magnitude (intercept) of detection function

sigma Spatial scale of detection function (m)

References

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture–

recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, mask, secr.fit, dbar

Examples

demotraps <- make.grid()

demomask <- make.mask(demotraps)

demoCH <- sim.capthist (demotraps, popn = list(D = 5, buffer = 100))

autoini (demoCH, demomask)

BUGS Convert Data To Or From BUGS Format

Description

Convert data between ‘capthist’ and BUGS input format.

Usage

read.DA(DAlist, detector = "polygonX", units = 1, session = 1,

Y = "Y", xcoord = "U1", ycoord = "U2", xmin = "Xl",

xmax = "Xu", ymin = "Yl", ymax = "Yu", buffer = "delta",

verify = TRUE)

write.DA(capthist, buffer, nzeros = 200, units = 1)

Arguments

DAlist list containing data in BUGS format

detector character value for detector type: ‘polygon’ or ‘polygonX’

units numeric for scaling output coordinates

session numeric or character label used in output

Y character, name of binary detection history matrix (animals x occasions)

14 BUGS

xcoord character, name of matrix of x-coordinates for each detection in Y

ycoord character, name of matrix of y-coordinates for each detection in Y

xmin character, name of coordinate of state space boundary

xmax character, name of coordinate of state space boundary

ymin character, name of coordinate of state space boundary

ymax character, name of coordinate of state space boundary

buffer see Details

verify logical if TRUE then the resulting capthist object is checked with verify

capthist capthist object

nzeros level of data augmentation (all-zero detection histories)

Details

Data for OpenBUGS or WinBUGS called from R using the package R2WinBUGS (Sturtz et al.

2005) take the form of an R list.

These functions are limited at present to binary data from a square quadrat such as used by Royle

and Young (2008). Marques et al. (2011) provide an R function create.data() for generating

simulated datasets of this sort (see sim.capthist for equivalent functionality).

When reading BUGS data –

The character values Y, xcoord, ycoord, xmin etc. are used to locate the data within DAlist,

allowing for variation in the input names.

The number of sampling occasions is taken from the number of columns in Y. Each value in Y should

be 0 or 1. Coordinates may be missing

A numeric value for buffer is the distance (in the original units) by which the limits Xl, Xu etc.

should be shrunk to give the actual plot limits. If buffer is character then a component of DAlist

contains the required numeric value.

Coordinates in the output will be multiplied by the scalar units.

Augmentation rows corresponding to ‘all-zero’ detection histories in Y, xcoord, and ycoord are

discarded.

When writing BUGS data –

Null (all-zero) detection histories are added to the matrix of detection histories Y, and missing (NA)

rows are added to the coordinate matrices xcoord and ycoord.

Coordinates in the output will be divided by the scalar units.

Value

For read.DA, an object of class ‘capthist’.

For write.DA, a list with the components

Xl left edge of state space

Xu right edge of state space

Yl bottom edge of state space

Yu top edge of state space

delta buffer between edge of state space and quadrat

nind number of animals observed

nzeros number of added all-zero detection histories

T number of sampling occasions

capthist 15

Y binary matrix of detection histories (dim = c(nind+nzeros, T))

U1 matrix of x-coordinates, dimensioned as Y

U2 matrix of y-coordinates, dimensioned as Y

U1 and U2 are ‘NA’ where animal was not detected.

References

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture–

recapture data: Comment. Ecology 92, 526–528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–recapture data. Ecol-

ogy 89, 2281–2289.

Sturtz, S., Ligges, U. and Gelman, A. (2005) R2WinBUGS: a package for running WinBUGS from

R. Journal of Statistical Software 12, 1–16.

See Also

hornedlizardCH, verify, capthist

Examples

write.DA (hornedlizardCH, buffer = 100, units = 100)

In this example, the input uses Xl, Xu etc.

for the limits of the plot itself, so buffer = 0.

Input is in hundreds of metres.

First, obtain the list lzdata

olddir <- setwd (system.file("extdata", package="secr"))

source ("lizarddata.R")

str(lzdata)

Now convert to capthist

tempcapt <- read.DA(lzdata, Y = "H", xcoord = "X",

ycoord = "Y", buffer = 0, units = 100)

summary(tempcapt)

setwd(olddir)

Not run:

plot(tempcapt)

secr.fit(tempcapt)

etc.

End(Not run)

capthist Spatial Capture History Object

Description

A capthist object encapsulates all data needed by secr.fit, except for the optional habitat mask.

16 capthist.parts

Details

An object of class capthist holds spatial capture histories, detector (trap) locations, individual

covariates and other data needed for a spatially explicit capture-recapture analysis with secr.fit.

For ‘single’ and ‘multi’ detectors, capthist is a matrix with one row per animal and one column

per occasion (i.e. dim(capthist) = c(nc, noccasions)); each element is either zero (no detection) or

a detector number. For other detectors (‘proximity’, ‘count’, ‘signal’ etc.), capthist is an array of

values and dim(capthist) = c(nc, noccasions, ntraps); values maybe binary ({–1, 0, 1}) or integer

depending on the detector type.

Deaths during the experiment are represented as negative values.

Ancillary data are retained as attributes of a capthist object as follows:

• traps – object of class traps (required)

• session – session identifier (required)

• covariates – dataframe of individual covariates (optional)

• cutval – threshold of signal strength for detection (‘signal’ only)

• signal – signal strength values, one per detection (‘signal’ only)

• detectedXY – dataframe of coordinates for location within polygon (‘polygon’ only)

The parts of a capthist object can be assembled with the function make.capthist. Use sim.capthist

for Monte Carlo simulation (simple models only). Methods are provided to display and manipulate

capthist objects (print, summary, plot, rbind, subset, reduce) and to extract and replace attributes

(covariates, traps, xy).

A multi-session capthist object is a list in which each component is a capthist for a single ses-

sion. The list maybe derived directly from multi-session input in Density format, or by combining

existing capthist objects with MS.capthist.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

traps, secr.fit, read.capthist, make.capthist, sim.capthist, subset.capthist, rbind.capthist,

MS.capthist, reduce.capthist, mask

capthist.parts Dissect Spatial Capture History Object

Description

Extract parts of an object of class ‘capthist’.

capthist.parts 17

Usage

animalID(object, names = TRUE)

occasion(object)

trap(object, names = TRUE)

alive(object)

alongtransect(object, tol = 0.01)

xy(object)

xy(object) <- value

signalframe(object)

signalframe(object) <- value

signal(object)

signal(object) <- value

noise(object)

noise(object) <- value

Arguments

object a ‘capthist’ object

names if FALSE the values returned are numeric indices rather than names

tol tolerance for snapping to transect line (m)

value replacement value (see Details)

Details

These functions extract data on detections, ignoring occasions when an animal was not detected.

Detections are ordered by occasion, animalID and trap.

trap returns polygon or transect numbers if traps(object) has detector type ‘polygon’ or ‘tran-

sect’.

alongtransect returns the distance of each detection from the start of the transect with which it is

associated.

Replacement values must precisely match object in number of detections and in their order. xy<-

expects a dataframe of x and y coordinates for points of detection within a ‘polygon’ or ‘transect’

detector.

Value

For animalID and trap a vector of numeric or character values, one per detection.

For alive a vector of logical values, one per detection.

For occasion, a vector of numeric values, one per detection.

For xy, a dataframe with one row per detection and columns ‘x’ and ‘y’.

For signalframe , a dataframe containing signal data and covariates, one row per detection. The

data frame has one row per detection. See signalmatrix for a matrix with one row per cue and

columns for different microphones.

For signal and noise, a numeric vector with one element per detection.

If object has multiple sessions, the result is a list with one component per session.

See Also

capthist, polyID, signalmatrix

18 circular

Examples

‘captdata’ is a demonstration dataset

animalID(captdata)

temp <- sim.capthist(popn = list(D = 1), make.grid(detector

= "count"))

cbind(ID = as.numeric(animalID(temp)), occ = occasion(temp),

trap = trap(temp))

ovensong dataset has very simple signalframe

head(signalframe(signalCH))

circular Circular Probability

Description

Functions to answer the question "what radius is expected to include proportion p of points from a

circular bivariate distribution corresponding to a given detection function", and the reverse. These

functions may be used to relate the scale parameter(s) of a detection function (e.g., σ) to home-

range area (specifically, the area within an activity contour for the corresponding simple home-range

model) (see Note).

WARNING: the default behaviour of these functions changed in version 2.6.0. Integration is now

performed on the cumulative hazard (exposure) scale for all functions unless hazard = FALSE.

Results will differ.

Usage

circular.r (p = 0.95, detectfn = 0, sigma = 1, detectpar = NULL, hazard

= TRUE, ...)

circular.p (r = 1, detectfn = 0, sigma = 1, detectpar = NULL, hazard

= TRUE, ...)

Arguments

p vector of probability levels for which radius is required

r vector of radii for which probability level is required

detectfn integer code or character string for shape of detection function 0 = halfnormal,

2 = exponential etc. – see detectfn for other codes

sigma spatial scale parameter of detection function

detectpar named list of detection function parameters

hazard logical; if TRUE the transformation −log(1−g(d)) is applied before integration

... other arguments passed to integrate

circular 19

Details

circular.r is the quantile function of the specified circular bivariate distribution (analogous to

qnorm, for example). The quantity calculated by circular.r is sometimes called ‘circular error

probable’ (see Note).

For detection functions with two parameters (intercept and scale) it is enough to provide sigma.

Otherwise, detectpar should be a named list including parameter values for the requested detection

function (g0 may be omitted, and order does not matter).

Detection functions in secr are expressed in terms of the decline in probability of detection with

distance g(d), and both circular.r and circular.p integrate this function by default. Rather

than integrating g(d) itself, it may be more appropriate to integrate g(d) transformed to a hazard i.e.

1− log(−g(d)). This is selected with hazard = TRUE.

Integration may fail with the message "maximum number of subdivisions reached". See Examples

for how to increase the number of subdivisions.

Value

Vector of values for the required radii or probabilities.

Note

The term ‘circular error probable’ has a military origin. It is commonly used for GPS accuracy

with the default probability level set to 0.5 (i.e. half of locations are further than CEP from the

true location). A circular bivariate normal distriubution is commonly assumed for the circular error

probable; this is equivalent to setting detectfn = "halfnormal".

Closed-form expressions are used for the normal and uniform cases; in the circular bivariate normal

case, the relationship is r = σ
√

−2ln(1− p). Otherwise, the probability is computed numerically

by integrating the radial distribution. Numerical integration is not foolproof, so check suspicious or

extreme values.

When circular.r is used with the default sigma = 1, the result may be interpreted as the factor

by which sigma needs to be inflated to include the desired proportion of activity (e.g., 2.45 sigma

for 95% of points from a circular bivariate normal distribution fitted on the hazard scale (detectfn =

14) OR 2.24 sigma on the probability scale (detectfn = 0)).

References

Calhoun, J. B. and Casby, J. U. (1958) Calculation of home range and density of small mammals.

Public Health Monograph No. 55. United States Government Printing Office.

Johnson, R. A. and Wichern, D. W. (1982) Applied multivariate statistical analysis. Prentice-Hall,

Englewood Cliffs, New Jersey, USA.

See Also

detectfn, detectfnplot

Examples

Calhoun and Casby (1958) p 3.

give p = 0.3940, 0.8645, 0.9888

circular.p(1:3)

halfnormal, hazard-rate and exponential

20 closedN

circular.r ()

circular.r (detectfn = ’HR’, detectpar = list(sigma = 1, z = 4))

circular.r (detectfn = ’EX’)

circular.r (detectfn = ’HHN’)

circular.r (detectfn = ’HHR’, detectpar = list(sigma = 1, z = 4))

circular.r (detectfn = ’HEX’)

plot(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01)),

type = "l", xlab = "Radius (multiples of sigma)", ylab = "Probability")

lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 2),

type = "l", col = "red")

lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 1,

detectpar = list(sigma = 1,z = 4)), type = "l", col = "blue")

abline (h = 0.95, lty = 2)

legend (2.8, 0.3, legend = c("halfnormal","hazard-rate, z = 4", "exponential"),

col = c("black","blue","red"), lty = rep(1,3))

in this example, a more interesting comparison would use

sigma = 0.58 for the exponential curve.

Not run:

integrate() has a default of subdivisions = 100

Increasing this argument can help.

e.g., this fails with message

"Error in integrate(rdfn, 0, r, pars, cutval, ...) :

maximum number of subdivisions reached"

circular.r (p = seq(0.1,0.9,0.01), detectfn = ’HR’,

detectpar = list(sigma = 10, z = 8))

this succeeds:

circular.r (p = seq(0.1,0.9,0.01), detectfn = ’HR’,

detectpar = list(sigma = 10, z = 8), subdivisions = 300)

End(Not run)

closedN Closed population estimates

Description

Estimate N, the size of a closed population, by several conventional non-spatial capture–recapture

methods.

Usage

closedN(object, estimator = NULL, level = 0.95, maxN = 1e+07,

dmax = 10)

closedN 21

Arguments

object capthist object

estimator character; name of estimator (see Details)

level confidence level (1 – alpha)

maxN upper bound for population size

dmax numeric, the maximum AIC difference for inclusion in confidence set

Details

Data are provided as spatial capture histories, but the spatial information (trapping locations) is

ignored.

AIC-based model selection is available for the maximum-likelihood estimators null, zippin, darroch,

h2, and betabinomial.

Model weights are calculated as

wi =
exp(−∆i/2)∑
exp(−∆i/2)

Models for which dAICc > dmax are given a weight of zero and are excluded from the summation,

as are non-likelihood models.

Computation of null, zippin and darroch estimates differs slightly from Otis et al. (1978) in

that the likelihood is maximized over real values of N between Mt1 and maxN, whereas Otis et al.

considered only integer values.

Asymmetric confidence intervals are obtained in the same way for all estimators, using a log trans-

formation of N̂ −Mt1 following Burnham et al. (1987), Chao (1987) and Rexstad and Burnham

(1991).

The available estimators are

Name Model Description Reference

null M0 null Otis et al. 1978 p.105

zippin Mb removal Otis et al. 1978 p.108

darroch Mt Darroch Otis et al. 1978 p.106-7

h2 Mh 2-part finite mixture Pledger 2000

betabinomial Mh Beta-binomial continuous mixture Dorazio and Royle 2003

jackknife Mh jackknife Burnham and Overton 1978

chao Mh Chao’s Mh estimator Chao 1987

chaomod Mh Chao’s modified Mh estimator Chao 1987

chao.th1 Mth sample coverage estimator 1 Lee and Chao 1994

chao.th2 Mth sample coverage estimator 2 Lee and Chao 1994

Value

A dataframe with one row per estimator and columns

model model in the sense of Otis et al. 1978

npar number of parameters estimated

loglik maximized log likelihood

AIC Akaike’s information criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

22 closedN

dAICc difference between AICc of this model and the one with smallest AICc

Mt1 number of distinct individuals caught

Nhat estimate of population size

seNhat estimated standard error of Nhat

lclNhat lower 100 x level % confidence limit

uclNhat upper 100 x level % confidence limit

Warning

If your data are from spatial sampling (e.g. grid trapping) it is recommended that you do not use

these methods to estimate population size (see Efford submitted). Instead, fit a spatial model and

estimate population size with region.N.

Note

Prof. Anne Chao generously allowed me to adapt her code for the variance of the ‘chao.th1’ and

‘chao.th2’ estimators.

Chao’s estimators have been subject to various improvements not included here; please see Chao

and Shen (2010) for details.

References

Burnham, K. P. and Overton, W. S. (1978) Estimating the size of a closed population when capture

probabilities vary among animals. Biometrika 65, 625–633.

Chao, A. (1987) Estimating the population size for capture–recapture data with unequal catchability.

Biometrics 43, 783–791.

Chao, A. and Shen, T.-J. (2010) Program SPADE (Species Prediction And Diversity Estimation).

Program and User’s Guide available online at http://chao.stat.nthu.edu.tw.

Dorazio, R. M. and Royle, J. A. (2003) Mixture models for estimating the size of a closed population

when capture rates vary among individuals. Biometrics 59, 351–364.

Efford, M. G. (submitted) Estimating population size by spatially explicit capture–recapture.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.

Biometrika 76, 297–307.

Lee, S.-M. and Chao, A. (1994) Estimating population size via sample coverage for closed capture-

recapture models. Biometrics 50, 88–97.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models using

mixtures. Biometrics 56, 434–442.

Rexstad, E. and Burnham, K. (1991) User’s guide for interactive program CAPTURE. Colorado

Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA.

See Also

capthist, closure.test, region.N

Examples

closedN(deermouse.ESG)

http://chao.stat.nthu.edu.tw

closure.test 23

closure.test Closure tests

Description

Perform tests to determine whether a population sampled by capture-recapture is closed to gains

and losses over the period of sampling.

Usage

closure.test(object, SB = FALSE, min.expected = 2)

Arguments

object capthist object

SB logical, if TRUE then test of Stanley and Burnham 1999 is calculated in addition

to that of Otis et al. 1978

min.expected integer for the minimum expected count in any cell of a component 2x2 table

Details

The test of Stanley and Burnham in part uses a sum over 2x2 contingency tables; any table with a

cell whose expected count is less than min.expected is dropped from the sum. The default value of

2 is that used by CloseTest (Stanley and Richards 2005, T. Stanley pers. comm.; see also Stanley

and Burnham 1999 p. 203).

Value

In the case of a single-session capthist object, either a vector with the statistic (z-value) and p-value

for the test of Otis et al. (1978 p. 120) or a list whose components are data frames with the statistics

and p-values for various tests and test components as follows –

Otis Test of Otis et al. 1978

Xc Overall test of Stanley and Burnham 1999

NRvsJS Stanley and Burnham 1999

NMvsJS Stanley and Burnham 1999

MtvsNR Stanley and Burnham 1999

MtvsNM Stanley and Burnham 1999

compNRvsJS Occasion-specific components of NRvsJS

compNMvsJS Occasion-specific components of NMvsJS

Check the original papers for an explanation of the components of the Stanley and Burnham test.

In the case of a multi-session object, a list with one component (as above) for each session.

24 cluster

Note

No omnibus test exists for closure: the existing tests may indicate nonclosure even when a popu-

lation is closed if other effects such as trap response are present (see White et al. 1982 pp 96–97).

The test of Stanley and Burnham is sensitive to individual heterogeneity which is inevitable in most

spatial sampling, and it should not in general be used for this sort of data.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Burnham, K. P. (1999) A closure test for time-specific capture–recapture data.

Environmental and Ecological Statistics 6, 197–209.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.

Wildlife Society Bulletin 33, 782–785.

White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982) Capture-recapture and

removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos,

New Mexico.

See Also

capthist

Examples

closure.test(captdata)

cluster Detector Clustering

Description

Clusters are uniform groups of detectors. Use these functions to extract or replace cluster informa-

tion of a traps object, or extract cluster information for each detection in a capthist object.

Usage

clusterID(object)

clusterID(object) <- value

clustertrap(object)

clustertrap(object) <- value

Arguments

object traps or capthist object

value factor (clusterID) or integer-valued vector (clustertrap)

coef.secr 25

Details

Easy access to attributes used to define compound designs, those in which a detector array comprises

several similar subunits (‘clusters’). ‘clusterID’ identifies the detectors belonging to each cluster,

and ‘clustertrap’ is a numeric index used to relate matching detectors in different clusters.

For replacement (‘traps’ only), the number of rows of value must match exactly the number of

detectors in object.

‘clusterID’ and ‘clustertrap’ are assigned automatically by trap.builder.

Value

Factor (clusterID) or integer-valued vector (clustertrap).

clusterID(object) may be NULL.

See Also

traps, trap.builder, mash, derived.cluster, cluster.counts, cluster.centres

Examples

81 4-detector clusters

mini <- make.grid(nx = 2, ny = 2)

tempgrid <- trap.builder (cluster = mini , method = "all",

frame = expand.grid(x = seq(100, 900, 100), y = seq(100,

900, 100)))

clusterID(tempgrid)

clustertrap(tempgrid)

tempCH <- sim.capthist(tempgrid)

table(clusterID(tempCH)) ## detections per cluster

cluster.counts(tempCH) ## distinct individuals

coef.secr Coefficients of secr Object

Description

Extract coefficients (estimated beta parameters) from a spatially explicit capture–recapture model.

Usage

S3 method for class ’secr’

coef(object, alpha = 0.05, ...)

Arguments

object secr object output from secr.fit

alpha alpha level

... other arguments (not used currently)

26 confint.secr

Value

A data frame with one row per beta parameter and columns for the coefficient, SE(coefficient),

asymptotic lower and upper 100(1–alpha) confidence limits.

See Also

secr.fit, esa.plot

Examples

load & extract coefficients of previously fitted null model

coef(secrdemo.0)

confint.secr Profile Likelihood Confidence Intervals

Description

Compute profile likelihood confidence intervals for ‘beta’ or ‘real’ parameters of a spatially explicit

capture-recapture model,

Usage

S3 method for class ’secr’

confint(object, parm, level = 0.95, newdata = NULL,

tracelevel = 1, tol = 0.0001, bounds = NULL, ...)

Arguments

object secr model object

parm numeric or character vector of parameters

level confidence level (1 – alpha)

newdata optional dataframe of values at which to evaluate model

tracelevel integer for level of detail in reporting (0,1,2)

tol absolute tolerance (passed to uniroot)

bounds numeric vector of outer starting values – optional

... other arguments (not used)

confint.secr 27

Details

If parm is numeric its elements are interpreted as the indices of ‘beta’ parameters; character values

are interpreted as ‘real’ parameters. Different methods are used for beta parameters and real param-

eters. Limits for the j-th beta parameter are found by a numerical search for the value satisfying

−2(lj(βj) − l) = q, where l is the maximized log likelihood, lj(βj) is the maximized profile log

likelihood with βj fixed, and q is the 100(1− α) quantile of the χ2 distribution with one degree of

freedom. Limits for real parameters use the method of Lagrange multipliers (Fletcher and Faddy

2007), except that limits for constant real parameters are backtransformed from the limits for the

relevant beta parameter.

If bounds is provided it should be a 2-vector or matrix of 2 columns and length(parm) rows.

Value

A matrix with one row for each parameter in parm, and columns giving the lower (lcl) and upper

(ucl) 100*level

Note

Calculation may take a long time, so probably you will do it only after selecting a final model.

The R function uniroot is used to search for the roots of −2(lj(βj) − l) = q within a suitable

interval. The interval is anchored at one end by the MLE, and at the other end by the MLE inflated

by a small multiple of the asymptotic standard error (1, 2, 4 or 8 SE are tried in turn, using the

smallest for which the interval includes a valid solution).

A more efficient algorithm was proposed by Venzon and Moolgavkar (1988); it has yet to be imple-

mented in secr, but see plkhci in the package Bhat for another R implementation.

References

Evans, M. A., Kim, H.-M. and O’Brien, T. E. (1996) An application of profile-likelihood based

confidence interval to capture–recapture estimators. Journal of Agricultural, Biological and Exper-

imental Statistics 1, 131–140.

Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species.

Journal of Agricultural, Biological and Experimental Statistics 12, 315–324.

Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based con-

fidence intervals. Applied Statistics 37, 87–94.

Examples

Not run:

Limits for the constant real parameter "D"

confint(secrdemo.0, "D")

End(Not run)

28 contour

contour Contour Detection Probability

Description

Display contours of the net probability of detection p.(X), or the area within a specified distance of

detectors. buffer.contour adds a conventional ‘boundary strip’ to a detector (trap) array, where

buffer equals the strip width.

Usage

pdot.contour(traps, border = NULL, nx = 64, detectfn = 0,

detectpar = list(g0 = 0.2, sigma = 25, z = 1), noccasions = NULL,

binomN = NULL, levels = seq(0.1, 0.9, 0.1), poly = NULL, plt = TRUE,

add = FALSE, ...)

buffer.contour(traps, buffer, nx = 64, convex = FALSE, ntheta = 100,

plt = TRUE, add = FALSE, poly = NULL, ...)

Arguments

traps traps object

border width of blank margin around the outermost detectors

nx dimension of interpolation grid in x-direction

detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of sampling occasions

binomN integer code for discrete distribution (see secr.fit)

levels vector of levels for p.(X)

poly matrix of two columns, the x and y coordinates of a bounding polygon (optional)

plt logical to plot contours

add logical to add contour(s) to an existing plot

... other arguments to pass to contour

buffer vector of buffer widths

convex logical, if TRUE the plotted contour(s) will be convex

ntheta integer value for smoothness of convex contours

Details

pdot.contour constructs a rectangular mask and applies pdot to compute the p.(X) at each mask

point.

if convex = FALSE, buffer.contour constructs a mask and contours the points on the basis of

distance to the nearest detector at the levels given in buffer.

contour 29

if convex = TRUE, buffer.contour constructs a set of potential vertices by adding points on a

circle of radius = buffer to each detector location; the desired contour is the convex hull of these

points (this algorithm derives from Efford, 2009).

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

Increase nx for smoother lines, at the expense of speed.

Value

Coordinates of the plotted contours are returned as a list with one component per polygon. The list

is returned invisibly if plt = TRUE.

Note

The precision (smoothness) of the fitted line in buffer.contour is controlled by ntheta rather

than nx when convex = TRUE.

To suppress contour labels, include the argument drawlabels = FALSE (this will be passed via

. . . to contour). Other useful arguments of contour are col (colour of contour lines) and lwd (line

width).

You may wish to consider function gBuffer in package rgeos as an alternative to buffer.contour..

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department

of Mathematics and Statistics, University of Otago, Dunedin, New Zealand http://www.otago.

ac.nz/density.

See Also

pdot, make.mask

Examples

possumtraps <- traps(possumCH)

plot(possumtraps, border = 270)

pdot.contour(possumtraps, detectfn = 0, nx = 128, detectpar =

detectpar(possum.model.0), levels = c(0.1, 0.01, 0.001),

noccasions = 5, add = TRUE)

clipping to polygon

olddir <- setwd(system.file("extdata", package = "secr"))

possumarea <- read.table("possumarea.txt", header = TRUE)

oldpar <- par(xpd = TRUE, mar = c(1,6,6,6))

plot(possumtraps, border = 400, gridlines = FALSE)

pdot.contour(possumtraps, detectfn = 0, nx = 256, detectpar =

detectpar(possum.model.0), levels = c(0.1, 0.01, 0.001),

noccasions = 5, add = TRUE, poly = possumarea, col = "blue")

lines(possumarea)

setwd(olddir)

par(oldpar)

convex and concave buffers

plot(possumtraps, border = 270)

http://www.otago.ac.nz/density
http://www.otago.ac.nz/density

30 covariates

buffer.contour(possumtraps, buffer = 100, add = TRUE, col = "blue")

buffer.contour(possumtraps, buffer = 100, convex = TRUE, add = TRUE)

areas

buff.concave <- buffer.contour(possumtraps, buffer = 100,

plt = FALSE)

buff.convex <- buffer.contour(possumtraps, buffer = 100,

plt = FALSE, convex = TRUE)

sum (sapply(buff.concave, polyarea)) ## sum over parts

sapply(buff.convex, polyarea)

effect of nx on area

buff.concave2 <- buffer.contour(possumtraps, buffer = 100,

nx = 128, plt = FALSE)

sum (sapply(buff.concave2, polyarea))

covariates Covariates Attribute

Description

Extract or replace covariates

Usage

covariates(object, ...)

covariates(object) <- value

Arguments

object an object of class traps, popn, capthist, or mask

value a dataframe of covariates

... other arguments (not used)

Details

For replacement, the number of rows of value must match exactly the number of rows in object.

Value

covariates(object) returns the dataframe of covariates associated with object. covariates(object)

may be NULL.

Examples

temptrap <- make.grid(nx = 6, ny = 8)

covariates (temptrap) <- data.frame(halfnhalf =

factor(rep(c("left","right"),c(24,24))))

summary(covariates(temptrap))

D.designdata 31

D.designdata Construct Density Design Data

Description

Internal function used by secr.fit, confint.secr, and score.test.

Usage

D.designdata (mask, Dmodel, grouplevels, sessionlevels, sessioncov =

NULL, meanSD = NULL)

Arguments

mask mask object.

Dmodel formula for density model

grouplevels vector of group names

sessionlevels vector of character values for session names

sessioncov optional dataframe of values of session-specific covariate(s).

meanSD optional external values for scaling x- and y- coordinates

Details

This is an internal secr function that you are unlikely ever to use. Unlike secr.design.MS, this

function does not call model.matrix.

Value

Dataframe with one row for each combination of mask point, group and session. Conceptually, we

use a 3-D rectangular array with enough rows to accommodate the largest mask, so some rows in the

output may merely hold space to enable easy indexing. The dataframe has an attribute ‘dimD’ that

gives the relevant dimensions: attr(dframe, "dimD") = c(nmask, ngrp, R), where nmask is

the number of mask points, ngrp is the number of groups, and R is the number of sessions. Columns

correspond to predictor variables in Dmodel.

The number of valid rows (points in each session-specific mask) is stored in the attribute ‘valid-

MaskRows’.

For a single-session mask, meanSD is a 2 x 2 matrix of mean and SD (rows) for x- and y-coordinates.

For a multi-session mask, a list of such objects. Ordinarily these values are from the meanSD

attribute of the mask, but they must be specified when applying a new mask to an existing model.

See Also

secr.design.MS

32 deermouse

deermouse Deermouse Live-trapping Datasets

Description

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Col-

orado, USA.

Usage

data(deermouse)

Details

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAP-

TURE software (now available from http://www.mbr-pwrc.usgs.gov/software.html). They

have been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley

and Richards 2005). This description is based on pages 32 and 87–93 of Otis et al. (1978).

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping

was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m)

apart.

The first dataset was described by Otis et al. (1978: 32) as from ‘a drainage bottom of sagebrush,

gambel oak, and serviceberry with pinyon pine and juniper on the uplands’. By matching with the

‘examples’ file of CAPTURE this was from East Stuart Gulch (ESG).

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August

1975. No specific vegetation description is given for this site, but it is stated that Sherman traps

were used and trapping was done twice daily.

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from

morning trap clearances, the capture histories in ‘examples’ from CAPTURE include a ‘pm’ tag

on each record. We assume the error was in the text description, as their numerical results can be

reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting

spatial data that were not relevant to his method), but omitted two capture histories.

The data are provided as two single-session capthist objects ‘deermouse.ESG’ and ‘deermouse.WSG’.

Each has a dataframe of individual covariates, but the fields differ between the two study areas. The

individual covariates of deermouse.ESG are sex (factor levels ‘f’, ‘m’), age class (factor levels ‘y’,

‘sa’, ‘a’) and body weight in grams. The individual covariates of deermouse.WSG are sex (factor

levels ‘f’,‘m’) and age class (factor levels ‘j’, ‘y’, ‘sa’, ‘a’) (no data on body weight). The aging

criteria used by Reid are not recorded.

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives

the ‘column’ and ‘row’ numbers of the trap (e.g. ‘ 9 5’ for a capture in the trap at position (x=9,

y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros

(e.g. ‘905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include double captures (1

at ESG and 8 at WSG – see Examples). The true detector type therefore falls between ‘single’ and

‘multi’. Detector type is set to ‘multi’ in the distributed data objects.

Some fitted secr models are included (ESG.0, ESG.b, ESG.t, ESG.h2, WSG.0, WSG.b, WSG.t,

WSG.h2, each with the indicated effect on g0). Otis et al. (1978) draw attention to the tendency

of Peromyscus to become ‘trap happy’, and we observe that models with a behavioural response

(ESG.b, WSG.b) have the lowest AIC among those fitted here.

http://www.mbr-pwrc.usgs.gov/software.html

derived 33

Object Description

deermouse.ESG capthist object, East Stuart Gulch

deermouse.WSG capthist object, Wet Swizer Gulch

ESG.0 fitted secr model – ESG null

ESG.b fitted secr model – ESG trap response g0

ESG.h2 fitted secr model – ESG finite mixture g0

ESG.t fitted secr model – ESG time-varying g0

WSG.0 fitted secr model – WSG null

WSG.b fitted secr model – WSG trap response g0

WSG.h2 fitted secr model – WSG finite mixture g0

WSG.t fitted secr model – WSG time-varying g0

Source

File ‘examples’ distributed with program CAPTURE.

References

Huggins, R. M. (1991) Some practical aspects of a conditional likelihood approach to capture ex-

periments. Biometrics 47, 725–732.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.

Wildlife Society Bulletin 33, 782–785.

See Also

closure.test

Examples

par(mfrow = c(1,2), mar = c(1,1,4,1))

plot(deermouse.ESG, title = "Peromyscus data from East Stuart Gulch",

border = 10, gridlines = FALSE, tracks = TRUE)

plot(deermouse.WSG, title = "Peromyscus data from Wet Swizer Gulch",

border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)

reveal multiple captures

table(trap(deermouse.ESG), occasion(deermouse.ESG))

table(trap(deermouse.WSG), occasion(deermouse.WSG))

derived Derived Parameters of Fitted SECR Model

34 derived

Description

Compute derived parameters of spatially explicit capture-recapture model. Density is a derived

parameter when a model is fitted by maximizing the conditional likelihood. So also is the effective

sampling area (in the sense of Borchers and Efford 2008).

Usage

derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,

se.esa = FALSE, se.D = TRUE, loginterval = TRUE,

distribution = NULL, ncores = 1)

esa(object, sessnum = 1, beta = NULL, real = NULL, noccasions = NULL)

Arguments

object secr object output from secr.fit, or an object of class c("list","secrlist")

sessnum index of session in object$capthist for which output required

groups vector of covariate names to define group(s) (see Details)

alpha alpha level for confidence intervals

se.esa logical for whether to calculate SE(mean(esa))

se.D logical for whether to calculate SE(D-hat)

loginterval logical for whether to base interval on log(D)

distribution character string for distribution of the number of individuals detected

ncores integer number of cores available for parallel processing

beta vector of fitted parameters on transformed (link) scale

real vector of ‘real’ parameters

noccasions integer number of sampling occasions (see Details)

Details

The derived estimate of density is a Horvitz-Thompson-like estimate:

D̂ =

n∑

i=1

ai(θ̂)
−1

where ai(θ̂) is the estimate of effective sampling area for animal i with detection parameter vector

θ.

A non-null value of the argument distribution overrides the value in object$details. The sam-

pling variance of D̂ from secr.fit by default is spatially unconditional (distribution = "Poisson").

For sampling variance conditional on the population of the habitat mask (and therefore dependent

on the mask area), specify distribution = "binomial". The equation for the conditional vari-

ance includes a factor (1− a/A) that disappears in the unconditional (Poisson) variance (Borchers

and Efford 2007). Thus the conditional variance is always less than the unconditional variance. The

unconditional variance may in turn be an overestimate or (more likely) an underestimate if the true

spatial variance is non-Poisson.

Derived parameters may be estimated for population subclasses (groups) defined by the user with

the groups argument. Each named factor in groups should appear in the covariates dataframe of

object$capthist (or each of its components, in the case of a multi-session dataset).

derived 35

esa is used by derived to compute individual-specific effective sampling areas:

ai(θ̂) =

∫

A

p.(X; zi, θ̂) dX

where p.(X) is the probability an individual at X is detected at least once and the zi are optional

individual covariates. Integration is over the area A of the habitat mask.

The argument noccasions may be used to vary the number of sampling occasions; it works only

when detection parameters are constant across individuals and across time.

The effective sampling area ‘esa’ (a(θ̂)) reported by derived is equal to the harmonic mean of the

ai(θ̂) (arithmetic mean prior to version 1.5). The sampling variance of a(θ̂) is estimated by

v̂ar(a(θ̂)) = ĜT
θ V̂θĜθ,

where V̂ is the asymptotic estimate of the variance-covariance matrix of the beta detection param-

eters (θ) and Ĝ is a numerical estimate of the gradient of a(θ) with respect to θ, evaluated at θ̂.

A 100(1–alpha)% asymptotic confidence interval is reported for density. By default, this is asym-

metric about the estimate because the variance is computed by backtransforming from the log scale.

You may also choose a symmetric interval (variance obtained on natural scale).

The vector of detection parameters for esa may be specified via beta or real, with the former

taking precedence. If neither is provided then the fitted values in objectfitpar are used. Spec-

ifying real parameter values bypasses the various linear predictors. Strictly, the ‘real’ parameters

are for a naive capture (animal not detected previously).

The computation of sampling variances is relatively slow and may be suppressed with se.esa and

se.D as desired.

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for

more).

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter

SE.estimate standard error of the estimate

lcl lower 100(1–alpha)% confidence limit

ucl upper 100(1–alpha)% confidence limit

CVn relative SE of number observed (Poisson or binomial assumption)

CVa relative SE of effective sampling area

CVD relative SE of density estimate

For a multi-session or multi-group analysis the value is a list with one component for each session

and group.

The result will also be a list if object is an ‘secrlist’.

Note

Before version 2.1, the output table had columns for ‘varcomp1’ (the variance in D̂ due to variation

in n, i.e., Huggins’ s2), and ‘varcomp2’ (the variance in D̂ due to uncertainty in estimates of

detection parameters).

These quantities are related to CVn and CVa as follows:

36 details

CVn =
√

varcomp1/D̂

CVa =
√

varcomp2/D̂

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at

http://www.otago.ac.nz/density.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics, 64, 377–385.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

See Also

predict.secr, print.secr, secr.fit, empirical.varD

Examples

Not run:

extract derived parameters from a model fitted previously

by maximizing the conditional likelihood

derived (secrdemo.CL)

what happens when sampling variance is conditional on mask N?

derived(secrdemo.CL, distribution = "binomial")

fitted g0, sigma

esa(secrdemo.CL)

force different g0, sigma

esa(secrdemo.CL, real = c(0.2, 25))

End(Not run)

details Detail Specification for secr.fit

Description

The function secr.fit allows many options. Some of these are used infrequently and have been

bundled as a single argument details to simplify the documentation. They are described here.

Detail components

details$centred = TRUE causes coordinates of both traps and mask to be centred on the centroid

of the traps, computed separately for each session in the case of multi-session data. This may be

necessary to overcome numerical problems when x- or y-coordinates are large numbers. The default

is not to centre coordinates.

details$distribution specifies the distribution of the number of individuals detected; this may

be conditional on the number in the masked area ("binomial") or unconditional ("poisson"). distribution

affects the sampling variance of the estimated density. The default is "poisson". The component

‘distribution’ may also take a numeric value larger than nrow(capthist), rather than "binomial" or

"poisson". The likelihood then treats n as a binomial draw from a superpopulation of this size, with

http://www.otago.ac.nz/density

detectfn 37

consequences for the variance of density estimates. This can help to reconcile MLE with Bayesian

estimates using data augmentation.

details$fixedbeta may be used to fix values of beta parameters. It should be a numeric vector

of length equal to the total number of beta parameters (coefficients) in the model. Parameters to

be estimated are indicated by NA. Other elements should be valid values on the link scale and will

be substituted during likelihood maximisation. Check the order of beta parameters in a previously

fitted model.

details$hessian is a character string controlling the computation of the Hessian matrix from

which variances and covariances are obtained. Options are "none" (no variances), "auto" (the de-

fault) or "fdhess" (use the function fdHess in nlme). If "auto" then the Hessian from the optimisation

function is used. See also method = "none" below.

details$ignoreusage = TRUE causes the function to ignore usage (varying effort) information

in the traps component. The default (details$ignoreusage = FALSE) is to include usage in the

model.

details$intwidth2 controls the half-width of the interval searched by optimise() for the maxi-

mum likelihood when there is a single parameter. Default 0.8 sets the search interval to (0.2s, 1.8s)
where s is the ‘start’ value.

details$LLonly = TRUE causes the function to returns a single evaluation of the log likelihood at

the ‘start’ values.

details$param = 1 causes the Gardner & Royle parameterisation of the detection model (p0, σ;

Gardner et al. 2009) to be used for multi-catch detectors (default 0 for Borchers and Efford). This

parameterisation does not allow detector covariates.

details$scaleg0 = TRUE causes g0 to be scaled by sigma−2.

details$scalesigma = TRUE causes sigma to be scaled by D−0.5.

details$telemetrysigma = TRUE uses coordinate information from telemetry when capthist has

attribute ‘xylist’ (see addTelemetry).

References

Gardner, B., Royle, J. A. and Wegan, M. T. (2009) Hierarchical models for estimating density from

DNA mark-recapture studies. Ecology 90, 1106–1115.

See Also

secr.fit

detectfn Detection Functions

Description

A detection function relates the probability of detection g or the expected number of detections λ
for an animal to the distance of a detector from a point usually thought of as its home-range centre.

In secr only simple 2- or 3-parameter functions are used. Each type of function is identified by its

number or by a 2–3 letter code (version ≥ 2.6.0; see below). In most cases the name may also be

used (as a quoted string).

Choice of detection function is usually not critical, and the default ‘HN’ is usually adequate.

38 detectfn

Functions (14)–(18) are parameterised in terms of the expected number of detections λ, or cu-

mulative hazard, rather than probability. ‘Exposure’ (e.g. Royle and Gardner 2011) is another

term for cumulative hazard. This parameterisation is natural for the ‘count’ detector type or if

the function is to be interpreted as a distribution of activity (home range). When one of the

functions (14)–(18) is used to describe detection probability (i.e., for the binary detectors ‘sin-

gle’, ‘multi’,‘proximity’,‘polygonX’ or ‘transectX’), the expected number of detections is internally

transformed to a binomial probability using g(d) = 1− exp(−λ(d)).

The hazard halfnormal (14) is similar to the halfnormal exposure function used by Royle and Gard-

ner (2011) except they omit the factor of 2 on σ2, which leads to estimates of σ that are larger by a

factor of sqrt(2). The hazard exponential (16) is identical to their exponential function.

Code Name Parameters Function

0 HN halfnormal g0, sigma g(d) = g0 exp
(

−d2

2σ2

)

1 HR hazard rate g0, sigma, z g(d) = g0[1− exp{−(d/σ)
−z}]

2 EX exponential g0, sigma g(d) = g0 exp{−(d/σ)}
3 CHN compound halfnormal g0, sigma, z g(d) = g0[1− {1− exp

(
−d2

2σ2

)
}z]

4 UN uniform g0, sigma g(d) = g0, d <= σ; g(d) = 0, otherwise

5 WEX w exponential g0, sigma, w g(d) = g0, d < w; g(d) = g0 exp
(
−d−w

σ

)
, otherwise

6 ANN annular normal g0, sigma, w g(d) = g0 exp{−(d−w)2

2σ2 }
7 CLN cumulative lognormal g0, sigma, z g(d) = g0[1− F{(d− µ)/s}]
8 CG cumulative gamma g0, sigma, z g(d) = g0{1−G(d; k, θ)}
9 BSS binary signal strength b0, b1 g(d) = 1− F{−(b0 + b1d)}
10 SS signal strength beta0, beta1, sdS g(d) = 1− F [{c− (β0 + β1d)}/s]
11 SSS signal strength spherical beta0, beta1, sdS g(d) = 1− F [{c− (β0 + β1(d− 1)− 10 log10 d

2)}/s]
14 HHN hazard halfnormal lambda0, sigma λ(d) = λ0 exp

(
−d2

2σ2

)
; g(d) = 1− exp(−λ(d))

15 HHR hazard hazard rate lambda0, sigma, z λ(d) = λ0(1− exp{−(d/σ)
−z}); g(d) = 1− exp(−λ(d))

16 HEX hazard exponential lambda0, sigma λ(d) = λ0 exp{−(d/σ)}; g(d) = 1− exp(−λ(d))

17 HAN hazard annular normal lambda0, sigma, w λ(d) = λ0 exp{−(d−w)2

2σ2 }; g(d) = 1− exp(−λ(d))
18 HCG hazard cumulative gamma lambda0, sigma, z λ(d) = λ0{1−G(d; k, θ)}; g(d) = 1− exp(−λ(d))

Functions (1) and (15), the "hazard-rate" detection functions described by Hayes and Buckland

(1983), are not recommended for SECR because of their long tail, and care is also needed with (2)

and (16).

Function (3), the compound halfnormal, follows Efford and Dawson (2009).

Function (4) uniform is defined only for simulation as it poses problems for likelihood maximisation

by gradient methods. Uniform probability implies uniform hazard, so there is no separate function

‘HUN’.

For function (7), ‘F’ is the standard normal distribution function and µ and s are the mean and

standard deviation on the log scale of a latent variable representing a threshold of detection distance.

See Note for the relationship to the fitted parameters sigma and z.

For functions (8) and (18), ‘G’ is the cumulative distribution function of the gamma distribution

with shape parameter k (= z) and scale parameter θ (= sigma/z). See R’s pgamma.

For functions (9), (10) and (11), ‘F’ is the standard normal distribution function and c is an arbitrary

signal threshold. The two parameters of (9) are functions of the parameters of (10) and (11): b0 =
(β0 − c)/sdS and b1 = β1/s (see Efford et al. 2009). Note that (9) does not require signal-strength

data or c.

Function (11) includes an additional ‘hard-wired’ term for sound attenuation due to spherical spread-

ing. Detection probability at distances less than 1 m is given by g(d) = 1− F{(c− β0)/sdS}

detector 39

Functions (12) and (13) are undocumented methods for sound attenuation.

Note

The parameters of function (7) are potentially confusing. The fitted parameters describe a latent

threshold variable on the natural scale: sigma (mean) = exp(µ+ s2/2) and z (standard deviation) =√
exp(s2 + 2µ)(exp(s2)− 1). As with other detection functions, sigma is a spatial scale parame-

ter, although in this case it corresponds to the mean of the threshold variable; the standard deviation

of the threshold variable (z) determines the shape (roughly 1/max(slope)) of the detection function.

References

Efford, M. G. and Dawson, D. K. (2009) Effect of distance-related heterogeneity on population size

estimates from point counts. Auk 126, 100–111.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-

metrics 39, 29–42.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture–recapture models for estimating

density from trapping arrays. In: A.F. O’Connell, J.D. Nichols \& K.U. Karanth (eds) Camera

Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163–190.

See Also

detectfnplot, secr detection models

detector Detector Type

Description

Extract or replace the detector type.

Usage

detector(object, ...)

detector(object) <- value

Arguments

object object with ‘detector’ attribute e.g. traps

value character string for detector type

... other arguments (not used)

Details

Valid detector types are ‘single’, ‘multi’, ‘proximity’, ‘count’, ‘signal’, ‘polygon’, ‘transect’, ‘poly-

gonX’, and ‘transectX’. The detector type is stored as an attribute of a traps object. Detector types

are mostly described by Efford et al. (2009a,b; see also ../doc/secr-overview.pdf). Polygon

and transect detector types are for area and linear searches as described in ../doc/secr-polygondetectors.

pdf and Efford (2011). The ‘signal’ detector type is used for acoustic data as described in ../doc/

secr-sound.pdf.

../doc/secr-overview.pdf
../doc/secr-polygondetectors.pdf
../doc/secr-polygondetectors.pdf
../doc/secr-sound.pdf
../doc/secr-sound.pdf

40 deviance

Value

character string for detector type

References

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with

area searches. Ecology in press.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009a) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009b) Population density estimated from

locations of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

traps, RShowDoc

Examples

Default detector type is ’multi’

temptrap <- make.grid(nx = 6, ny = 8)

detector(temptrap) <- "proximity"

summary(temptrap)

deviance Deviance of fitted secr model and residual degrees of freedom

Description

Compute the deviance or residual degrees of freedom of a fitted secr model, treating multiple ses-

sions and groups as independent. The likelihood of the saturated model depends on whether the

‘conditional’ or ‘full’ form was used, and on the distribution chosen for the number of individuals

observed (Poisson or binomial).

Usage

S3 method for class ’secr’

deviance(object, ...)

S3 method for class ’secr’

df.residual(object, ...)

Arguments

object secr object from secr.fit

... other arguments (not used)

deviance 41

Details

The deviance is −2log(L̂) + 2log(Lsat), where L̂ is the value of the log-likelihood evaluated at its

maximum, and Lsat is the log-likelihood of the saturated model, calculated thus:

Likelihood conditional on n -

Lsat = log(n!) +
∑
ω

[nωlog(nω

n
)− log(nω!)]

Full likelihood, Poisson n -

Lsat = nlog(n)− n+
∑
ω

[nωlog(nω

n
)− log(nω!)]

Full likelihood, binomial n -

Lsat = nlog(n
N
) + (N − n)log(N−n

N
) + log(N !

(N−n)!) +
∑
ω

[nωlog(nω

n
)− log(nω!)]

n is the number of individuals observed at least once, nω is the number of distinct histories, and N
is the number in a chosen area A that we estimate by N̂ = D̂A.

The residual degrees of freedom is the number of distinct detection histories minus the number of

parameters estimated. The detection histories of two animals are always considered distinct if they

belong to different groups.

When samples are (very) large the deviance is expected to be distributed as χ2 with nω − p degrees

of freedom when p parameters are estimated. In reality, simulation is needed to assess whether a

given value of the deviance indicates a satisfactory fit, or to estimate the overdispersion parameter

c. sim.secr is a convenient tool.

Value

The scalar numeric value of the deviance or the residual degress of freedom extracted from the fitted

model.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

See Also

secr.fit, sim.secr

Examples

deviance(secrdemo.0)

df.residual(secrdemo.0)

42 distancetotrap

distancetotrap Distance To Nearest Detector

Description

Compute distance from each of a set of points to the nearest detector in an array, or return the

sequence number of the detector nearest each point.

Usage

distancetotrap(X, traps)

nearesttrap(X, traps)

Arguments

X coordinates

traps traps object or 2-column matrix of coordinates

Details

distancetotrap returns the distance from each point in X to the nearest detector in traps. It may

be used to restrict the points on a habitat mask.

Value

distancetotrap returns a vector of distances (assumed to be in metres).

nearesttrap returns the index of the nearest trap.

Note

It is no longer (from version 2.3.0) necessary for ‘traps’ to be a traps object. It may be any 2-column

matrix or dataframe of coordinates. From version 2.6.0 ‘traps’ may also be a simple (one-polygon)

SpatialPolygonsDataFrame object from sp, in which case distances are to the boundary vertices

(use with care!).

See Also

make.mask

Examples

restrict a habitat mask to points within 70 m of traps

this is nearly equivalent to using make.mask with the

‘trapbuffer’ option

temptrap <- make.grid()

tempmask <- make.mask(temptrap)

d <- distancetotrap(tempmask, temptrap)

tempmask <- subset(tempmask, d < 70)

Dsurface 43

Dsurface Density Surfaces

Description

S3 class for rasterized fitted density surfaces. A Dsurface is a type of ‘mask’ with covariate(s) for

the predicted density at each point.

Usage

S3 method for class ’Dsurface’

print(x, scale = 1, ...)

S3 method for class ’Dsurface’

summary(object, scale = 1, ...)

Arguments

x, object Dsurface object to display

scale numeric multiplier for density

... other arguments passed to print method for data frames or summary method for

masks

Details

A Dsurface will usually have been constructed with predictDsurface.

The ‘scale’ argument may be used to change the units of density from the default (animals / hectare)

to animals / km^2 (scale = 100) or animals / 100km^2 (scale = 10000).

See Also

predictDsurface, plot.Dsurface

Examples

shorePossums <- predictDsurface(possum.model.Dsh2)

head(shorePossums)

44 ellipse.secr

ellipse.secr Confidence ellipse

Description

Plot joint confidence ellipse for two parameters of secr model

Usage

ellipse.secr(object, par = c("g0", "sigma"), alpha = 0.05,

npts = 100, plot = TRUE, linkscale = TRUE, add = FALSE,

col = palette(), ...)

Arguments

object secr object output from secr.fit

par character vector of length two, the names of two ‘beta’ parameters

alpha alpha level for confidence intervals

npts number of points on perimeter of ellipse

plot logical for whether ellipse should be plotted

linkscale logical; if FALSE then coordinates will be backtransformed from the link scale

add logical to add ellipse to an existing plot

col vector of one or more plotting colours

... arguments to pass to plot functions

Details

A confidence ellipse is calculated from the asymptotic variance-covariance matrix of the beta pa-

rameters (coefficients), and optionally plotted.

If linkscale == FALSE, the inverse of the appropriate link transformation is applied to the coor-

dinates of the ellipse, causing it to deform.

If object is a list of secr models then one ellipse is constructed for each model. Colours are recycled

as needed.

Value

A list containing the x and y coordinates is returned invisibly

Examples

ellipse.secr(secrdemo.0)

empirical.varD 45

empirical.varD Empirical Variance of H-T Density Estimate

Description

Compute Horvitz-Thompson-like estimate of population density from a previously fitted spatial de-

tection model, and estimate its sampling variance using the empirical spatial variance of the number

observed in replicate sampling units. Wrapper functions are provided for several different scenarios,

but all ultimately call derived.nj. The function derived also computes Horvitz-Thompson-like

estimates, but it assumes a Poisson or binomial distribution of total number when computing the

sampling variance.

Usage

derived.nj (nj, esa, se.esa, method = "SRS", xy = NULL,

alpha = 0.05, loginterval = TRUE, area = NULL)

derived.mash (object, sessnum = NULL, method = "SRS",

alpha = 0.05, loginterval = TRUE)

derived.cluster (object, sessnum = NULL, method = "SRS",

alpha = 0.05, loginterval = TRUE)

derived.session (object, method = "SRS", xy = NULL,

alpha = 0.05, loginterval = TRUE)

derived.external (object, sessnum = NULL, nj, cluster, buffer = 100,

mask = NULL, noccasions = NULL, method = "SRS", xy = NULL,

alpha = 0.05, loginterval = TRUE)

Arguments

object fitted secr model

nj vector of number observed in each sampling unit (cluster)

esa scalar estimate of effective sampling area (â)

se.esa estimated standard error of effective sampling area (ŜE(â))

method character string ‘SRS’ or ‘local’

xy dataframe of x- and y- coordinates (method = "local" only)

alpha alpha level for confidence intervals

loginterval logical for whether to base interval on log(N)

area area of region for method = "binomial" (hectares)

sessnum index of session in object$capthist for which output required

cluster ‘traps’ object for a single cluster

buffer width of buffer in metres (ignored if mask provided)

mask mask object for a single cluster of detectors

noccasions number of occasions (for nj)

46 empirical.varD

Details

derived.nj accepts a vector of counts (nj), along with â and ŜE(â). The argument esa may

include both â and ŜE(â)) - any form will do if it can be coerced to a vector of length 2. In the

special case that nj is of length 1, or method takes the values ‘poisson’ or ‘binomial’, the variance

is computed using a theoretical variance rather than an empirical estimate. The value of method

corresponds to ‘distribution’ in derived, and defaults to ‘poisson’. For method = ’binomial’

you must specify area (see Examples).

derived.cluster accepts a model fitted to data from clustered detectors; each cluster is interpreted

as a replicate sample. It is assumed that the sets of individuals sampled by different clusters do not

intersect, and that all clusters have the same geometry (spacing, detector number etc.).

derived.mash accepts a model fitted to clustered data that have been ‘mashed’ for fast processing

(see mash); each cluster is a replicate sample: the function uses the vector of cluster frequencies

(nj) stored as an attribute of the mashed capthist by mash.

derived.external combines detection parameter estimates from a fitted model with a vector of

frequencies nj from replicate sampling units configured as in cluster. Detectors in cluster are

assumed to match those in the fitted model with respect to type and efficiency, but sampling duration

(noccasions), spacing etc. may differ. The mask should match cluster; if mask is missing, one

will be constructed using the buffer argument and defaults from make.mask.

derived.session accepts a single fitted model that must span multiple sessions; each session is

interpreted as a replicate sample.

Spatial variance may be calculated assuming simple random sampling (method = "SRS") or using

the neighbourhood variance estimator recommended by Stevens and Olsen (2003) for generalized

random tessellation stratified (GRTS) samples and implemented in package spsurvey (method = "local").

For ‘local’ variance estimates, the centre of each replicate must be provided in xy, except where

centres may be inferred from the data.

Value

A dataframe with one row and the columns –

estimate Horvitz-Thompson-like estimate of population density

SE.estimate SE of density estimate

lcl lower 100(1–alpha)% confidence limit

ucl upper 100(1–alpha)% confidence limit

CVn relative SE of number observed (across sampling units)

CVa relative SE of effective sampling area

CVD relative SE of density estimate

Note

In versions before 2.1, the functionality of derived.nj and derived.session was provided by

empirical.VarD, which has been removed.

The variance of a Horvitz-Thompson-like estimate of density may be estimated as the sum of two

components, one due to uncertainty in the estimate of effective sampling area (â) and the other due

to spatial variance in the total number of animals n observed on J replicate sampling units (n =∑J

j=1 nj). We use a delta-method approximation that assumes independence of the components:

v̂ar(D̂) = D̂2{ v̂ar(n)

n2
+

v̂ar(â)

â
}

empirical.varD 47

where v̂ar(n) = J
J−1

∑J

j=1(nj−n/J)2. The estimate of var(â) is model-based while that of var(n)
is design-based. This formulation follows that of Buckland et al. (2001, p. 78) for conventional dis-

tance sampling. Given sufficient independent replicates, it is a robust way to allow for unmodelled

spatial overdispersion.

There is a complication in SECR owing to the fact that â is a derived quantity (actually an integral)

rather than a model parameter. Its sampling variance var(â) is estimated indirectly in secr by

combining the asymptotic estimate of the covariance matrix of the fitted detection parameters θ
with a numerical estimate of the gradient of a(θ) with respect to θ. This calculation is performed in

derived.

References

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas,

L. (2001) Introduction to Distance Sampling: Estimating Abundance of Biological Populations.

Oxford University Press, Oxford.

Stevens, D. L. Jr and Olsen, A. R. (2003) Variance estimation for spatially balanced samples of

environmental resources. Environmetrics 14, 593–610.

See Also

derived, esa

Examples

The ‘ovensong’ data are pooled from 75 replicate positions of a

4-microphone array. The array positions are coded as the first 4

digits of each sound identifier. The sound data are initially in the

object ‘signalCH’. We first impose a 52.5 dB signal threshold as in

Dawson & Efford (2009, J. Appl. Ecol. 46:1201--1209). The vector nj

includes 33 positions at which no ovenbird was heard. The first and

second columns of ‘temp’ hold the estimated effective sampling area

and its standard error.

signalCH.525 <- subset(signalCH, cutval = 52.5)

nonzero.counts <- table(substring(rownames(signalCH.525),1,4))

nj <- c(nonzero.counts, rep(0, 75 - length(nonzero.counts)))

temp <- derived(ovensong.model.1, se.esa = TRUE)

derived.nj(nj, temp["esa",1:2])

The result is very close to that reported by Dawson & Efford

from a 2-D Poisson model fitted by maximizing the full likelihood.

If nj vector has length 1, a theoretical variance is used...

msk <- ovensong.model.1$mask

A <- nrow(msk) * attr(msk, ’area’)

derived.nj (sum(nj), temp["esa",1:2], method = ’poisson’)

derived.nj (sum(nj), temp["esa",1:2], method = ’binomial’, area = A)

Not run:

Set up an array of small (4 x 4) grids,

simulate a Poisson-distributed population,

sample from it, plot, and fit a model.

mash() condenses clusters to a single cluster

48 empirical.varD

testregion <- data.frame(x = c(0,2000,2000,0),

y = c(0,0,2000,2000))

t4 <- make.grid(nx = 4, ny = 4, spacing = 40)

t4.16 <- make.systematic (n = 16, cluster = t4,

region = testregion)

popn1 <- sim.popn (D = 5, core = testregion,

buffer = 0)

capt1 <- sim.capthist(t4.16, popn = popn1)

fit1 <- secr.fit(mash(capt1), CL = TRUE, trace = FALSE)

Visualize sampling

tempmask <- make.mask(t4.16, spacing = 10, type =

"clusterbuffer")

plot(tempmask)

plot(t4.16, add = TRUE)

plot(capt1, add = TRUE)

Compare model-based and empirical variances.

Here the answers are similar because the data

were simulated from a Poisson distribution,

as assumed by \code{derived}

derived(fit1)

derived.mash(fit1)

Now simulate a patchy distribution; note the

larger (and more credible) SE from derived.mash().

popn2 <- sim.popn (D = 5, core = testregion, buffer = 0,

model2D = "hills", details = list(hills = c(-2,3)))

capt2 <- sim.capthist(t4.16, popn = popn2)

fit2 <- secr.fit(mash(capt2), CL = TRUE, trace = FALSE)

derived(fit2)

derived.mash(fit2)

The detection model we have fitted may be extrapolated to

a more fine-grained systematic sample of points, with

detectors operated on a single occasion at each...

Total effort 400 x 1 = 400 detector-occasions, compared

to 256 x 5 = 1280 detector-occasions for initial survey.

t1 <- make.grid(nx = 1, ny = 1)

t1.100 <- make.systematic (cluster = t1, spacing = 100,

region = testregion)

capt2a <- sim.capthist(t1.100, popn = popn2, noccasions = 1)

one way to get number of animals per point

nj <- attr(mash(capt2a), "n.mash")

derived.external (fit2, nj = nj, cluster = t1, buffer = 100,

noccasions = 1)

Review plots

base.plot <- function() {

eqscplot(testregion, axes = FALSE, xlab = "",

ylab = "", type = "n")

polygon(testregion)

}

esa.plot 49

par(mfrow = c(1,3), xpd = T, xaxs = "i", yaxs = "i")

base.plot()

plot(popn2, add = TRUE, col = "blue")

mtext(side=3, line=0.5, "Population", cex=0.8, col="black")

base.plot()

plot (capt2a, add = TRUE,title = "Extensive survey")

base.plot()

plot(capt2, add = TRUE, title = "Intensive survey")

End(Not run)

esa.plot Mask Buffer Diagnostic Plot

Description

Plot effective sampling area (Borchers and Efford 2008) as a function of increasing buffer width.

Usage

esa.plot (object, max.buffer = NULL, spacing = NULL, max.mask = NULL,

detectfn, detectpar, noccasions, binomN = NULL, thin = 0.1,

poly = NULL, session = 1, plt = TRUE, as.density = TRUE, n = 1,

add = FALSE, overlay = TRUE, ...)

Arguments

object traps object or secr object output from secr.fit

max.buffer maximum width of buffer in metres

spacing distance between mask points

max.mask mask object

detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of sampling occasions

binomN integer code for discrete distribution (see secr.fit)

thin proportion of mask points to retain in plot and output

poly matrix of two columns interpreted as the x and y coordinates of a bounding

polygon (optional)

session vector of session indices (used if object spans multiple sessions)

plt logical to plot results

as.density logical; if TRUE the y-axis is n / esa

n integer number of distinct individuals detected

add logical to add line to an existing plot

overlay logical; if TRUE then automatically add = TRUE for plots after the first

... graphical arguments passed to plot() and lines()

50 esa.plot

Details

Effective sampling area (esa) is defined as the integral of net capture probability (p.(X)) over a

region. esa.plot shows the effect of increasing region size on the value of esa for fixed values of

the detection parameters. The max.buffer or max.mask arguments establish the maximum extent

of the region; points (cells) within this mask are sorted by their distance dk from the nearest detector.

esa(buffer) is defined as the cumulative sum of cp.(X) for dk(X) <= buffer, where c is the area

associated with each cell.

The default (as.density = TRUE) is to plot the reciprocal of esa multiplied by n; this is on a more

familiar scale (the density scale) and hence is easier to interpret.

Because esa.plot uses the criterion ‘distance to nearest detector’, max.mask should be constructed

to include all habitable cells within the desired maximum buffer and no others. This is achieved with

type = "trapbuffer" in make.mask. It is a good idea to set the spacing argument of make.mask

rather than relying on the default based on nx. Spacing may be small (e.g. sigma/10) and the buffer

of max.mask may be quite large (e.g. 10 sigma), as computation is fast.

Thinning serves to reduce redundancy in the plotted points, and (if the result is saved and printed)

to generate more legible numerical output. Use thin=1 to include all points.

esa.plot calls the internal function esa.plot.secr when object is a fitted model. In this case

detectfn, detectpar and noccasions are inferred from object.

Value

A dataframe with columns

buffer buffer width

esa computed effective sampling area

density n/esa

pdot p.(X)

pdotmin cumulative minimum (p.(X))

If plt = TRUE the dataframe is returned invisibly.

Note

The response of effective sampling area to buffer width is just one possible mask diagnostic; it’s fast,

graphic, and often sufficient. mask.check performs more intensive checks, usually for a smaller

number of buffer widths.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

See Also

mask, pdot, make.mask, mask.check, Detection functions

esa.plot.secr 51

Examples

with previously fitted model

esa.plot(secrdemo.0)

from scratch

trps <- make.grid()

msk <- make.mask(trps, buffer = 200, spacing = 5, type = "trapbuffer")

detectpar <- list(g0 = 0.2, sigma = 25)

esa.plot(trps,,, msk, 0, detectpar, nocc = 10, col = "blue")

esa.plot(trps,,, msk, 0, detectpar, nocc = 5, col = "green",

add = TRUE)

esa.plot(trps,,, msk, 0, detectpar, nocc = 5, thin = 0.002, plt = FALSE)

esa.plot.secr Mask Buffer Diagnostic Plot (internal)

Description

Internal function used to plot effective sampling area (Borchers and Efford 2008) as a function of

increasing buffer width given an ‘secr’ object

Usage

esa.plot.secr (object, max.buffer = NULL, max.mask = NULL,

thin = 0.1, poly = NULL, session = 1, plt = TRUE, as.density

= TRUE, add = FALSE, overlay = TRUE, ...)

Arguments

object secr object output from secr.fit

max.buffer maximum width of buffer in metres

max.mask mask object

thin proportion of mask points to retain in plot and output

poly matrix of two columns interpreted as the x and y coordinates of a bounding

polygon (optional)

session vector of session indices (used if object spans multiple sessions)

plt logical to plot results

as.density logical; if TRUE the y-axis is n / esa

add logical to add line to an existing plot

overlay logical; if TRUE then automatically add = TRUE for plots after the first

... graphical arguments passed to plot() and lines()

52 expected.n

Details

esa.plot.secr provides a wrapper for esa.plot that is called internally from esa.plot when it is

presented with an secr object. Arguments of esa.plot such as detectfn are inferred from the

fitted model.

If max.mask is not specified then a maximal mask of type ‘trapbuffer’ is constructed using max.buffer

and the spacing of the mask in object. In this case, if max.buffer is not specified then it is set

either to the width of the existing plot (add = TRUE) or to 10 x sigma-hat from the fitted model in

object (add = FALSE).

Value

see esa.plot

See Also

esa.plot, mask, pdot, make.mask, mask.check, Detection functions

expected.n Expected Number of Individuals

Description

Computes the expected number of individuals detected across a detector layout or at each cluster of

detectors.

Usage

expected.n(object, session = NULL, group = NULL, bycluster

= FALSE, splitmask = FALSE)

Arguments

object secr object output from secr.fit

session character session vector

group group – for future use

bycluster logical to output the expected number for clusters of detectors rather than whole

array

splitmask logical for computation method (see Details)

Details

The expected number of individuals detected is E(n) =
∫
p.(X)D(X)dX where the integration

is a summation over object$mask. p.(X) is the probability an individual at X will be detected at

least once either on the whole detector layout (bycluster = FALSE) or on the detectors in a single

cluster (see pdot for more on p.). D(X) is the expected density at X , given the model. D(X)
is constant (i.e. density surface flat) if object$CL == TRUE or object$model$D == ~1, and for

some other possible models.

expected.n 53

If the bycluster option is selected and detectors are not, in fact, assigned to clusters then each

detector will be treated as a cluster, with a warning.

By default, a full habitat mask is used for each cluster. This is the more robust option. Alternatively,

the mask may be split into subregions defined by the cells closest to each cluster.

The calculation takes account of any fitted continuous model for spatial variation in density (note

Warning).

Value

The expected count (bycluster = FALSE) or a vector of expected counts, one per cluster. For multi-

session data, a list of such vectors.

Warning

This function changed slightly between 2.1.0 and 2.1.1, and now performs as indicated here when

bycluster = TRUE and clusters are not specified.

Detectors are assumed to be independent (as with detector types ‘proximity’, ‘count’ etc.). The

computed E(n) does not apply when there is competition among detectors, e.g., when detector =

‘multi’.

The prediction of density at present considers only the base level of density covariates, such as

cell-specific habitat variables.

See Also

region.N

Examples

expected.n(secrdemo.0)

Not run:

expected.n(secrdemo.0, bycluster = TRUE)

expected.n(ovenbird.model.D)

Clustered design

mini <- make.grid(nx = 3, ny = 3, spacing = 50, detector =

"proximity")

tempgrids <- trap.builder (cluster = mini , method = "all",

frame = expand.grid(x = seq(1000, 9000, 2000),

y = seq(1000, 9000, 2000)), plt = TRUE)

capt <- sim.capthist(tempgrids, popn = list(D = 2))

tempmask <- make.mask(tempgrids, buffer = 100,

type = "clusterbuffer")

fit <- secr.fit(capt, mask = tempmask, trace = FALSE)

En <- expected.n(fit, bycluster = TRUE)

GoF or overdispersion statistic

p <- length(fitfitpar)

y <- cluster.counts(capt)

scaled by n-p

sum((y - En)^2 / En) / (length(En)-p)

sum((y - En)^2 / En) / sum(y/En)

54 FAQ

End(Not run)

FAQ Frequently Asked Questions, And Others

Description

A place for hints and miscellaneous advice.

How do I install and start secr?

Follow the usual procedure for installing from CRAN archive (see menu item Packages | Install

package(s)... in Windows). You also need to get the package abind from CRAN.

Other required packages (MASS, nlme, stats) should be available as part of your R installation.

Like other contributed packages, secr needs to be loaded before each use e.g.,library(secr).

You can learn about changes in the current version with news(package = "secr").

How can I get help?

There are three general ways of displaying documentation from within R. Firstly, you can bring up

help pages for particular functions from the command prompt. For example:

?secr or ?secr.fit

Secondly, help.search() lets you ask for a list of the help pages on a vague topic (or just use ?? at

the prompt). For example:

?? "linear models"

Thirdly, you can display various secr documents listed in secr-package.

Tip: to search all secr help pages open the pdf version of the manual in Acrobat Reader (../doc/

secr-manual.pdf; see also ?secr) and use <ctrl> F.

There is a support forum at http://www.phidot.org/forum under ‘DENSITY|secr’. Please read

the FAQ there before posting. See below for more R tips. Some specific problems with secr.fit

are covered in Troubleshooting.

How should I report a problem?

If you get really stuck or find something you think is a bug then please report the problem.

You may be asked to send an actual dataset - ideally, the simplest one that exhibits the problem. The

correct address for this is <density.software@otago.ac.nz>. Use save to wrap several R objects

together in one .RData file, e.g., save("captdata", "secrdemo.0", "secrdemo.b", file =

"mydata.RData"). Also, paste into the text of your message the output from packageDescription("secr").

../doc/secr-manual.pdf
../doc/secr-manual.pdf
http://www.phidot.org/forum

FAQ 55

Why do I get different answers from secr and Density?

Strictly speaking, this should not happen if you have specified the same model and likelihood,

although you may see a little variation due to the different maximization algorithms. Likelihoods

(and estimates) may differ if you use different integration meshes (habitat masks), which can easily

happen because the programs differ in how they set up the mesh. If you want to make a precise

comparison, save the Density mesh to a file and read it into secr, or vice versa.

Extreme data, especially rare long-distance movements, may be handled differently by the two

programs. The ‘minprob’ component of the ‘details’ argument of secr.fit sets a lower threshold

of probability for capture histories (smaller values are all set to minprob), whereas Density has no

explicit limit.

How can I speed up model fitting and model selection?

There are many ways - see Speed tips.

Does secr use multiple cores?

Some computations can be run in parallel on multiple processors (most desktops these days have

multiple cores), but capability is limited. Check the ’ncores’ argument of sim.secr() and secr.fit()

and ?ncores. The speed gain is significant for parametric bootstrap computations in sim.secr. Paral-

lelisation is also allowed for the session likelihood components of a multi-session model in secr.fit(),

but gains there seem to be small or negative.

Can a model use detector-level covariates that vary over time?

Yes. See ?timevaryingcov. However, a more direct way to control for varying effort is provided - see

the ‘usage’ atribute, which now allows continuous measure of effort (../doc/secr-varyingeffort.

pdf). A tip: covariate models fit more quickly when the covariate takes only a few different values.

Things You Might Need To Know About R

The function findFn in package sos lets you search CRAN for R functions by matching text in their

documentation.

There is now a vast amount of R advice available on the web. For the terminally frustrated,

‘R inferno’ by Patrick Burns is recommended (http://www.burns-stat.com/pages/Tutor/R_

inferno.pdf). "If you are using R and you think you’re in hell, this is a map for you".

Method functions for S3 classes cannot be listed in the usual way by typing the function name at

the R prompt because they are ‘hidden’ in a namespace. Get around this with getAnywhere(). For

example:

getAnywhere(print.secr)

R objects have ‘attributes’ that usually are kept out of sight. Important attributes are ‘class’ (all

objects), ‘dim’ (matrices and arrays) and ‘names’ (lists). secr hides quite a lot of useful data as

named ‘attributes’. Usually you will use summary and extraction methods (traps, covariates,

usage etc.) to view and change the attributes of the various classes of object in secr. If you’re

curious, you can reveal the lot with ‘attributes’. For example, with the demonstration capture history

data ‘captdata’:

traps(captdata) ## extraction method for ‘traps’

attributes(captdata) ## all attributes

Also, the function str provides a compact summary of any object:

str(captdata)

../doc/secr-varyingeffort.pdf
../doc/secr-varyingeffort.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

56 fxi

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-

bridge University Press.

fxi Probability Density of Home Range Centre

Description

Display contours of the probability density function for the estimated location of one or more range

centres (f(Xi|wi)), compute values for particular points X, or compute mode of pdf.

Usage

fxi.contour (object, i = 1, sessnum = 1, border = 100, nx = 64,

levels = NULL, p = seq(0.1,0.9,0.1), plt = TRUE, add = FALSE,

fitmode = FALSE, plotmode = FALSE, normal = TRUE, ...)

fxi.secr(object, i = 1, sessnum = 1, X, normal = TRUE)

fxi.mode(object, i = 1, sessnum = 1, start = NULL, ...)

Arguments

object a fitted secr model

i integer or character vector of individuals for which to plot contours, or a single

individual as input to other functions

sessnum session number if object$capthist spans multiple sessions

border width of blank margin around the outermost detectors

nx dimension of interpolation grid in x-direction

levels numeric vector of confidence levels for Pr(X|wi)

p numeric vector of contour levels as probabilities

plt logical to plot contours

add logical to add contour(s) to an existing plot

fitmode logical to refine estimate of mode of each pdf

plotmode logical to plot mode of each pdf

X 2-column matrix of x- and y- coordinates

normal logical; should values of pdf be normalised?

start vector of x-y coordinates for maximization

... additional arguments passed to contour or nlm

fxi 57

Details

fxi.contour computes contours of probability density for one or more detection histories. Increase

nx for smoother contours. If levels is not set, contour levels are set to approximate the confidence

levels in np.

fxi.secr computes the probability density for a single detection history; X may contain coordinates

for one or several points; a dataframe or vector (x then y) will be coerced to a matrix.

fxi.mode finds the maximum of the pdf for a single detection history (i.e. n is of length 1).

fxi.mode calls nlm.

fxi.contour with fitmode = TRUE uses fxi.mode to find the maximum of each pdf. Otherwise

the reported mode is an approximation (mean of coordinates of highest contour).

If i is character it will be matched to row names of object$capthist (restricted to the relevant session

in the case of a multi-session fit); otherwise it will be interpreted as a row number.

Values of the pdf are optionally normalised by dividing by the integral of Pr(wi|X) over the habitat

mask in object.

If start is not provided then the first detector site is used, but this is not guaranteed to work.

The . . . argument gives additional control over a contour plot; for example, set drawlabels = FALSE

to suppress contour labels.

Value

fxi.contour –

Coordinates of the plotted contours are returned as a list with one component per polygon. The list

is returned invisibly if plt = TRUE.

An additional component ‘mode’ reports the x-y coordinates of the highest point of each pdf (see

Details).

fxi.secr –

Vector of probability densities

fxi.mode –

List with components ‘x’ and ‘y’

Note

These functions only work with homogeneous Poisson density models.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

See Also

pdot.contour, contour

58 head

Examples

fxi.secr(secrdemo.0, i = 1, X = c(365,605))

contour first 5 detection histories

plot(secrdemo.0$capthist)

fxi.contour (secrdemo.0, i = 1:5, add = TRUE,

plotmode = TRUE, drawlabels = FALSE)

extract modes only

fxiout <- fxi.contour (secrdemo.0, i = 1:5, plt = FALSE, fitmode = TRUE)

t(sapply(fxiout, "[[", "mode"))

head First or Last Part of an Object

Description

Returns the first or last parts of secr objects

Usage

S3 method for class ’mask’

head(x, n=6L, ...)

S3 method for class ’Dsurface’

head(x, n=6L, ...)

S3 method for class ’traps’

head(x, n=6L, ...)

S3 method for class ’capthist’

head(x, n=6L, ...)

S3 method for class ’mask’

tail(x, n=6L, ...)

S3 method for class ’Dsurface’

tail(x, n=6L, ...)

S3 method for class ’traps’

tail(x, n=6L, ...)

S3 method for class ’capthist’

tail(x, n=6L, ...)

Arguments

x ‘mask’, ‘traps’ or ‘capthist’ object

n a single integer. If positive, size for the resulting object: number of elements for

a vector (including lists), rows for a matrix or data frame or lines for a function.

If negative, all but the n last/first number of elements of x.

... other arguments passed to subset

Details

These custom S3 methods retain the class of the target object, unlike the default methods applied to

‘mask’, ‘Dsurface’, ‘traps’ or ‘capthist’ objects.

homerange 59

Value

An object of the same class as x, but (usually) fewer rows.

See Also

head, tail

Examples

head(possummask)

homerange Home Range Statistics

Description

Some ad hoc measures of home range size may be calculated in secr from capture–recapture data:

dbar is the mean distance between consecutive capture locations, pooled over individuals (e.g.

Efford 2004). moves returns the raw distances.

RPSV (for ‘Root Pooled Spatial Variance’) is a measure of the 2-D dispersion of the locations at

which individual animals are detected, pooled over individuals.

MMDM (for ‘Mean Maximum Distance Moved’) is the average maximum distance between detections

of each individual i.e. the observed range length averaged over individuals (Otis et al. 1978).

ARL or ‘Asymptotic Range Length’) is obtained by fitting an exponential curve to the scatter of

observed individual range length vs the number of detections of each individual (Jett and Nichols

1987: 889).

Usage

dbar(capthist)

RPSV(capthist)

MMDM(capthist, min.recapt = 1, full = FALSE)

ARL(capthist, min.recapt = 1, plt = FALSE, full = FALSE)

moves(capthist)

Arguments

capthist object of class capthist

min.recapt integer minimum number of recaptures for a detection history to be used

plt logical; if TRUE observed range length is plotted against number of recaptures

full logical; set to TRUE for detailed output

60 homerange

Details

dbar is defined as

d =

n∑
i=1

ni−1∑
j=1

√
(xi,j − xi,j+1)2 + (yi,j − yi,j+1)2

n∑
i=1

(ni − 1)

RPSV is defined as

RPSV =

√√√√√√√

n∑
i=1

ni∑
j=1

[(xi,j − xi)2 + (yi,j − yi)
2]

n∑
i=1

(ni − 1)− 1

dbar and RPSV have a specific role as proxies for detection scale in inverse-prediction estimation of

density (Efford 2004; see ip.secr).

RPSV is used in autoini to obtain plausible starting values for maximum likelihood estimation.

MMDM and ARL discard data from detection histories containing fewer than min.recapt+1 detections.

Value

Scalar distance in metres, or a list of such values if capthist is a multi-session list.

The full argument may be used with MMDM and ARL to return more extensive output, particularly

the observed range length for each detection history.

Note

All measures are affected by the arrangement of detectors. dbar is also affected quite strongly by

serial correlation in the sampled locations. Using dbar with ‘proximity’ detectors raises a problem

of interpretation, as the original sequence of multiple detections within an occasion is unknown.

RPSV is a value analogous to the standard deviation of locations about the home range centre.

The value returned by dbar for ‘proximity’ or ‘count’ detectors is of little use because multiple

detections of an individual within an occasion are in arbitrary order.

Inclusion of these measures in the secr package does not mean they are recommended for general

use! It is usually better to use a spatial parameter from a fitted model (e.g., σ of the half-normal

detection function). Even then, be careful that σ is not ‘contaminated’ with behavioural effects (e.g.

attraction of animal to detector) or ‘detection at a distance’.

References

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Jett, D. A. and Nichols, J. D. (1987) A field comparison of nested grid and trapping web density

estimators. Journal of Mammalogy 68, 888–892.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62, 1–135.

See Also

autoini

hornedlizard 61

Examples

dbar(captdata)

RPSV(captdata)

hornedlizard Flat-tailed Horned Lizard Dataset

Description

Data from multiple searches for flat-tailed horned lizards (Phrynosoma mcalli) on a plot in Arizona,

USA.

Usage

data(hornedlizard)

Details

The flat-tailed horned lizard (Phrynosoma mcalli) is a desert lizard found in parts of southwestern

Arizona, southeastern California and northern Mexico. There is considerable concern about its

conservation status. The species is cryptically coloured and has the habit of burying under the sand

when approached, making it difficult or impossible to obtain a complete count (Grant and Doherty

2007).

K. V. Young conducted a capture–recapture survey of flat-tailed horned lizards 25 km south of

Yuma, Arizona, in the Sonoran Desert. The habitat was loose sand dominated by creosote bush

and occasional bur-sage and Galletta grass. A 9-ha plot was surveyed 14 times over 17 days (14

June to 1 July 2005). On each occasion the entire 300 m x 300 m plot was searched for lizards.

Locations within the plot were recorded by handheld GPS. Lizards were captured by hand and

marked individually on their underside with a permanent marker. Marks are lost when the lizard

sheds, but this happens infrequently and probably caused few or no identification errors during the

2.5-week study.

A total of 68 individuals were captured 134 times. Exactly half of the individuals were recaptured

at least once.

Royle and Young (2008) analysed the present dataset to demonstrate a method for density estimation

using data augmentation and MCMC simulation. They noted that the plot size was much larger than

has been suggested as being practical in operational monitoring efforts for this species, that the plot

was chosen specifically because a high density of individuals was present, and that high densities

typically correspond to less movement in this species. The state space in their analysis was a square

comprising the searched area and a 100-m buffer (J. A. Royle pers. comm.).

The detector type for these data is ‘polygonX’ and there is a single detector (the square plot).

The data comprise a capture history matrix (the body of hornedlizardCH) and the x-y coordi-

nates of each positive detection (stored as an attribute that may be displayed with the ‘xy’ func-

tion); the ‘traps’ attribute of hornedlizardCH contains the vertices of the plot. See ../doc/

secr-datainput.pdf for guidance on data input.

Non-zero entries in a polygonX capture-history matrix indicate the number of the polygon contain-

ing the detection. In this case there was just one polygon, so entries are 0 or 1. No animal can

appear more than once per occasion with the polygonX detector type, so there is no need to specify

‘binomN = 1’ in secr.fit.

Object Description

hornedlizardCH single-session capthist object

../doc/secr-datainput.pdf
../doc/secr-datainput.pdf

62 hornedlizard

Source

Royle and Young (2008) and J. A. Royle (pers. comm.), with additional information from K. V.

Young (pers. comm.).

References

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture anal-

ysis of data from area searches. Ecology 92, 2202–2207.

Grant, T. J. and Doherty, P. F. (2007) Monitoring of the flat-tailed horned lizard with methods

incorporating detection probability. Journal of Wildlife Management 71, 1050–1056

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture–

recapture data: Comment. Ecology 92, 526–528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–recapture data. Ecol-

ogy 89, 2281–2289.

See Also

capthist, detector, reduce.capthist

Examples

plot(hornedlizardCH, tracks = TRUE, varycol = FALSE,

lab1 = TRUE, laboff = 6, border = 10, title =

"Flat-tailed Horned Lizards (Royle & Young 2008)")

table(table(animalID(hornedlizardCH)))

traps(hornedlizardCH)

show first few x-y coordinates

head(xy(hornedlizardCH))

Not run:

Compare default (Poisson) and binomial models for number

caught

FTHL.fit <- secr.fit(hornedlizardCH)

FTHLbn.fit <- secr.fit(hornedlizardCH, details =

list(distribution = "binomial"))

collate(FTHL.fit, FTHLbn.fit)[,,,"D"]

Collapse occasions (does not run faster)

hornedlizardCH.14 <- reduce(hornedlizardCH, newoccasions =

list(1:14), outputdetector = "polygon")

FTHL14.fit <- secr.fit(hornedlizardCH.14, binomN = 14)

End(Not run)

housemouse 63

housemouse House mouse live trapping data

Description

Data of H. N. Coulombe from live trapping of feral house mice (Mus musculus) in a salt marsh,

California, USA.

Usage

data(housemouse)

Details

H. N. Coulombe conducted a live-trapping study on an outbreak of feral house mice in a salt marsh

in mid-December 1962 at Ballana Creek, Los Angeles County, California. A square 10 x 10 grid

was used with 100 Sherman traps spaced 3 m apart. Trapping was done twice daily, morning and

evening, for 5 days.

The dataset was described by Otis et al. (1978) and distributed with their CAPTURE software (now

available from http://http://www.mbr-pwrc.usgs.gov/software.html). Otis et al. (1978 p.

62, 68) cite Coulombe’s unpublished 1965 master’s thesis from the University of California, Los

Angeles, California.

The data are provided as a single-session capthist object. There are two individual covariates:

sex (factor levels ‘f’, ‘m’) and age class (factor levels ‘j’, ‘sa’, ‘a’). The sex of two animals is not

available (NA); it is necessary to drop these records for analyses using ‘sex’.

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives

the ‘column’ and ‘row’ numbers of the trap (e.g. ‘ 9 5’ for a capture in the trap at position (x=9,

y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros

(e.g. ‘0905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include 30 double captures

and one occasion when there were 4 individuals in a trap at one time. The true detector type

therefore falls between ‘single’ and ‘multi’. Detector type is set to ‘multi’ in the distributed data

objects.

Otis et al. (1978) report various analyses including a closure test on the full data, and model se-

lection and density estimation on data from the mornings only. We include several secr models

fitted to the ‘morning’ data (morning.0, morning.b etc.). Of these, a model including individual

heterogeneity in both g0 and sigma has the lowest AIC.

Object Description

housemouse capthist object

housemouse.0 fitted secr model – null

housemouse.ampm fitted secr model – g0 differs morning vs afternoon

housemouse.ampmh2h2 fitted secr model – as above, finite mixture g0, sigma

morning.0 fitted secr model – morning data only, null

morning.0h2 fitted secr model – mornings, null g0, finite mixture sigma

morning.b fitted secr model – mornings, trap response g0

morning.h2 fitted secr model – mornings, finite mixture g0

morning.h2h2 fitted secr model – mornings, finite mixture g0, sigma

morning.t fitted secr model – mornings, day-specific g0

http://http://www.mbr-pwrc.usgs.gov/software.html

64 ip.secr

Source

File ‘examples’ distributed with program CAPTURE.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Examples

plot(housemouse, title = paste("Coulombe (1965), Mus musculus,",

"California salt marsh"), border = 5, rad = 0.5,

gridlines = FALSE)

morning <- subset(housemouse, occ = c(1,3,5,7,9))

summary(morning)

drop 2 unknown-sex mice

known.sex <- subset(housemouse, !is.na(covariates(housemouse)$sex))

reveal multiple captures

table(trap(housemouse), occasion(housemouse))

AIC(morning.0, morning.b, morning.t, morning.h2, morning.0h2, morning.h2h2)

assess need to distinguish morning and afternoon samples

Not run:

housemouse.0 <- secr.fit (housemouse, buffer = 20)

housemouse.ampm <- secr.fit (housemouse, model = g0~tcov, buffer = 20,

timecov = c(0,1,0,1,0,1,0,1,0,1))

AIC(housemouse.0, housemouse.ampm)

End(Not run)

ip.secr Spatially Explicit Capture–Recapture by Inverse Prediction

Description

Estimate population density by simulation and inverse prediction (Efford 2004; Efford, Dawson &

Robbins 2004). A restricted range of SECR models may be fitted (detection functions with more

than 2 parameters are not supported, nor are covariates).

Usage

ip.secr (capthist, predictorfn = pfn, predictortype = "null",

detectfn = 0, mask = NULL, start = NULL, boxsize = 0.1,

centre = 3, min.nsim = 10, max.nsim = 2000, CVmax = 0.002,

var.nsim = 1000, maxbox = 5, maxtries = 2, ncores = 1, ...)

pfn(capthist, N.estimator)

ip.secr 65

Arguments

capthist capthist object including capture data and detector (trap) layout

predictorfn a function with two arguments (the first a capthist object) that returns a vector

of predictor values

predictortype value (usually character) passed as the second argument of predictorfn

detectfn integer code or character string for shape of detection function 0 halfnormal, 2

exponential, 3 uniform) – see detectfn

mask optional habitat mask to limit simulated population

start vector of np initial parameter values (density, g0 and sigma)

boxsize scalar or vector of length np for size of design as fraction of central parameter

value

centre number of centre points in simulation design

min.nsim minimum number of simulations per point

max.nsim maximum number of simulations per point

CVmax tolerance for precision of points in predictor space

var.nsim number of additional simulations to estimate variance-covariance matrix

maxbox maximum number of attempts to ‘frame’ solution

maxtries maximum number of attempts at each simulation

ncores integer number of cores available for parallel processing

... further arguments passed to sim.popn

N.estimator character value indicating population estimator to use

Details

‘Inverse prediction’ uses methods from multivariate calibration (Brown 1982). The goal is to esti-

mate population density (D) and the parameters of a detection function (usually g0 and sigma) by

‘matching’ statistics from predictorfn(capthist) (the target vector) and statistics from simula-

tions of a 2-D population using the postulated detection model. Statistics (see Note) are defined by

the predictor function, which should return a vector equal in length to the number of parameters (np

= 3). Simulations of the 2-D population use sim.popn. The simulated population is sampled with

sim.capthist according to the detector type (e.g., ‘single’ or ‘multi’) and detector layout specified

in traps(capthist), including allowance for varying effort if the layout has a usage attribute.

. . . may be used to control aspects of the simulation by passing named arguments (other than D) to

sim.popn. The most important arguments of sim.popn to keep an eye on are ‘buffer’ and ‘Ndist’.

‘buffer’ defines the region over which animals are simulated (unless mask is specified) - the region

should be large enough to encompass all animals that might be caught. ‘Ndist’ controls the number

of individuals simulated within the buffered or masked area. The default is ‘poisson’. Use ‘Ndist =

fixed’ to fix the number in the buffered or masked area A at N = DA. This conditioning reduces

the estimated standard error of D̂, but conditioning is not always justified - seek advice from a

statistician if you are unsure.

The simulated 2-D distribution of animals is Poisson by default. There is no ‘even’ option as in

Density.

Simulations are conducted on a factorial experimental design in parameter space - i.e. at the vertices

of a cuboid ‘box’ centred on the working values of the parameters, plus an optional number of centre

points. The size of the ‘box’ is specified as a fraction of the working values, so for example the

limits on the density axis are D*(1–boxsize) and D*(1+boxsize) where D* is the working value of

66 ip.secr

D. For g0, this computation uses the odds transformation (g0/(1–g0)). boxsize may be a vector

defining different scaling on each parameter dimension.

A multivariate linear model is fitted to predict each set of simulated statistics from the known

parameter values. The number of simulations at each design point is increased (doubled) until the

residual standard error divided by the central value is less than CVmax for all parameters. An error

occurs if max.nsim is exceeded.

Once a model with sufficient precision has been obtained, a new working vector of parameter es-

timates is ‘predicted’ by inverting the linear model and applying it to the target vector. A working

vector is accepted as the final estimate when it lies within the box; this reduces the bias from using

a linear approximation to extrapolate a nonlinear function. If the working vector lies outside the

box then a new design is centred on value for each parameter in the working vector.

Once a final estimate is accepted, further simulations are conducted to estimate the variance-

covariance matrix. These also provide a parametric bootstrap sample to evaluate possible bias.

Set var.nsim = 0 to suppress the variance step.

See Efford et al. (2004) for another description of the method, and Efford et al. (2005) for an

application.

The value of predictortype is passed as the second argument of the chosen predictorfn. By

default this is pfn, for which the second argument (N.estimator) is a character value from c("n",

"null","zippin","jackknife"), corresponding respectively to the number of individuals caught (Mt+1),

and N̂ from models M0, Mh and Mb of Otis et al. (1978).

If not provided, the starting values are determined automatically with autoini.

Linear measurements are assumed to be in metres and density in animals per hectare (10 000 m2).

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for

more).

Value

For ip.secr, a list comprising

call the function call

IP dataframe with estimated density ha−1, g0 and sigma (m)

vcov variance-covariance matrix of estimates

ip.nsim total number of simulations

variance.bootstrap

dataframe summarising simulations for variance estimation

proctime processor time (seconds)

For pfn, a vector of numeric values corresponding to N̂ , p̂, and RPSV, a measure of the spatial scale

of individual detections.

Warning

Simulation becomes unreliable with very sparse populations, or sparse sampling, because some

simulated datasets will have no recaptures or even no captures. Adjustments were made in secr

2.3.1 to make the function more stable in these conditions (e.g., allowing a failed simulation to be

repeated, by setting the ‘maxtries’ argument > 1), but results probably should not be relied upon

when there are warning messages regarding failed simulations.

ip.secr 67

Note

Each statistic is expected to have a monotonic relationship with one parameter when the other

parameters are held constant. Typical statistics are -

68 ip.secr

Statistic Parameter

N̂ D
p̂ g0
RPSV σ

where N̂ and p̂ are estimates of population size and capture probability from the naive application of

a nonspatial population estimator, and RPSV is a trap-revealed measure of the scale of movement.

This method provides nearly unbiased estimates of the detection parameter g0 when data are from

single-catch traps (likelihood-based estimates of g0 are biased in this case - Efford, Borchers &

Byrom 2009).

The implementation largely follows that in Density, and it may help to consult the Density online

help. There are some differences: the M0 and Mb estimates of population-size in ip.secr can

take non-integer values; the simulation design used by ip.secr uses odds(g0) rather than g0; the

default boxsize and CVmax differ from those in Density 4.4. There is no provision in ip.secr for

two-phase estimation, using a different experimental design at the second phase. If you wish you

can achieve the same effect by using the estimates as starting values for a second call of ip.secr

(see examples).

Maximum likelihood estimates from secr.fit are preferable in several respects to estimates from

inverse prediction (speed*; more complex models; tools for model selection). ip.secr is provided

for checking estimates of g0 from single-catch traps, and for historical continuity.

* autoini with thin = 1 provides fast estimates from a simple halfnormal model if variances are

not required.

References

Brown, P. J. (1982) Multivariate calibration. Journal of the Royal Statistical Society, Series B 44,

287–321.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-

recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Warburton, B., Coleman, M. C. and Barker, R. J. (2005) A field test of two methods

for density estimation. Wildlife Society Bulletin 33, 731–738.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from

capture data on closed animal populations. Wildlife Monographs 62.

See Also

capthist, secr.fit, RPSV, autoini, sim.popn, Detection functions

Examples

Not run:

these calculations may take several minutes

default settings

ip.secr (captdata)

join 69

coarse initial fit, no variance step

ip1 <- ip.secr (captdata, boxsize = 0.2, CVmax=0.01, var=0)

refined fit

ip2 <- ip.secr (captdata, start = ip1$IP[,"estimate"],

boxsize = 0.1, CVmax=0.002, var=1000)

ip2

compare to MLE of same data using multi-catch assumption

predict(secrdemo.0)

improvise another predictor function (dbar instead of RPSV)

pfn2 <- function (capthist, v) { ## v is not used

sumni <- sum(capthist!=0) ## total detections

n <- nrow(capthist) ## number of individuals

nocc <- ncol(capthist) ## number of occasions

c(N = n, p = sumni/n/nocc, dbar = dbar(capthist))

}

ip.secr (captdata, predictorfn = pfn2)

End(Not run)

join Combine or Split Sessions of capthist Object

Description

Make a single-session capthist object from a list of single-session objects, or a multi-session capthist

object.

Usage

join(object, remove.dupl.sites = TRUE, tol = 0.001)

unjoin(object, interval, ...)

Arguments

object list of single-session objects, or a multi-session capthist object [join], or a

single-session capthist object [unjoin]

remove.dupl.sites

logical; if TRUE then a single record is retained for each trap site used in multi-

ple input sessions

tol absolute distance in metres within which sites are considered identical

interval vector of times between occasions; zero indicates same session

... other arguments passed to subset.capthist

70 LLsurface.secr

Details

join The input sessions are assumed to be of the same detector type and to have the same attributes

(e.g., covariates should be present for all or none).

The number of occasions (columns) in the output is equal to the sum of the number of occa-

sions in each input.

A new dataframe of individual covariates is formed using the covariates for the first occurrence

of each animal.

Attributes xy and signal are handled appropriately, as is trap usage.

unjoin The input grouping of occasions (columns) into sessions is specified via interval. This

is a vector of length one less than the number of occasions (columns) in object. Elements

greater than zero indicate a new session.

The interval argument may be omitted if object has a valid ‘interval’ attribute, as in the

output from join.

Value

For join, A single-session capthist object. The attribute ‘interval’ records the distinction between

occasions that are adjacent in the input (interval = 0) and those that are in consecutive sessions

(interval = 1); ‘interval’ has length one less than the number of occasions.

For unjoin, a multi-session capthist object. Sessions are named with integers.

Note

Do not confuse unjoin with split.capthist which splits by row (animal) rather than by column

(occasion).

Occasions survive intact; to pool occasions use reduce.capthist.

See Also

MS.capthist, rbind.capthist

Examples

joined.ovenCH <- join (ovenCH)

summary(joined.ovenCH)

attr(joined.ovenCH, ’interval’)

summary(unjoin(joined.ovenCH))

LLsurface.secr Plot likelihood surface

Description

Calculate log likelihood over a grid of values of two beta parameters from a fitted secr model and

optionally make an approximate contour plot of the log likelihood surface.

LLsurface.secr 71

Usage

LLsurface.secr(object, betapar = c("g0", "sigma"), xval = NULL,

yval = NULL, centre = NULL, realscale = TRUE, plot = TRUE,

plotfitted = TRUE, ncores = 1, ...)

Arguments

object secr object output from secr.fit

betapar character vector giving the names of two beta parameters

xval vector of numeric values for x-dimension of grid

yval vector of numeric values for y-dimension of grid

centre vector of central values for all beta parameters

realscale logical. If TRUE input and output of x and y is on the untransformed (inverse-

link) scale.

plot logical. If TRUE a contour plot is produced

plotfitted logical. If TRUE the MLE from object is shown on the plot (+)

ncores integer number of cores available for parallel processing

... other arguments passed to contour

Details

centre is set by default to the fitted values of the beta parameters in object. This has the effect of

holding parameters other than those in betapar at their fitted values.

If xval or yval is not provided then 11 values are set at equal spacing between 0.8 and 1.2 times

the values in centre (on the ‘real’ scale if realscale = TRUE and on the ‘beta’ scale otherwise).

Contour plots may be customized by passing graphical parameters through the . . . argument.

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for

more).

Value

Invisibly returns a matrix of the log likelihood evaluated at each grid point

Note

LLsurface.secr works for named ‘beta’ parameters rather than ‘real’ parameters. The default

realscale = TRUE only works for beta parameters that share the name of the real parameter to

which they relate i.e. the beta parameter for the base level of the real parameter. This is because

link functions are defined for real parameters not beta parameters.

The contours are approximate because they rely on interpolation. See Examples for a more reliable

way to compare the likelihood at the MLE with nearby points on the surface.

Examples

Not run:

LLsurface.secr(secrdemo.CL, xval = seq(0.16,0.40,0.02),

yval = 25:35, nlevels = 20)

now verify MLE

72 logit

click on MLE and apparent ‘peak’

xy <- locator(2)

temp <- LLsurface.secr(secrdemo.CL, xval = xy$x,

yval = xy$y, plot = FALSE)

temp

End(Not run)

logit Logit Transformation

Description

Transform real values to the logit scale, and the inverse.

Usage

logit(x)

invlogit(y)

Arguments

x vector of numeric values in (0,1) (possibly a probability)

y vector of numeric values

Details

The logit transformation is defined as logit(x) = log(x
1−x

) for x ∈ (0, 1).

Value

Numeric value on requested scale.

Note

logit is equivalent to qlogis, and invlogit is equivalent to plogis (both R functions in the stats

package). logit and invlogit are used in secr because they are slightly more robust to bad input,

and their names are more memorable!

Examples

logit(0.5)

invlogit(logit(0.2))

logmultinom 73

logmultinom Multinomial Coefficient of SECR Likelihood

Description

Compute the constant multinomial component of the SECR log likelihood

Usage

logmultinom(capthist, grp = NULL)

Arguments

capthist capthist object

grp factor defining group membership, or a list (see Details)

Details

For a particular dataset and grouping, the multinomial coefficient is a constant; it does not depend on

the parameters and may be ignored when maximizing the likelihood to obtain parameter estimates.

Nevertheless, the log likelihood reported by secr.fit includes this component unless the detector

type is ‘signal’, ‘polygon’, ‘polygonX’, ‘transect’ or ‘transectX’ (from 2.0.0).

If grp is NULL then all animals are assumed to belong to one group. Otherwise, the length of grp

should equal the number of rows of capthist.

grp may also be any vector that can be coerced to a factor. If capthist is a multi-session capthist

object then grp should be a list with one factor per session.

If capture histories are not assigned to groups the value is the logarithm of

(
n

n1, ..., nC

)
=

n!

n1!n2!...nC !

where n is the total number of capture histories and n1 ... nC are the frequencies with which each

of the C unique capture histories were observed.

If capture histories are assigned to G groups the value is the logarithm of

G∏

g=1

ng!

ng1!ng2!...ngCg
!

where ng is the number of capture histories of group g and ng1 ... ngCg
are the frequencies with

which each of the Cg unique capture histories were observed for group g.

For multi-session data, the value is the sum of the single-session values. Both session structure and

group structure therefore affect the value computed. Users will seldom need this function.

Value

The numeric value of the log likelihood component.

74 LR.test

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

See Also

stoatDNA

Examples

no groups

logmultinom(stoatCH)

LR.test Likelihood Ratio Test

Description

Compute likelihood ratio test to compare two fitted models, one nested within the other.

Usage

LR.test(model1, model2)

Arguments

model1 fitted model

model2 fitted model

Details

The fitted models are expected to be of class ‘secr’ or ‘openCR’.

The test statistic is twice the difference of the maximized likelihoods. It is compared to a chi-square

distribution with df equal to the number of extra parameters in the more complex model.

The models must be nested (no check is performed - this is up to the user), but either model1 or

model2 may be the more general model.

Value

Object of class ‘htest’, a list with components

statistic value the test statistic

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-

tic

p.value probability of test statistic assuming chi-square distribution

method character string indicating the type of test performed

data.name character string with names of secr models compared

make.capthist 75

See Also

AIC.secr, score.test

Examples

two pre-fitted models

AIC (secrdemo.0, secrdemo.b)

LR.test (secrdemo.0, secrdemo.b)

make.capthist Construct capthist Object

Description

Form a capthist object from a data frame of capture records and a traps object.

Usage

make.capthist(captures, traps, fmt = "trapID", noccasions = NULL,

covnames = NULL, bysession = TRUE, sortrows = TRUE,

cutval = NULL, tol = 0.01, noncapt = "NONE", signalcovariates)

Arguments

captures dataframe of capture records in one of two possible formats (see Details)

traps object of class traps describing an array of passive detectors

fmt character string for capture format. Valid values are "XY" and "trapID".

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields

bysession logical, if true then ID are made unique by session

sortrows logical, if true then rows are sorted in ascending order of animalID

cutval numeric, threshold of signal strength for ‘signal’ detector type

tol numeric, tolerance in metres when assigning coordinates for ‘transect’ detector

type

noncapt character value; animal ID used for ‘no captures’

signalcovariates

character vector of field names from ‘captures’

Details

make.capthist is the most flexible way to prepare data for secr.fit. See read.capthist for

a more streamlined way to read data from text files for common detector types. Each row of the

input data frame captures represents a detection on one occasion. The capture data frame may be

formed from a text file with read.table.

Input formats are based on the Density software (Efford 2009; see also ../doc/secr-datainput.

pdf). If fmt = "XY" the required fields are (session, ID, occasion, x, y) in that order. If fmt =

../doc/secr-datainput.pdf
../doc/secr-datainput.pdf

76 make.capthist

"trapID" the required fields are (session, ID, occasion, trap), where trap is the numeric index

of the relevant detector in traps. session and ID may be character-, vector- or factor-valued;

other required fields are numeric. Fields are matched by position (column number), not by name.

Columns after the required fields are interpreted as individual covariates that may be continuous

(e.g., size) or categorical (e.g., age, sex).

If captures has data from multiple sessions then traps may be either a list of traps objects, one

per session, or a single traps object that is assumed to apply throughout. Similarly, noccasions

may be a vector specifying the number of occasions in each session.

Covariates are assumed constant for each individual; the first non-missing value is used. The length

of covnames should equal the number of covariate fields in captures.

bysession takes effect when the same individual is detected in two or more sessions: TRUE results

in one capture history per session, FALSE has the effect of generating a single capture history (this

is not appropriate for the models currently provided in secr).

Deaths are coded as negative values in the occasion field of captures. Occasions should be num-

bered 1, 2, ..., noccasions. By default, the number of occasions is the maximum value of ‘occasion’

in captures.

Signal strengths may be provided in the fifth (fmt = trapID) or sixth (fmt = XY) columns. Detections

with signal strength missing (NA) or below ‘cutval’ are discarded.

A session may result in no detections. In this case a null line is included in captures using the

animal ID field given by noncapt, the maximum occasion number, and any trapID (e.g. "sess1

NONE 5 1" for a 5-occasion session) (or equivalently "sess1 NONE 5 10 10" for fmt = XY).

Value

An object of class capthist (a matrix or array of detection data with attributes for detector positions

etc.). For ‘single’ and ‘multi’ detectors this is a matrix with one row per animal and one column per

occasion (dim(capthist)=c(nc,noccasions)); each element is either zero (no detection) or a detector

number (the row number in traps not the row name). For ‘proximity’ detectors capthist is an

array of values {-1, 0, 1} and dim(capthist)=c(nc,noccasions,ntraps). The number of animals nc is

determined from the input, as is noccasions if it is not specified. traps, covariates and other

data are retained as attributes of capthist.

Deaths during the experiment are represented as negative values in capthist.

For ‘signal’ and ‘signalnoise’ detectors, the columns of captures identified in signalcovariates

are saved along with signal strength measurements in the attribute ‘signalframe’.

If the input has data from multiple sessions then the output is an object of class c("list","capthist")

comprising a list of single-session capthist objects.

Note

make.capthist requires that the data for captures and traps already exist as R objects. To read

data from external (text) files, first use read.table and read.traps, or try read.capthist for a

one-step solution.

References

Efford, M. G. (2009) Density 4.4: software for spatially explicit capture–recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density.

See Also

capthist, traps, read.capthist, secr.fit, sim.capthist

http://www.otago.ac.nz/density

make.mask 77

Examples

peek at demonstration data

head(captXY)

head(trapXY)

demotraps <- read.traps(data = trapXY)

demoCHxy <- make.capthist (captXY, demotraps, fmt = "XY")

demoCHxy ## print method for capthist

plot(demoCHxy) ## plot method for capthist

summary(demoCHxy) ## summary method for capthist

To enter ‘count’ data without manually repeating rows

need a frequency vector f, length(f) == nrow(captXY)

n <- nrow(captXY)

f <- sample (1:5, size = n, prob = rep(0.2,5), replace = TRUE)

repeat rows as required...

captXY <- captXY[rep(1:n, f),]

counttraps <- read.traps(data = trapXY, detector = "count")

countCH <- make.capthist (captXY, counttraps, fmt = "XY")

make.mask Build Habitat Mask

Description

Construct a habitat mask object for spatially explicit capture-recapture. A mask object is a set of

points with optional attributes.

Usage

make.mask(traps, buffer = 100, spacing = NULL, nx = 64, ny = 64,

type = "traprect", poly = NULL, poly.habitat = TRUE,

keep.poly = TRUE, check.poly = TRUE, pdotmin = 0.001, ...)

Arguments

traps object of class traps

buffer width of buffer in metres

spacing spacing between grid points (metres)

nx number of grid points in ‘x’ direction

ny number of grid points in ‘y’ direction (type = ‘rectangular’)

type character string for method to use (‘traprect’, ‘trapbuffer’, ‘pdot’, ‘polygon’,

‘clusterrect’, ‘clusterbuffer’, ‘rectangular’)

poly bounding polygon to which mask should be clipped (see Details)

poly.habitat logical for whether poly represents habitat or its inverse (non-habitat)

keep.poly logical; if TRUE any bounding polygon is saved as the attribute ‘polygon’

78 make.mask

check.poly logical; if TRUE a warning is given for traps that lie outside a bounding polygon

pdotmin minimum detection probability for inclusion in mask when type = "pdot" (op-

tional)

... additional arguments passed to pdot when type = "pdot"

Details

The ‘traprect’ method constructs a grid of points in the rectangle formed by adding a buffer strip to

the minimum and maximum x-y coordinates of the detectors in traps. Both ‘trapbuffer’ and ‘pdot’

start with a ‘traprect’ mask and drop some points.

The ‘trapbuffer’ method restricts the grid to points within distance buffer of any detector.

The ‘pdot’ method restricts the grid to points for which the net detection probability p.(X) (see

pdot) is at least pdotmin. Additional parameters are used by pdot (detectpar, noccasions). Set

these with the . . . argument; otherwise make.mask will silently use the arbitrary defaults. pdot is

currently limited to a halfnormal detection function.

The ‘clusterrect’ method constructs a grid of rectangular submasks centred on ‘clusters’ of detec-

tors generated with trap.builder (possibly indirectly by make.systematic). The ‘clusterbuffer’

method resembles ‘trapbuffer’, but is usually faster when traps are arranged in clusters because it

starts with a ‘clusterrect’ mask.

The ‘rectangular’ method constructs a simple rectangular mask with the given nx, ny and spacing.

If poly is specified, points outside poly are dropped. The ‘polygon’ method places points on

a rectangular grid clipped to the polygon (buffer is not used). Thus ‘traprect’ is equivalent to

‘polygon’ when poly is supplied. poly may be either

• a matrix or dataframe of two columns interpreted as x and y coordinates, or

• a SpatialPolygonsDataFrame object as defined in the package ‘sp’, possibly from reading a

shapefile with readShapePoly() from package ‘maptools’.

If spacing is not specified then it is determined by dividing the range of the x coordinates (including

any buffer) by nx.

Value

An object of class mask. When keep.poly = TRUE, poly and poly.habitat are saved as attributes

of the mask.

Note

A warning is displayed if type = "pdot" and the buffer is too small to include all points with p. >

pdotmin.

A habitat mask is needed to fit an SECR model and for some related computations. The default

mask settings in secr.fit may be good enough, but it is preferable to use make.mask to construct

a mask in advance and to pass that mask as an argument to secr.fit.

The function buffer.contour displays the extent of one or more ‘trapbuffer’ zones - i.e. the effect

of buffering the detector array with varying strip widths.

See Also

mask, subset.mask, pdot, buffer.contour

make.mask 79

Examples

temptrap <- make.grid(nx = 10, ny = 10, spacing = 30)

default method: traprect

tempmask <- make.mask(temptrap, spacing = 5)

plot(tempmask)

summary (tempmask)

make irregular detector array by subsampling

form mask by ‘trapbuffer’ method

temptrap <- subset (temptrap, sample(nrow(temptrap), size = 30))

tempmask <- make.mask (temptrap, spacing = 5, type = "trapbuffer")

plot (tempmask)

plot (temptrap, add = TRUE)

form mask by "pdot" method

temptrap <- make.grid(nx = 6, ny = 6)

tempmask <- make.mask (temptrap, buffer = 150, type = "pdot",

pdotmin = 0.0001, detectpar = list(g0 = 0.1, sigma = 30),

noccasions = 4)

plot (tempmask)

plot (temptrap, add = TRUE)

Using an ESRI polygon shapefile for clipping (shapefile

polygons may include multiple islands and holes).

Requires the ‘maptools’ package of Nicholas J. Lewin-Koh, Roger

Bivand, and others; ‘maptools’ uses the ‘sp’ package of spatial

classes by Ed Pebesma and Roger Bivand.

Not run:

library(maptools)

setwd(system.file("extdata", package = "secr"))

possumarea <- readShapePoly("possumarea") ## possumarea.shp etc.

possummask2 <- make.mask(traps(possumCH), spacing = 20,

buffer = 250, type = "trapbuffer", poly = possumarea)

oldpar <- par(mar = c(1,6,6,6), xpd = TRUE)

plot (possummask2, ppoly = TRUE)

plot(traps(possumCH), add = T)

par(oldpar)

if the polygon delineates non-habitat ...

seaPossumMask <- make.mask(traps(possumCH), buffer = 1000,

type = "traprect", poly = possumarea, poly.habitat = FALSE)

plot(seaPossumMask)

plot(traps(possumCH), add = T)

this mask is not useful!

End(Not run)

80 make.systematic

make.systematic Construct Systematic Detector Design

Description

A rectangular grid of clusters within a polygonal region.

Usage

make.systematic(n, cluster, region, spacing = NULL, origin = NULL, ...)

Arguments

n integer approximate number of clusters (see Details)

cluster traps object defining a single cluster

region dataframe or SpatialPolygonsDataFrame with coordinates of perimeter

spacing scalar distance between cluster centres

origin vector giving x- and y-cooordinates of fixed grid origin (origin is otherwise ran-

dom)

... arguments passed to trap.builder

Details

region may be any shape. The sp class SpatialPolygonsDataFrame is useful for complex shapes

and input from shapefiles using maptools (see Examples). Otherwise, region should be a dataframe

with columns ‘x’ and ‘y’.

spacing may be a vector with separate values for spacing in x- and y- directions. If spacing is

provided then n is ignored.

If n is a scalar, the spacing of clusters is determined from the area of the bounding box of region

divided by the requested number of clusters (this does not necessarily result in exactly n clusters).

If n is a vector of two integers these are taken to be the number of columns and the number of rows.

After preparing a frame of cluster centres, make.systematic calls trap.builder with method =

‘all’; . . . allows the arguments ‘rotation’, ‘edgemethod’, ‘plt’, and ‘detector’ to be passed. Setting

the trap.builder arguments frame, method, and samplefactor has no effect.

Value

A single-session ‘traps’ object.

Note

Do not confuse with the simpler function make.grid, which places single detectors in a rectangular

array.

See Also

trap.builder, cluster.centres, readShapePoly

make.traps 81

Examples

mini <- make.grid(nx = 2, ny = 2, spacing = 100)

region <- cbind(x=c(0,2000,2000,0), y=c(0,0,2000,2000))

temp <- make.systematic(25, mini, region, plt = TRUE)

temp <- make.systematic(c(6, 6), mini, region, plt = TRUE,

rotation = -1)

Example using shapefile "possumarea.shp" in

"extdata" folder. By default, each cluster is

a single multi-catch detector

Not run:

library(maptools)

setwd(system.file("extdata", package = "secr"))

possumarea <- readShapePoly("possumarea")

possumgrid <- make.systematic(spacing = 100, region =

possumarea, plt = TRUE)

or with 2 x 2 clusters

possumgrid2 <- make.systematic(spacing = 300,

cluster = make.grid(nx = 2, ny = 2, spacing = 100),

region = possumarea, plt = TRUE, edgemethod =

"allinside")

label clusters

text(cluster.centres(possumgrid2), levels(clusterID

(possumgrid2)), cex=0.7)

If you have GPSBabel installed and on the Path

then coordinates can be projected and uploaded

to a GPS with ‘writeGPS’, which also requires the

package ‘proj4’. Defaults are for a Garmin GPS

connected by USB.

writeGPS(possumgrid, proj = "+proj=nzmg")

End(Not run)

make.traps Build Detector Array

Description

Construct a rectangular array of detectors (trapping grid) or a circle of detectors or a polygonal

search area.

Usage

make.grid(nx = 6, ny = 6, spacex = 20, spacey = 20, spacing = NULL,

detector = "multi", originxy = c(0,0), hollow = F,

ID = "alphay")

82 make.traps

make.circle (n = 20, radius = 100, spacing = NULL,

detector = "multi", originxy = c(0,0), IDclockwise = T)

make.poly (polylist = NULL, x = c(-50,-50,50,50),

y = c(-50,50,50,-50), exclusive = FALSE, verify = TRUE)

make.transect (transectlist = NULL, x = c(-50,-50,50,50),

y = c(-50,50,50,-50), exclusive = FALSE)

make.telemetry (...)

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacex distance between detectors in ‘x’ direction (nominally in metres)

spacey distance between detectors in ‘y’ direction (nominally in metres)

spacing distance between detectors (x and y directions)

detector character value for detector type - "single", "multi" etc.

originxy vector origin for x-y coordinates

hollow logical for hollow grid

ID character string to control row names

n number of detectors

radius radius of circle (nominally in metres)

IDclockwise logical for numbering of detectors

polylist list of dataframes with coordinates for polygons

transectlist list of dataframes with coordinates for transects

x x coordinates of vertices

y y coordinates of vertices

exclusive logical; if TRUE animal can be detected only once per occasion

verify logical if TRUE then the resulting traps object is checked with verify

... arguments passed to make.poly

Details

make.grid generates coordinates for nx.ny traps at separations spacex and spacey. If spacing is

specified it replaces both spacex and spacey. The bottom-left (southwest) corner is at originxy.

For a hollow grid, only detectors on the perimeter are retained. By default, identifiers are con-

structed from a letter code for grid rows and an integer value for grid columns ("A1", "A2",...).

‘Hollow’ grids are always numbered clockwise in sequence from the bottom-left corner. Other

values of ID have the following effects:

ID Effect

numx column-dominant numeric sequence

numy row-dominant numeric sequence

numxb column-dominant boustrophedonical numeric sequence (try it!)

numyb row-dominant boustrophedonical numeric sequence

make.traps 83

alphax column-dominant alphanumeric

alphay row-dominant alphanumeric

xy combine column (x) and row(y) numbers

‘xy’ adds leading zeros as needed to give a string of constant length with no blanks.

make.circle generates coordinates for n traps in a circle centred on originxy. If spacing is spec-

ified then it overrides the radius setting; the radius is adjusted to provide the requested straightline

distance between adjacent detectors. Traps are numbered from the trap due east of the origin, either

clockwise or anticlockwise as set by IDclockwise.

Specialised functions for arrays using a triangular grid are described separately (make.tri, clip.hex).

Polygon vertices may be specified with x and y in the case of a single polygon, or as polylist

for one or more polygons. Each component of polylist is a dataframe with columns ‘x’ and ‘y’.

polylist takes precedence. make.poly automatically closes the polygon by repeating the first

vertex if the first and last vertices differ.

Transects are defined by a sequence of vertices as for polygons, except that they are not closed.

make.telemetry merely calls make.poly and assigns ‘telemetry’ as the detector type of the result.

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type ("sin-

gle", "multi", or "proximity" etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

References

Efford, M.G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

read.traps,detector, print.traps, plot.traps, traps, make.tri, addTelemetry

Examples

demo.traps <- make.grid()

plot(demo.traps)

compare numbering schemes

par (mfrow = c(2,4), mar = c(1,1,1,1), xpd = TRUE)

for (id in c("numx", "numy", "alphax", "alphay", "numxb",

"numyb"))

{

temptrap <- make.grid(nx = 7, ny = 5, ID = id)

plot (temptrap, border = 10, label = TRUE, offset = 7,

gridl = FALSE)

http://www.otago.ac.nz/density

84 make.tri

}

temptrap <- make.grid(nx = 7, ny = 5, hollow = TRUE)

plot (temptrap, border = 10, label = TRUE, gridl = FALSE)

plot(make.circle(n = 20, spacing = 30), label = TRUE, offset = 9)

summary(make.circle(n = 20, spacing = 30))

jitter locations randomly within grid square

and plot over ‘mask’

temptrap <- make.grid(nx = 7, ny = 7, spacing = 30)

tempmask <- make.mask(temptrap, buffer = 15, nx = 7, ny = 7)

temptrap[,] <- temptrap[,] + 30 * (runif(7*7*2) - 0.5)

plot(tempmask, dots = FALSE)

plot(temptrap, add = TRUE)

make.tri Build Detector Array on Triangular or Hexagonal Grid

Description

Construct an array of detectors on a triangular grid and optionally select a hexagonal subset of

detectors.

Usage

make.tri (nx = 10, ny = 12, spacing = 20, detector = "multi",

originxy = c(0,0))

clip.hex (traps, side = 20, centre = c(50, 60*cos(pi/6)),

fuzz = 1e-3, ID = "num", ...)

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacing distance between detectors (x and y directions)

detector character value for detector type - "single", "multi" etc.

originxy vector origin for x-y coordinates

traps traps object

side length of hexagon side

centre x-y coordinates of hexagon centre

fuzz floating point fuzz value

ID character string to control row names

... other parameters passed to subset.traps (not used)

mask 85

Details

make.tri generates coordinates for nx.ny traps at separations spacing. The bottom-left (south-

west) corner is at originxy. Identifiers are numeric. See make.grid for further explanation.

clip.hex clips a grid of detectors, retaining only those within a bounding hexagon. Detectors are

re-labelled according to ID as follows:

ID Effect

NULL no change

num numeric sequence

alpha letter for‘shell’; number within shell

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type ("sin-

gle", "multi", or "proximity" etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

See Also

make.grid, detector

Examples

tri.grid <- make.tri(spacing = 10)

plot(tri.grid, border = 5)

hex <- clip.hex(tri.grid, side = 30, ID = "alpha")

plot (hex, add = TRUE, detpar = list(pch = 16, cex = 1.4),

label = TRUE, offset = 2.5)

mask Mask Object

Description

Encapsulate a habitat mask for spatially explicit capture–recapture.

Details

A habitat mask serves four main purposes in spatially explicit capture–recapture. Firstly, it defines

an outer limit to the area of integration; habitat beyond the mask may be occupied, but animals there

should have negligible chance of being detected (see pdot and below). Secondly, it distinguishes

sites in the vicinity of the detector array that are ‘habitat’ (i.e. have the potential to be occupied)

from ‘non-habitat’. Thirdly, it discretizes continuous habitat as a list of points. Each point is notion-

ally associated with a cell (pixel) of uniform density. Discretization allows the SECR likelihood to

86 mask.check

be evaluated by summing over grid cells. Fourthly, the x-y coordinates of the mask and any habitat

covariates may be used to build spatial models of density. For example, a continuous or categorical

habitat covariate ‘cover’ measured at each point on the mask might be used in a formula for density

such as D ∼cover.

In relation to the first purpose, the definition of ‘negligible’ is fluid. Any probability less than 0.001

seems OK in the sense of not causing noticeable bias in density estimates, but this depends on the

shape of the detection function (fat-tailed functions such as ‘hazard rate’ are problematic). New

tools for evaluating masks appeared in secr 1.5 (mask.check, esa.plot), and suggest.buffer

automates selection of a buffer width.

Mask points are stored in a data frame with columns ‘x’ and ‘y’. The number of rows equals the

number of points.

Possible mask attributes

Attribute Description

type ‘traprect’, ‘trapbuffer’, ‘pdot’, ‘polygon’, ‘clusterrect’, ‘clusterbuffer’ (see make.mask) or ‘user’

polygon vertices of polygon defining habitat boundary, for type = ‘polygon’

pdotmin threshold of p.(X) for type = ‘pdot’

covariates dataframe of site-specific covariates

meanSD data frame with centroid (mean and SD) of x and y coordinates

area area (ha) of the grid cell associated with each point

spacing nominal spacing (metres) between adjacent points

boundingbox data frame of 4 rows, the vertices of the bounding box of all grid cells in the mask

Attributes other than covariates are generated automatically by make.mask. Type ‘user’ refers to

masks input from a text file with read.mask.

Note

A habitat mask is needed by secr.fit, but one will be generated automatically if none is provided.

You should be aware of this and check that the default settings (e.g. buffer) are appropriate.

See Also

make.mask, read.mask, mask.check, esa.plot, suggest.buffer, secr.fit, secr density models

mask.check Mask Diagnostics

Description

mask.check evaluates the effect of varying buffer width and mask spacing on either the likelihood

or density estimates from secr.fit()

Usage

mask.check(object, buffers = NULL, spacings = NULL, poly = NULL,

LLonly = TRUE, realpar = NULL, session = 1, file = NULL,

drop = "", tracelevel = 0, ncores = 1, ...)

mask.check 87

Arguments

object object of class ‘capthist’ or ‘secr’

buffers vector of buffer widths

spacings vector of mask spacings

poly matrix of two columns, the x- and y-coordinates of a bounding polygon (op-

tional)

LLonly logical; if TRUE then only the log likelihood is computed

realpar list of parameter values

session vector of session indices (used if object spans multiple sessions)

file name of output file (optional)

drop character vector: names of fitted secr object to omit

tracelevel integer for level of detail in reporting (0,1,2)

ncores integer number of cores available for parallel processing

... other arguments passed to secr.fit

Details

Masks of varying buffer width and spacing are constructed with the ‘trapbuffer’ method in make.mask,

using the detector locations (‘traps’) from either a capthist object or a previous execution of secr.fit.

Default values are provided for buffers and spacings if object is of class ‘secr’ (respectively c(1,

1.5, 2) and c(1, 0.75, 0.5) times the values in the existing mask). The default for buffers will not

work if a detector is on the mask boundary, as the inferred buffer is then 0.

Variation in the mask may be assessed for its effect on –

• the log-likelihood evaluated for given values of the parameters (LLonly = TRUE)

• estimates from maximizing the likelihood with each mask (LLonly = FALSE)

realpar should be a list with one named component for each real parameter (see Examples). It is

relevant only if LLonly = TRUE. realpar may be omitted if object is of class ‘secr’; parameter

values are then extracted from object.

session should be an integer or character vector suitable for indexing sessions in object, or in

object$capthist if object is a fitted model. Each session is considered separately; a model

formula that refers to session or uses session covariates will cause an error.

If file is specified and ncores = 1 then detailed results (including each model fit when LLonly = FALSE)

are saved to an external .RData file. Loading this file creates or overwrites object(s) in the workspace:

mask.check.output if LLonly = TRUE, otherwise mask.check.output and mask.check.fit.

For multiple sessions these are replaced by lists with one component per session (mask.check.outputs

and mask.check.fits). The drop argument is passed to trim and applied to each fitted model; use

it to save space, at the risk of limiting further computation on the fitted models.

tracelevel>0 causes more verbose reporting of progress during execution.

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for

more), progress messages are suppressed, and nothing is output to file.

The . . . argument may be used to override existing settings in object - for example, a conditional

likelihood fit (CL = T) may be selected even if the original model was fitted by maximizing the

full likelihood.

88 mask.check

Value

Array of log-likelihoods (LLonly = TRUE) or estimates (LLonly = FALSE) for each combination

of buffers and spacings. The array has 3 dimensions if LLonly = FALSE and both buffers

and spacings have multiple levels; otherwise it collapses to a matrix. Rows generally represent

buffers, but rows represent spacings if a single buffer is specified.

Warning

mask.check() may fail if object is a fitted ‘secr’ model and a data object named in the original

call of secr.fit() (i.e. object$call) is no longer in the working environment (secr.fit argu-

ments capthist, mask, verify & trace are exempt). Fix by any of (1) applying mask.check directly

to the ‘capthist’ object, specifying other arguments (buffers, spacings, realpar) as needed, (2)

re-fitting the model and running mask.check in the same environment, (3) specifying the offend-

ing argument(s) in . . . , or (4) re-creating the required data objects(s) in the working environment,

possibly from saved inputs in object (e.g., mytimecov <- myfit$timecov).

Note

When LLonly = TRUE the functionality of mask.check resembles that of the ‘Tools | ML SECR

log likelihood’ menu option in Density 4. The help page in Density 4 for ML SECR 2-D integration

(see index) may be helpful.

Warning messages from secr.fit are suppressed. ‘capthist’ data provided via the object argu-

ment are checked with verify.capthist if tracelevel > 0.

The likelihood-only method is fast, but not definitive. It is reasonable to aim for stability in the third

decimal place of the log likelihood. Slight additional variation in the likelihood may cause little

change in the estimates; the only way to be sure is to check these by setting LLonly = FALSE.

The performance of a mask depends on the detection function; be sure to set the detectfn argument

appropriately. The hazard rate function has a fat tail that can be problematic.

When provided with an ‘secr’ object, mask.check constructs a default vector of buffer widths

as multiples of the buffer used in object even though that value is not saved explicitly. For

this trick, detector locations in traps(object$capthist) are compared to the bounding box of

object$mask; the base level of buffer width is the maximum possible within the bounding box.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2009) DENSITY 4.4: software for spatially explicit capture–recapture. Department

of Zoology, University of Otago, Dunedin, New Zealand http://www.otago.ac.nz/density.

See Also

esa.plot, make.mask, secr.fit

Examples

Not run:

from a capthist object, specifying almost everything

mask.check (possumCH, spacings = c(20, 30), buffers =c(200, 300),

http://www.otago.ac.nz/density

model.average 89

realpar = list(g0 = 0.2, sigma = 50), CL = TRUE)

from a fitted model, using defaults

mask.check (stoat.model.HN)

LL did not change with varying buffer (rows) or spacing (cols):

78.125 58.59375 39.0625

1000 -144.0015 -144.0015 -144.0015

1500 -144.0017 -144.0017 -144.0017

2000 -144.0017 -144.0017 -144.0017

fit new models for each combination of buffer & spacing,

and save fitted models to a file

mask.check (stoat.model.HN, buffers = 1500, spacings =

c(40,60,80), LLonly = FALSE, file = "test", CL = TRUE)

look in more detail at the preceding fits

restores objects ‘mask.check.output’ and ‘mask.check.fit’

load("test.RData")

lapply(mask.check.fit, predict)

lapply(mask.check.fit, derived)

multi-session data

mask.check(ovenbird.model.1, session = c("2005","2009"))

clipping mask

olddir <- setwd(system.file("extdata", package = "secr"))

possumarea <- read.table("possumarea.txt", header = TRUE)

setwd(olddir)

data (possum)

mask.check (possum.model.0, spacings = c(20, 30), buffers =

c(200, 300), poly = possumarea, LLonly = FALSE,

file = "temp", CL = TRUE)

review fitted models

load ("temp.RData")

oldpar <- par(mfrow = c(2,2), mar = c(1,4,4,4), xpd = FALSE)

for (i in 1:4) {

plot(traps(mask.check.fit[[i]]$capthist), border = 300,

gridlines = FALSE)

plot(mask.check.fit[[i]]$mask, add = TRUE)

lines(possumarea)

text (2698618, 6078427, names(mask.check.fit)[i])

box()

}

par(oldpar)

End(Not run)

model.average Averaging of SECR Models Using Akaike’s Information Criterion

90 model.average

Description

AIC- or AICc-weighted average of estimated ‘real’ or ‘beta’ parameters from multiple fitted secr

models.

Usage

model.average(..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, dmax = 10, covar = FALSE, average = "link",

criterion = c(’AICc’,’AIC’), CImethod = c(’Wald’, ’MATA’))

collate (..., realnames = NULL, betanames = NULL, newdata = NULL,

scaled = FALSE, alpha = 0.05, perm = 1:4, fields = 1:4)

Arguments

... secr or secrlist objects

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

scaled logical for scaling of sigma and g0 (see Details)

alpha alpha level for confidence intervals

dmax numeric, the maximum AIC or AICc difference for inclusion in confidence set

covar logical, if TRUE then return variance-covariance matrix

average character string for scale on which to average real parameters

criterion character, information criterion to use for model weights

CImethod character, type of confidence interval (see Details)

perm permutation of dimensions in output from collate

fields vector to restrict summary fields in output

Details

Models to be compared must have been fitted to the same data and use the same likelihood method

(full vs conditional). If realnames == NULL and betanames == NULL then all real parameters will

be averaged; in this case all models must use the same real parameters. To average beta parameters,

specify betanames (this is ignored if a value is provided for realnames). See predict.secr for an

explanation of the optional argument newdata; newdata is ignored when averaging beta parameters.

Model-averaged estimates for parameter θ are given by

θ̂ =
∑

k

wkθ̂k

where the subscript k refers to a specific model and the wk are AIC or AICc weights (see AIC.secr

for details). Averaging of real parameters may be done on the link scale before back-transformation

(average="link") or after back-transformation (average="real").

Models for which dAIC > dmax (or dAICc > dmax) are given a weight of zero and effectively are

excluded from averaging.

model.average 91

Also,

var(θ̂) =
∑

k

wk(var(θ̂k|βk) + β2
k)

where β̂k = θ̂k − θ̂ and the variances are asymptotic estimates from fitting each model k. This

follows Burnham and Anderson (2004) rather than Buckland et al. (1997).

Two methods are offered for confidence intervals. The default ‘Wald’ uses the above estimate of

variance. The alternative ‘MATA’ (model-averaged tail area) avoids estimating a weighted vari-

ance and is thought to provide better coverage at little cost in increased interval length (Turek

and Fletcher 2012). Turek and Fletcher (2012) also found averaging with AIC weights (here

criterion = ’AIC’) preferable to using AICc weights, even for small samples. CImethod does

not affect the reported standard errors.

collate extracts parameter estimates from a set of fitted secr model objects. fields may be used

to select a subset of summary fields ("estimate","SE.estimate","lcl","ucl") by name or number.

The argument scaled applies only to the detection parameters g0 and sigma, and only to models

fitted with scalesigma or scaleg0 switched on (see secr.fit argument details). If scaled is TRUE

then each estimate is multiplied by its scale factor (1/D^0.5 and 1/sigma^2 respectively).

Value

For model.average, an array of model-averaged estimates, their standard errors, and a 100(1−α)%
confidence interval. The interval for real parameters is backtransformed from the link scale. If there

is only one row in newdata or beta parameters are averaged or averaging is requested for only one

parameter then the array is collapsed to a matrix. If covar = TRUE then a list is returned with

separate components for the estimates and the variance-covariance matrices.

For collate, a 4-dimensional array of model-specific parameter estimates. By default, the dimen-

sions correspond respectively to rows in newdata (usually sessions), models, statistic fields (esti-

mate, SE.estimate, lcl, ucl), and parameters ("D", "g0" etc.). For particular comparisons it often

helps to reorder the dimensions with the perm argument.

Warning

model.average may conflict with a method of the same name in RMark

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of

inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (2004) Multimodel inference - understanding AIC and BIC in

model selection. Sociological Methods & Research 33, 261–304.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-

tics and data analysis 56, 2089–2815.

See Also

AIC.secr, secr.fit

92 ms

Examples

Compare two models fitted previously

secrdemo.0 is a null model

secrdemo.b has a learned trap response

model.average(secrdemo.0, secrdemo.b)

model.average(secrdemo.0, secrdemo.b, betanames = c("D","g0","sigma"))

In this case we find the difference was actually trivial...

(subscripting of output is equivalent to setting fields = 1)

collate (secrdemo.0, secrdemo.b, perm = c(4,2,3,1))[,,1,]

ms Multi-session Objects

Description

Logical function to distinguish objects that span multiple sessions

Usage

Default S3 method:

ms(object, ...)

S3 method for class ’mask’

ms(object, ...)

S3 method for class ’secr’

ms(object, ...)

Arguments

object any object

... other arguments (not used)

Details

The test applied varies with the type of object. The default method uses inherits(object, "list").

Value

logical, TRUE if object contains data for multiple sessions

See Also

capthist, mask, secr.fit

Examples

ms(ovenCH)

ms(ovenbird.model.1)

ms(ovenCH[[1]])

ovenbird 93

ovenbird Ovenbird Mist-netting Dataset

Description

Data from a multi-year mist-netting study of ovenbirds (Seiurus aurocapilla) at a site in Maryland,

USA.

Usage

data(ovenbird)

Details

From 2005 to 2009 D. K. Dawson and M. G. Efford conducted a capture–recapture survey of breed-

ing birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The

forest was described by Stamm, Davis & Robbins (1960), and has changed little since. Analyses of

data from previous mist-netting at the site by Chan Robbins were described in Efford, Dawson &

Robbins (2004) and Borchers & Efford (2008).

Forty-four mist nets (12 m long, 30-mm mesh) spaced 30 m apart on the perimeter of a 600-m x

100-m rectangle were operated for approximately 9 hours on each of 9 or 10 non-consecutive days

during late May and June in each year. Netting was passive (i.e. song playback was not used to

lure birds into the nets). Birds received individually numbered bands, and both newly banded and

previously banded birds were released at the net where captured. Sex was determined in the hand

from the presence of a brood patch (females) or cloacal protuberance (males). A small amount of

extra netting was done by other researchers after the main session in some years.

This dataset comprises all records of adult (after-hatch-year) ovenbirds caught during the main

session in each of the five years 2005–2009. One ovenbird was killed by a predator in the net in

2009, as indicated by a negative net number in the dataset. Sex was determined in the hand from

the presence of a brood patch (females) or cloacal protuberance (males). Birds are listed by their

band number (4-digit prefix, ‘.’, and 5-digit number). Recaptures within a day are not included in

this dataset, so each bird occurs at most once per day and the detector type is ‘multi’ rather than

‘proximity’. Although several individuals were captured in more than one year, no use is made of

this information in the analyses presently offered in secr.

The data are provided as a multi-session capthist object ‘ovenCH’. Sex is coded as a categorical

individual covariate ("M" or "F").

An analysis of the data for males in the first four years showed that they tended to avoid nets

after their first capture within a season (Dawson & Efford 2009). While the species was present

consistently, the number of detections in any one year was too small to give reliable estimates of

density; pooling of detection parameters across years helped to improve precision.

Included with the data are a mask and four models fitted as in Examples.

Object Description

ovenCH multi-session capthist object

ovenbird.model.1 fitted secr model – null

ovenbird.model.1b fitted secr model – g0 net shyness

ovenbird.model.1T fitted secr model – g0 time trend within years

ovenbird.model.h2 fitted secr model – g0 finite mixture

ovenbird.model.D fitted secr model – trend in density across years

ovenmask mask object

94 ovenbird

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture-recapture studies. Biometrics 64, 377–385.

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.

Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-

recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Stamm, D. D., Davis, D. E. and Robbins, C. S. (1960) A method of studying wild bird populations

by mist-netting and banding. Bird-Banding 31, 115–130.

See Also

capthist

Examples

Not run:

commands used to create ovenCH from the input files

"netsites0509.txt" and "ovencapt.txt"

for information only - these files not distributed

netsites0509 <- read.traps(file = "netsites0509.txt",

skip = 1, detector = "multi")

temp <- read.table("ovencapt.txt", colClasses=c("character",

"character", "numeric", "numeric", "character"))

ovenCH <- make.capthist(temp, netsites0509, covnames=c("Sex"))

End(Not run)

oldpar <- par(mfrow = c(1,5), mar = c(1,1,4,1))

plot(ovenCH, tracks = TRUE, varycol = TRUE)

par(oldpar)

counts(ovenCH, "n")

Not run:

array constant over years, so build mask only once

ovenmask <- make.mask(traps(ovenCH)[["2005"]], type="pdot", buffer=400,

spacing=15, detectpar=list(g0=0.03, sigma=90), nocc=10)

fit constant-density model

ovenbird.model.1 <- secr.fit(ovenCH, mask = ovenmask)

ovenbird.model.1

fit net avoidance model

ovenbird.model.1b <- secr.fit(ovenCH, mask = ovenmask, model =

list(g0~b))

ovenbird.model.1b

ovensong 95

fit model with time trend in detection

ovenbird.model.1T <- secr.fit(ovenCH, mask = ovenmask, model =

list(g0 ~ T))

ovenbird.model.1T

fit model with 2-class mixture for g0

ovenbird.model.h2 <- secr.fit(ovenCH, mask = ovenmask, model =

list(g0~h2))

ovenbird.model.h2

End(Not run)

compare & average pre-fitted models

AIC (ovenbird.model.1, ovenbird.model.1b, ovenbird.model.1T,

ovenbird.model.h2)

model.average (ovenbird.model.1,ovenbird.model.1b, ovenbird.model.1T,

ovenbird.model.h2, realnames = "D")

select one year to plot

plot(ovenbird.model.1b, newdata = data.frame(session = "2005",

b = 0))

ovensong Ovenbird Acoustic Dataset

Description

Data from an acoustic survey of ovenbirds (Seiurus aurocapilla) at a site in Maryland, USA.

Usage

data(ovensong)

Details

In June 2007 D. K. Dawson and M. G. Efford used a moving 4-microphone array to survey breeding

birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The data

for ovenbirds were used to demonstrate a new method for analysing acoustic data (Dawson and

Efford 2009). See ovenbird for mist-netting data from the same site over 2005–2009, and for other

background.

Over five days, four microphones were placed in a square (21-m side) centred at each of 75 points

in a rectangular grid (spacing 50 m); on each day points 100 m apart were sampled sequentially.

Recordings of 5 minutes duration were made in .wav format on a 4-channel digital sound recorder.

The data are estimates of average power on each channel (microphone) for the first song of each

ovenbird distinguishable in a particular 5-minute recording. Power was estimated with the sound

analysis software Raven Pro 1.4 (Charif et al. 2008), using a window of 0.7 s duration and frequen-

cies between 4200 and 5200 Hz, placed manually at the approximate centre of each ovenbird song.

Sometimes this frequency range was obscured by insect noise so an alternative 1000-Hz range was

measured and the values were adjusted by regression.

96 ovensong

The data are provided as a single-session, single-occasion capthist object signalCH. The ‘signal’

attribute contains the power measurement in decibels for each detected sound on each channel where

the power threshold is exceeded. As the threshold signal (attribute cutval = 35) is less than any

signal value in this dataset, all detection histories are complete (1,1,1,1) across microphones. For

analysis Dawson and Efford applied a higher threshold that treated weaker signals as ‘not detected’

(see Examples).

The row names of signalCH (e.g. "3755AX") are formed from a 4-digit number indicating the

sampling location (one of 75 points on a 50-m grid) and a letter A–D to distinguish individual

ovenbirds within a 5-minute recording; ‘X’ indicates power values adjusted by regression.

The default model for sound attenuation is a log-linear decline with distance from the source (linear

decline on dB scale). Including a spherical spreading term in the sound attenuation model causes the

likelihood surface to become multimodal in this case. Newton-Raphson, the default maximization

method in secr.fit, is particularly inclined to settle on a local maximum; in the example below

we use a set of starting values that have been found by trial and error to yield the global maximum.

Two fitted models are included (see Examples for details).

Object Description

signalCH capthist object

ovensong.model.1 fitted secr model – spherical spreading

ovensong.model.2 fitted secr model – no spherical spreading

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Charif, R. A., Waack, A. M. and Strickman, L. M. (2008) Raven Pro 1.3 User’s Manual. Cornell

Laboratory of Ornithology, Ithaca, New York.

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.

Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, ovenbird, Detection functions

Examples

summary(signalCH)

traps(signalCH)

signal(signalCH)

apply signal threshold

signalCH.525 <- subset(signalCH, cutval = 52.5)

Not run:

models with and without spherical spreading

omask <- make.mask(traps(signalCH), buffer = 200)

ostart <- c(log(20), 80, log(0.1), log(2))

Parallel 97

ovensong.model.1 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 11)

ovensong.model.2 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 10)

End(Not run)

compare fit of models

AIC(ovensong.model.1, ovensong.model.2)

density estimates, dividing by 75 to allow for replication

collate(ovensong.model.1, ovensong.model.2)[1,,,"D"]/75

plot attenuation curves cf Dawson & Efford (2009) Fig 5

pars1 <- predict(ovensong.model.1)[c("beta0", "beta1"), "estimate"]

pars2 <- predict(ovensong.model.2)[c("beta0", "beta1"), "estimate"]

attenuationplot(pars1, xval=0:150, spherical = TRUE, ylim = c(40,110))

attenuationplot(pars2, xval=0:150, spherical = FALSE, add = TRUE,

col = "red")

spherical spreading only

pars1[2] <- 0

attenuationplot(pars1, xval=0:150, spherical = TRUE, add = TRUE, lty=2)

Parallel Multi-core Processing

Description

From version 2.4.0 secr makes limited use of multiple cores (CPUs) through the package parallel.

Only the few secr functions listed below make any use of parallel processing. Increased speed can

be expected with sim.secr (e.g., x3 with 4 cores), but gains in secr.fit are much smaller and

may be negative.

Function Unit Benefit Notes

secr.fit session likelihood small-moderate multi-session models only

score.test model moderate multi-model comparisons only

derived session moderate SE by parameter if one session

mask.check spacing x buffer moderate-large no file output, suppresses messages

sim.secr replicate large all models, suppresses messages

ip.secr replicate large

LLsurface.secr parameter combination large

‘Unit’ refers to the unit of work sent to each worker process. As a guide, a ‘large’ benefit means

>60% reduction in process time with 4 CPUs.

parallel offers several different mechanisms, bringing together the functionality of multicore and

snow. The mechanism used by secr is the simplest available, and is expected to work across all

operating systems. Technically, it relies on Rscript and communication between the master and

worker processes is via sockets. As stated in the parallel documentation "Users of Windows and

Mac OS X may expect pop-up dialog boxes from the firewall asking if an R process should accept

incoming connections".

98 Parallel

To use multiple cores, install parallel from CRAN and set ncores > 1 in the function call. Use

detectCores() to get an idea of how many cores are available on your machine; this may (in Win-

dows) include virtual cores over and above the number of physical cores. See RShowDoc("parallel",

package = "parallel") in core R for explanation.

You may possibly get warnings from R about closing unused connections. These can safely be

ignored.

In sim.secr, new datasets are generated in the master process, so there is no need to manage the

random number streams in the worker processes.

In secr.fit the output component ‘proctime’ misrepresents the elapsed processing time when

multiple cores are used.

Worker processes are created in secr.fit with makeCluster and the options methods = FALSE,

useXDR = FALSE. This has been tested only on Windows systems.

The code used internally by secr is quite simple and could be adapted as a wrapper for user-defined

simulations. See Examples.

Examples

Not run:

R version 2.15.2 (2012-10-26)

Platform: x86_64-w64-mingw32/x64 (64-bit)

quad-core i7 CPU

library(parallel)

detectCores()

[1] 8

ovenCH is a 5-session dataset

multiple cores help a little here

system.time(f5 <- secr.fit(ovenCH, buffer = 400, trace = FALSE, ncores = 1))

user system elapsed

61.21 0.95 62.28

system.time(f5 <- secr.fit(ovenCH, buffer = 400, trace = FALSE, ncores = 5))

user system elapsed

8.51 8.66 35.81

however, there is substantial benefit when simulating

system.time(s1 <- sim.secr(f1, nsim = 20))

user system elapsed

789.90 4.41 795.07

system.time(s4 <- sim.secr(f1, nsim = 20, ncores = 4))

user system elapsed

26.91 0.34 276.15

system.time(ip.secr (captdata, ncores = 1))

user system elapsed

149.93 0.01 150.72

system.time(ip.secr (captdata, ncores = 6))

user system elapsed

0.47 0.19 41.06

pdot 99

system.time(score.test (secrdemo.0, g0 ~ b, g0~t, g0 ~ bk, ncores = 1))

user system elapsed

130.73 0.45 131.34

system.time(score.test (secrdemo.0, g0 ~ b, g0~t, g0 ~ bk, ncores = 4))

user system elapsed

0.04 0.01 109.69

system.time(derived(ovenbird.model.D, ncores=1))

user system elapsed

7.99 0.02 8.00

system.time(derived(ovenbird.model.D, ncores=5))

user system elapsed

0.05 0.04 4.06

system.time(LLsurface.secr(secrdemo.0, ncores=1))

user system elapsed

40.97 0.64 41.66

system.time(LLsurface.secr(secrdemo.0, ncores=4))

user system elapsed

0.05 0.06 13.82

system.time(LLsurface.secr(secrdemo.0, ncores=8))

user system elapsed

0.03 0.11 11.14

the code used in LLsurface.secr() looks like this

if (ncores > 1) {

require(parallel)

clust <- makeCluster(ncores)

load ’secr’ in each worker process

clusterEvalQ(clust, library(secr))

send data to each worker process from master process

clusterExport(clust, c("object", "details"), environment())

run function LL for each row of matrix ’grid’

LL accepts one argument, a vector of parameter values

(can also use parLapply, parSapply etc.)

temp <- parRapply (clust, grid, LL)

stopCluster(clust)

}

End(Not run)

pdot Net Detection Probability

Description

Compute spatially explicit net probability of detection for individual(s) at given coordinates.

Usage

pdot(X, traps, detectfn = 0, detectpar = list(g0 = 0.2,

sigma = 25, z = 1), noccasions = NULL, binomN = NULL)

100 plot.capthist

Arguments

X vector or 2-column matrix of coordinates

traps traps object

detectfn integer code for detection function q.v.

detectpar a list giving a value for each named parameter of detection function

noccasions number of sampling intervals (occasions)

binomN integer code for discrete distribution (see secr.fit)

Details

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

The probability computed is p.(X) = 1−∏
k

{1−ps(X, k)}S where the product is over the detectors

in traps, excluding any not used on a particular occasion. The per-occasion detection function ps
is halfnormal (0) by default, and is assumed not to vary over the S occasions.

For detection functions (10) and (11) the signal threshold ‘cutval’ should be included in detectpar,

e.g., detectpar = list(beta0 = 103, beta1 = -0.11, sdS = 2, cutval = 52.5).

The calculation is not valid for single-catch traps because p.(X) is reduced by competition between

animals.

Value

A vector of probabilities, one for each row in X.

See Also

secr, make.mask, Detection functions, pdot.contour

Examples

temptrap <- make.grid()

per-session detection probability for an individual centred

at a corner trap. By default, noccasions = 5.

pdot (c(0,0), temptrap, detectpar = list(g0 = 0.2, sigma = 25),

noccasions = 5)

plot.capthist Plot Detection Histories

Description

Display a plot of detection (capture) histories over a map of the detectors.

plot.capthist 101

Usage

S3 method for class ’capthist’

plot(x, rad = 5,

hidetraps = FALSE, tracks = FALSE,

title = TRUE, subtitle = TRUE, add = FALSE, varycol = TRUE,

icolours = NULL, randcol = FALSE,

lab1cap = FALSE, laboffset = 4, ncap = FALSE,

splitocc = NULL, col2 = "green",

type = "petal",

cappar = list(cex = 1.3, pch = 16, col = "blue"),

trkpar = list(col = "blue", lwd = 1),

labpar = list(cex = 0.7, col = "black"), ...)

Arguments

x an object of class capthist

rad radial displacement of dot indicating each capture event from the detector loca-

tion (used to separate overlapping points)

hidetraps logical indicating whether trap locations should be displayed

tracks logical indicating whether consecutive locations of individual animals should be

joined by a line

title logical or character string for title

subtitle logical or character string for subtitle

add logical for whether to add to existing plot

varycol logical for whether to distinguish individuals by colour

icolours vector of individual colours (when varycol = TRUE), or colour scale (non-petal

plots)

randcol logical to use random colours (varycol = TRUE)

lab1cap logical for whether to label the first capture of each animal

laboffset distance by which to offset labels from points

ncap logical to display the number of detections per trap per occasion

splitocc optional occasion from which second colour is to be used

col2 second colour (used with splitocc)

type character string ("petal", "n.per.detector" or "n.per.cluster")

cappar list of named graphical parameters for detections (passed to par)

trkpar list of named graphical parameters for tracks (passed to par)

labpar list of named graphical parameters for labels (passed to par)

... arguments to be passed to plot.traps

Details

By default, a ‘petal’ plot is generated in the style of Density (Efford 2007) using eqscplot from

the MASS library. If type = "n.per.detector" or type = "n.per.cluster" the result is a

colour-coded plot of the number of individuals at each unit, pooled over occasions.

If title = FALSE no title is displayed; if title = TRUE, the session identifer is used for the title.

102 plot.capthist

If subtitle = FALSE no subtitle is displayed; if subtitle = TRUE, the subtitle gives the numbers

of occasions, detections and individuals.

If x is a multi-session capthist object then a separate plot is produced for each session. Use

par(mfrow = c(nr, nc)) to allow a grid of plots to be displayed simultaneously (nr rows x nc

columns).

These arguments are used only for petal plots: rad, tracks, varycol, randcol, lab1cap, laboffset,

ncap, splitocc, col2, trkpar, and labpar.

If icolours = NULL and varycol = TRUE then a vector of colours is generated automatically as

topo.colors((nrow(x)+1) * 1.5). If there are too few values in icolours for the number of individ-

uals then colours will be re-used.

Value

For type = "petal", the number of detections in x. For type = "n.per.detector" or type = "n.per.cluster",

a dataframe with data for a legend (see Examples).

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

See Also

capthist

Examples

demotrap <- make.grid()

tempcapt <- sim.capthist(demotrap,

popn = list(D = 5, buffer = 50),

detectpar = list(g0 = 0.15, sigma = 30))

plot(tempcapt, border = 10, rad = 3, tracks = TRUE,

lab1cap = TRUE, laboffset = 2.5)

type = n.per.cluster

generate some captures

testregion <- data.frame(x = c(0,2000,2000,0),

y = c(0,0,2000,2000))

popn <- sim.popn (D = 10, core = testregion, buffer = 0,

model2D = "hills", details = list(hills = c(-2,3)))

t1 <- make.grid(nx = 1, ny = 1)

t1.100 <- make.systematic (cluster = t1, spacing = 100,

region = testregion)

capt <- sim.capthist(t1.100, popn = popn, noccasions = 1)

now plot captures ...

temp <- plot(capt, title = "Individuals per cluster",

type = "n.per.cluster", hidetraps = FALSE,

gridlines = FALSE, cappar = list(cex = 1.5))

Not run:

add legend; click on map to place top left corner

legend (locator(1), pch = 21, pt.bg = temp$colour,

http://www.otago.ac.nz/density

plot.mask 103

pt.cex = 1.3, legend = temp$legend, cex = 0.8)

End(Not run)

Not run:

try varying individual colours - requires RColorBrewer

library(RColorBrewer)

plot(infraCH[[2]], icolours = brewer.pal(12, ’Set3’), tracks = T,

bg = ’black’, cappar = list(cex = 2), border = 10, rad = 2,

gridlines=F)

End(Not run)

plot.mask Plot Habitat Mask or Density Surface

Description

Plot a habitat mask either as points or as an image plot. Colours maybe used to show the value of

one mask covariate.

Usage

S3 method for class ’mask’

plot(x, border = 20, add = FALSE, covariate = NULL, axes = FALSE,

dots = TRUE, col = "grey", breaks = 12, meshcol = NA, ppoly = TRUE,

polycol = "red", ...)

S3 method for class ’Dsurface’

plot(x, covariate = "D", group = NULL, plottype =

"shaded", scale = 1, ...)

spotHeight (object, prefix = NULL, dec = 2, point = FALSE, text = TRUE,

sep = ", ", session = 1, scale = 1, ...)

Arguments

x, object mask or Dsurface object

border width of blank display border (metres)

add logical for adding mask points to an existing plot

covariate name (as character string in quotes) or column number of a covariate to use for

colouring

axes logical for plotting axes

dots logical for plotting mask points as dots, rather than as square pixels

col colour(s) to use for plotting

breaks number of levels to use when cutting continuous covariate for plotting

meshcol colour for pixel borders (NA for none)

104 plot.mask

ppoly logical for whether the bounding polygon should be plotted (if ‘poly’ specified)

polycol colour for outline of polygon (ppoly = TRUE)

... other arguments passed to eqscplot (in the case of plot.mask), plot.mask (in

the case of plot.Dsurface), and points or text (in the case of spotHeight)

group group for which plot required, if more than 1

plottype character string c("dots", "shaded", "contour", "persp")

scale numeric multiplier for density or other numeric covariate (see Dsurface

prefix character vector for name(s) of covariate(s) to retrieve

dec number of decimal places for rounding density

point logical for whether to plot point

text logical for whether to place density label on plot

sep character separator for elements if length(prefix)>1

session session number or identifier

Details

The argument dots of plot.mask selects between two distinct types of plot (dots and shaded

(coloured) pixels).

plot.Dsurface offers contour and perspective plots in addition to the options in plot.mask. It

may take some experimentation to get what you want - see contour and persp.

If using a covariate or Dsurface to colour dots or pixels, the col argument should be a colour vector

of length equal to the number of levels (the default palette is heat.colors, and this palette will also

be used whenever there are too few levels in the palette provided; see Notes for more on palettes).

Border lines around pixels are drawn in ‘meshcol’. Set this to NA to eliminate pixel borders.

If a covariate is specified in a call to plot.Dsurface then that covariate will be plotted instead of

density. This is a handy way to contour a covariate (contouring is not available in plot.mask).

If ‘breaks’ is an integer then the range of the covariate is divided into this number of equal inter-

vals. Alternatively, ‘breaks’ may be a vector of break points (length one more than the number of

intervals). This gives more control and often ‘prettier’

spotHeight may be used to interrogate a plot produced with plot.Dsurface, or by plot.mask if

the mask has covariates. prefix defaults to ‘density.’ for Dsurface objects and to ‘’ (all covariates)

for mask objects. The predicted density or covariate at the nearest point is returned when the user

clicks on the plot. Multiple values may be displayed (e.g., prefix = c("lcl","ucl") if Dsurface

includes confidence limits). Click outside the mask or hit the Esc key to end. spotHeight deals

with one session at a time.

Value

If covariate is specified and plottype = shaded then plot.mask invisibly returns a character

vector of the intervals defined by ‘breaks’ (useful for plotting a legend).

If ‘plottype = persp’ then plot.mask invisibly returns a the perspective matrix that may be used to

add to the plot with trans3d.

spotHeight invisibly returns a dataframe of the extracted values and their coordinates.

plot.mask 105

Note

Contouring requires a rectangular grid; if a Dsurface is not rectangular then plot.Dsurface with

plottype = contour triggers a call to rectangularMask.

The colour palettes topo.colors, heat.colors and terrain.colors may be viewed with the

demo.pal function in the Examples code on their help page.

The package RColorBrewer is a good source of palettes. Try display.brewer.all() and e.g.,

col = brewer.pal(7, ’YlGn’).

See Also

colours, mask, Dsurface, rectangularMask, contour persp

Examples

simple

temptrap <- make.grid()

tempmask <- make.mask(temptrap)

plot (tempmask)

restrict to points over an arbitrary detection threshold,

add covariate, plot image and overlay traps

tempmask <- subset(tempmask, pdot(tempmask, temptrap,

noccasions = 5)>0.001)

covariates (tempmask) <- data.frame(circle =

exp(-(tempmask$x^2 + tempmask$y^2)/10000))

plot (tempmask, covariate = "circle", dots = FALSE, axes = TRUE,

add = TRUE, breaks = 8, col = terrain.colors(8), mesh = NA)

plot (temptrap, add = TRUE)

add a legend

par(cex = 0.9)

covrange <- range(covariates(tempmask)$circle)

step <- diff(covrange)/8

colourlev <- terrain.colors(9)

zlev <- format(round(seq(covrange[1],covrange[2],step),2))

legend (x = "topright", fill = colourlev, legend = zlev,

y.intersp = 0.8, title = "Covariate")

title("Colour mask points with p.(X) > 0.001")

mtext(side=3,line=-1, "g0 = 0.2, sigma = 20, nocc = 5")

Not run:

possum density surface extrapolated across region

regionmask <- make.mask(traps(possumCH), buffer = 1000, spacing = 10,

poly = possumremovalarea)

dts <- distancetotrap(regionmask, possumarea)

covariates(regionmask) <- data.frame(d.to.shore = dts)

shorePossums <- predictDsurface(possum.model.Dsh2, regionmask)

plot as coloured pixels with white lines

106 plot.popn

colourlev <- terrain.colors(7)

plot(shorePossums, breaks = seq(0,3.5,0.5), plottype = "shaded",

poly = FALSE, col = colourlev, mesh = NA)

plot(traps(possumCH), add = TRUE, detpar = list(col = "black"))

polygon(possumremovalarea)

check some point densities

spotHeight(shorePossums, dec = 1, col = "black")

add a legend

zlev <- format(seq(0,3,0.5), digits = 1)

legend (x = "topright", fill = colourlev, legend =

paste(zlev,"--"), y.intersp = 1, title = "Density / ha")

End(Not run)

plot.popn Plot popn Object

Description

Display animal locations from a popn object.

Usage

S3 method for class ’popn’

plot(x, add = FALSE, frame = TRUE,

circles = NULL, ...)

Arguments

x object of class popn

add logical to add points to an existing plot

frame logical to add frame or polygon within which points were simulated

circles vector giving the radii if circles are to be plotted

... arguments passed to eqscplot and points or symbols

Details

If circles is provided then a circle of the given radius is plotted for each animal using the symbols

function. The arguments fg and bg may be used to control the colour of the perimeter and the fill

of each circle (see Examples).

See Also

popn, sim.popn

plot.secr 107

Examples

temppopn <- sim.popn(D = 5, expand.grid(

x = c(0,100), y = c(0,100)))

plot(temppopn, pch = 16, col = "blue")

plot(temppopn, circles = 20, bg = "tan", fg =

"white")

plot(temppopn, pch = 16, cex = 0.5, add = TRUE)

plot.secr Plot Detection Functions

Description

Plot detection functions using estimates of parameters in an secr object, or as provided by the user.

Usage

S3 method for class ’secr’

plot(x, newdata = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, limits = FALSE, alpha = 0.05,

xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

S3 method for class ’secrlist’

plot(x, newdata = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, limits = FALSE, alpha = 0.05,

xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...,

overlay = TRUE)

detectfnplot (detectfn, pars, details = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, xval = 0:200, ylim = NULL,

xlab = NULL, ylab = NULL, ...)

attenuationplot (pars, add = FALSE, spherical = TRUE,

xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x an secr object

newdata dataframe of data to form estimates

add logical to add curve(s) to an existing plot

sigmatick logical; if TRUE the scale parameter sigma is shown by a vertical line

rgr logical; if TRUE a scaled curve r.g(r) is plotted instead of g(r)

limits logical; if TRUE pointwise confidence limits are drawn

alpha alpha level for confidence intervals

xval vector of distances at for which detection to be plotted

108 plot.secr

ylim vector length 2 giving limits of y axis

xlab label for x axis

ylab label for y axis

... arguments to pass to lines

overlay logical; if TRUE then automatically add = TRUE for plots after the first

detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn

pars list, vector or matrix of parameter values

details list of ancillary parameters

spherical logical for whether to include spherical spreading term

Details

newdata is usually NULL, in which case one curve is plotted for each session and group. Otherwise,

predict.secr is used to form estimates and plot a curve for each row in newdata.

If axis labels are not provided they default to ‘Distance (m)’ and ‘Detection probability’ or ‘Detec-

tion lambda’.

detectfnplot is an alternative in which the user nominates the type of function and provides

parameter values. pars maybe a list as from detectpar; it is first coerced to a numeric vector with

unlist. Parameter values must be in the expected order (e.g. g0, sigma, z). If pars is a matrix then

a separate curve is plotted with the parameter values in each row.

For detectfnplot the signal threshold parameters ‘cutval’ and ‘spherical’ should be provided in

details (see examples).

Approximate confidence limits for g(r) are calculated using a numerical first-order delta-method

approximation to the standard error at each xval. The distribution is assumed to be normal on the

logit scale; limits are back-transformed from that scale.

attenuationplot plots the expected decline in signal strength with distance, given parameters β0

and β1 for a log-linear model of sound attenuation.

Value

plot.secr invisibly returns a dataframe of the plotted values (or a list of dataframes in the case

that newdata has more than one row).

See Also

Detection functions, plot, secr

Examples

plot (secrdemo.b, xval = 0:100, ylim = c(0, 0.4))

Add recapture probability

plot (secrdemo.b, newdata = data.frame(b = 1), add = TRUE,

col = "red")

signal strength detection: 70dB at source, attenuation

0.3dB/m, sdS 5dB; detection threshold 40 dB.

detectfnplot (detectfn = 10, c(70, -0.3, 5), details =

list(cutval = 40))

plot.traps 109

add a function with louder source and spherical spreading...

detectfnplot (detectfn = 11, c(110, -0.3, 5), details =

list(cutval = 40), add = TRUE, col = "red")

matching sound attenuation curves; ‘spherical-only’ dashed line

attenuationplot (c(70, -0.3), spherical = FALSE, ylim=c(-10,110))

attenuationplot (c(110, 0), spherical = TRUE, add=TRUE, lty=2)

attenuationplot (c(110, -0.3), spherical = TRUE, add = TRUE,

col = "red")

plot.traps Plot traps Object

Description

Map the locations of detectors (traps).

Usage

S3 method for class ’traps’

plot(x, border = 100, label = FALSE, offset = c(6,6), add = FALSE,

hidetr = FALSE, detpar = list(), txtpar = list(), bg = "white",

gridlines = TRUE, gridspace = 100, gridcol = "grey",

markused = FALSE, markvarying = FALSE, markvertices = FALSE,

labelclusters = FALSE, ...)

Arguments

x a traps object

border width of blank margin around the outermost detectors

label logical indicating whether a text label should appear by each detector

offset vector displacement of label from point on x and y axes

add logical to add detectors to an existing plot

hidetr logical to suppress plotting of detectors

detpar list of named graphical parameters for detectors (passed to par)

txtpar list of named graphical parameters for labels (passed to par)

bg background colour

gridlines logical for plotting grid lines

gridspace spacing of gridlines

gridcol colour of gridlines

markused logical to distinguish detectors used on at least one occasion

markvarying logical to distinguish detectors whose usage varies among occasions

markvertices logical or 0,1,2 for plotting transect or polygon points

labelclusters logical to label clusters

... arguments to pass to eqscplot

110 pointsInPolygon

Details

offset may also be a scalar value for equal displacement on the x and y axes. The hidetr option

is most likely to be used when plot.traps is called by plot.capthist. See par and colours for more

information on setting graphical parameters. The initial values of graphical parameters are restored

on exit.

Axes are not labeled. Use axis and mtext if necessary.

markvertices determines whether the vertices of each transect or polygon will be emphasised by

overplotting a point symbol (detpar$pch). Value may be logical (TRUE, FALSE) or integer (0 = no

points, 1 = terminal vertices only, 2 = all vertices).

labelclusters requires x to have attributes ‘clusterID’ and ‘clustertrap’.

Value

None

See Also

plot, traps, clusterID

Examples

temptrap <- make.grid()

plot (temptrap, detpar = list(pch = 16, col = "blue"),

label = TRUE, offset = 7)

pointsInPolygon Points Inside Polygon

Description

Determines which of a set of points lie inside a closed polygon or at least one of a set of polygons

Usage

pointsInPolygon(xy, poly, logical = TRUE)

Arguments

xy 2-column matrix or dataframe of x-y coordinates for points to assess

poly 2-column matrix or dataframe containing perimeter points of polygon, or a Spa-

tialPolygonsDataFrame object from package sp, or a ‘mask’ object (see Warn-

ing)

logical logical to control the output when ‘poly’ is a mask (see Details)

polyarea 111

Details

If poly is a SpatialPolygonsDataFrame object then the function overlay is used from sp. This

allows multiple polygons and polygons with holes.

If poly is an secr ‘mask’ object then xy is discretized and matched to the cells in poly. If

logical = FALSE then the returned value is a vector of integer indices to the row in ‘poly’ cor-

responding to each row of ‘xy’; otherwise the result is a vector of logical values.

Otherwise, the algorithm is adapted from some code posted on the S-news list by Peter Perkins

(23/7/1996). The polygon should be closed (last point same as first).

Value

Vector of logical or integer values, one for each row in xy

Warning

If poly is a mask object then its cells must be aligned to the x- and y- axes

See Also

overlay

Examples

100 random points in unit square

xy <- matrix(runif(200), ncol = 2)

triangle centred on (0.5, 0.5)

poly <- data.frame(x = c(0.2,0.5,0.8,0.2), y = c(0.2,0.8,0.2,0.2))

plot(xy, pch = 1 + pointsInPolygon(xy, poly))

lines(poly)

polyarea Area of Polygon(s)

Description

Area of a single closed polygon (simple x-y coordinate input) or of multiple polygons, possibly

with holes.

Usage

polyarea(xy, ha = TRUE)

Arguments

xy dataframe or list with components ‘x’ and ‘y’, or a SpatialPolygons or Spa-

tialPolygonsDataFrame object from package sp

ha logical if TRUE output is converted from square metres to hectares

112 popn

Details

For SpatialPolygons or SpatialPolygonsDataFrame objects it is necessary to have installed the pack-

ages sp and rgeos.

Value

A scalar.

See Also

buffer.contour

Examples

polyarea(make.grid(hollow = TRUE))

popn Population Object

Description

Encapsulate the locations of a set of individual animals.

Details

An object of class popn records the locations of a set of individuals, together with ancillary data

such as their sex. Often used for a realisation of a spatial point process (e.g. homogeneous Poisson)

with known density (intensity). Locations are stored in a data frame with columns ‘x’ and ‘y’.

A popn object has attributes

covariates data frame with numeric, factor or character variables to be used as individual covariates

model2D 2-D distribution ("poisson", "cluster", "IHP")

Ndist distribution of number of individuals ("poisson", "fixed")

boundingbox data frame of 4 rows, the vertices of the rectangular area

The number of rows in covariates must match the length of x and y. See sim.popn for more

information on Ndist and model2D.

Note

The popn class is used only occasionally: it is not central to spatially explicit capture recapture.

See Also

sim.popn, plot.popn, transformations

possum 113

possum Brushtail Possum Trapping Dataset

Description

Data from a trapping study of brushtail possums at Waitarere, North Island, New Zealand.

Usage

data(possum)

Details

Brushtail possums (Trichosurus vulpecula) are an unwanted invasive species in New Zealand. Al-

though most abundant in forests, where they occasionally exceed densities of 15 / ha, possums live

wherever there are palatable food plants and shelter.

Efford et al. (2005) reported a live-trapping study of possums in Pinus radiata plantation on coastal

sand dunes. The 300-ha site at Waitarere in the North Island of New Zealand was a peninsula,

bounded on one side by the sea and on two other sides by the Manawatu river. Cage traps were

set in groups of 36 at 20-m spacing around the perimeter of five squares, each 180 m on a side.

The squares (‘hollow grids’) were centred at random points within the 300-ha area. Animals were

tagged and released daily for 5 days in April 2002. Subsequently, leg-hold trapping was conducted

on a trapping web centred on each square (data not reported here), and strenuous efforts were made

to remove all possums by cyanide poisoning and further leghold trapping across the entire area.

This yielded a density estimate of 2.26 possums / ha.

Traps could catch at most one animal per day. The live-trapped animals comprised 46 adult females,

33 adult males, 10 immature females and 11 immature males; sex and/or age were not recorded for 4

individuals (M. Coleman unpubl. data). These counts do not sum to the number of capture histories

- see Note. One female possum was twice captured at two sites on one day, having entered a second

trap after being released; one record in each pair was selected arbitrarily and discarded.

The data are provided as a single-session capthist object ‘possumCH’. ‘possummask’ is a match-

ing mask object - see Examples. Several fitted models are provided for illustration.

The dataframe possumarea contains boundary coordinates of a habitat polygon that is used to clip

possummask at the shore (from secr 1.5). possumarea comprises a single polygon representing

the extent of terrestrial vegetation to the west, north and east, and an arbitrary straight southern

boundary. The boundary is also included as a shapefile and as a text file (‘possumarea.shp’ etc. and

‘possumarea.txt’ in the package ‘extdata’ folder). See Examples in make.mask.

The dataframe possumremovalarea contains boundary coordinates of another polygon, the nomi-

nal removal area of Efford et al. (2005 Fig. 1) (from secr 2.3).

Object Description

possumCH capthist object

possummask mask object

possumarea habitat perimeter

possumremovalarea nominal boundary of removal region

possum.model.0 fitted secr model – null

possum.model.b fitted secr model – trap response g0

possum.model.h2 fitted secr model – heterogeneity g0, sigma

possum.model.Dh2 fitted secr model – quadratic surface

possum.model.Dsh2 fitted secr model – distance to shore

114 possum

Note

A significant problem with the data used by Efford et al. (2005) was noticed recently. Five capture

histories in possumCH are for animals that had lost a previous tag. A further three histories may also

have been animals that were tagged previously or mis-recorded. Analyses that treat each previously

tagged animal as a new individual are in error (this includes the published analyses, the pre-fitted

models described here, and those in the vignette secr-densitysurfaces.pdf). All eight questionable

histories are now indicated in possumCH with the logical covariate ‘prev.tagged’.

Methods have not yet been developed to adjust for tag loss in SECR models.

Source

Landcare Research, New Zealand.

References

Borchers, D.L. and Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-

recapture studies. Biometrics 64, 377–385.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-

recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Warburton, B., Coleman, M. C. and Barker, R. J. (2005) A field test of two methods

for density estimation. Wildlife Society Bulletin 33, 731–738.

See Also

capthist

Examples

plot(possummask)

plot(possumCH, tracks = TRUE, add = TRUE)

plot(traps(possumCH), add = TRUE)

lines(possumarea)

summary(possumCH)

compare & average pre-fitted models

AIC(possum.model.0, possum.model.b, possum.model.h2)

model.average(possum.model.0, possum.model.b, possum.model.h2)

Not run:

Roughly estimate tag-loss error by dropping dubious histories

i.e. restrict to "not previously tagged"

NPT <- !covariates(possumCH)$prev.tagged

possum.model.0.NPT <- secr.fit(subset(possumCH,NPT), mask =

possummask, trace=F)

predict(possum.model.0)[1,2]/ predict(possum.model.0.NPT)[1,2]

...about 9%

End(Not run)

predict.secr 115

predict.secr SECR Model Predictions

Description

Evaluate a spatially explicit capture–recapture model. That is, compute the ‘real’ parameters corre-

sponding to the ‘beta’ parameters of a fitted model for arbitrary levels of any variables in the linear

predictor.

Usage

S3 method for class ’secr’

predict(object, newdata = NULL, type = c("response", "link"), se.fit = TRUE,

alpha = 0.05, savenew = FALSE, scaled = FALSE, ...)

S3 method for class ’secrlist’

predict(object, newdata = NULL, type = c("response", "link"), se.fit = TRUE,

alpha = 0.05, savenew = FALSE, scaled = FALSE, ...)

detectpar (object, ...)

Arguments

object secr object output from secr.fit, or list of secr objects (secrlist)

newdata optional dataframe of values at which to evaluate model

type character; type of prediction required. The default ("response") provides esti-

mates of the ’real’ parameters.

se.fit logical for whether output should include SE and confidence intervals

alpha alpha level for confidence intervals

savenew logical for whether newdata should be saved

scaled logical for scaling of sigma and g0 (see Details)

... other arguments

Details

The variables in the various linear predictors are described in secr models and listed for the partic-

ular model in the vars component of object.

Optional newdata should be a dataframe with a column for each of the variables in the model (see

‘vars’ component of object). If newdata is missing then a dataframe is constructed automatically.

Default newdata are for a naive animal on the first occasion; numeric covariates are set to zero and

factor covariates to their base (first) level.

Standard errors for parameters on the response (real) scale are by the delta method (Lebreton et al.

1992), and confidence intervals are backtransformed from the link scale.

The argument scaled applies only to the detection parameters g0 and sigma, and only to models

fitted with scalesigma or scaleg0 switched on. If scaled is TRUE then each estimate is multiplied

by its scale factor (1/D^0.5 and 1/sigma^2 respectively).

The value of newdata is optionally saved as an attribute.

116 predict.secr

detectpar is used to extract the detection parameter estimates from a simple model to pass to func-

tions such as esa.plot. detectpar calls predict.secr. Parameters will be evaluated by default

at base levels of the covariates, although this may be overcome by passing a one-line newdata to

predict via the . . . argument. Groups and mixtures are a headache for detectpar: it merely returns

the estimated detection parameters of the first group or mixture.

Value

When se.fit = FALSE, a dataframe identical to newdata except for the addition of one column

for each ‘real’ parameter. Otherwise, a list with one component for each row in newdata. Each

component is a dataframe with one row for each ‘real’ parameter (density, g0, sigma, b) and columns

as below

link link function

estimate estimate of real parameter

SE.estimate standard error of the estimate

lcl lower 100(1–alpha)% confidence limit

ucl upper 100(1–alpha)% confidence limit

When newdata has only one row, the structure of the list is ‘dissolved’ and the return value is one

data frame.

For detectpar, a list with the estimated values of detection parameters (e.g., g0 and sigma if

detectfn = "halfnormal"). In the case of multi-session data the result is a list of lists (one list per

session).

Note

predictDsurface should be used for predicting density at many points from a model with spatial

variation. This deals automatically with scaling of x- and y-coordinates, and is much is faster than

predict.secr. The resulting Dsurface object has its own plot method.

References

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing

biological hypotheses using marked animals: a unified approach with case studies. Ecological

Monographs 62, 67–118.

See Also

secr.fit, predictDsurface

Examples

load previously fitted secr model with trap response

and extract estimates of ‘real’ parameters for both

naive (b = 0) and previously captured (b = 1) animals

predict (secrdemo.b, newdata = data.frame(b=0:1))

temp <- predict (secrdemo.b, newdata = data.frame(b=0:1),

save = TRUE)

attr(temp, "newdata")

predictDsurface 117

detectpar(secrdemo.0)

predictDsurface Predict Density Surface

Description

Predict density at each point on a raster mask from a fitted secr model.

Usage

predictDsurface(object, mask = NULL, se.D = FALSE, cl.D = FALSE, alpha =

0.05)

Arguments

object fitted secr object

mask secr mask object

se.D logical for whether to compute prediction SE

cl.D logical for whether to compute confidence limits

alpha alpha level for 100(1 – alpha)% confidence intervals

Details

Predictions use the linear model for density on the link scale in the fitted secr model ‘object’, or the

fitted user-defined function, if that was specified in secr.fit.

If ‘mask’ is NULL then predictions are for the mask component of ‘object’.

SE and confidence limits are computed only if specifically requested. They are not available for

user-defined density functions.

Density is adjusted automatically for the number of clusters in ‘mashed’ models (see mash).

Value

Object of class ‘Dsurface’ inheriting from ‘mask’. Predicted densities are added to the covariate

dataframe (attribute ‘covariates’) as column(s) with prefix ‘D.’ If the model uses multiple groups,

multiple columns will be distinguished by the group name (e.g., "D.F" and "D.M"). If groups are

not defined the column is named "D.0".

For multi-session models the value is a multi-session mask.

The pointwise prediction SE is saved as a covariate column prefixed ‘SE.’ (or multiple columns if

multiple groups). Confidence limits are likewise saved with prefixes ‘lcl.’ and ‘ucl.’.

See Also

plot.Dsurface, secr.fit, predict.secr

118 predictDsurface

Examples

use canned possum model

shorePossums <- predictDsurface(possum.model.Dsh2)

plot(shorePossums, plottype = "shaded", polycol = "blue", border = 100)

plot(traps(possumCH), detpar = list(col = "black"), add = TRUE)

extract and summarise

summary(covariates(shorePossums))

Not run:

extrapolate to a new mask; add covariate needed by model; plot

regionmask <- make.mask(traps(possumCH), buffer = 1000, spacing = 10,

poly = possumremovalarea)

dts <- distancetotrap(regionmask, possumarea)

covariates(regionmask) <- data.frame(d.to.shore = dts)

regionPossums <- predictDsurface(possum.model.Dsh2, regionmask,

se.D = TRUE, cl.D = TRUE)

par(mfrow = c(1,2))

plot(regionPossums, plottype = "shaded", mesh = NA, breaks = 20)

plot(regionPossums, plottype = "contour", add = TRUE)

plot(regionPossums, covariate = "SE", plottype = "shaded",

mesh = NA, breaks = 20)

plot(regionPossums, covariate = "SE", plottype = "contour",

add = TRUE)

confidence surfaces

plot(regionPossums, covariate = "lcl", breaks = seq(0,3,0.2),

plottype = "shaded")

plot(regionPossums, covariate = "lcl", plottype = "contour",

add = TRUE, levels=seq(0,2.7,0.2))

title("lower 95% surface")

plot(regionPossums, covariate = "ucl", breaks=seq(0,3,0.2),

plottype = "shaded")

plot(regionPossums, covariate = "ucl", plottype = "contour",

add = TRUE, levels=seq(0,2.7,0.2))

title("upper 95% surface")

annotate with CI

par(mfrow = c(1,1))

plot(regionPossums, plottype = "shaded", mesh = NA, breaks = 20)

plot(traps(possumCH), add=T, detpar = list(col = "black"))

spotHeight(regionPossums, dec=1,pre=c("lcl","ucl"), cex=0.8)

perspective plot

pm <- plot(regionPossums, plottype = "persp", box = FALSE, zlim =

c(0,3), phi=30, d = 5, col = "green", shade = 0.75, border = NA)

lines(trans3d (possumremovalarea$x, possumremovalarea$y,

rep(1,nrow(possumremovalarea)), pmat = pm))

compare estimates of region N

grid cell area is 0.01 ha

sum(covariates(regionPossums)[,"D.0"]) * 0.01

region.N(possum.model.Dsh2, regionmask)

print.capthist 119

End(Not run)

print.capthist Print Detections

Description

Print method for capthist objects.

Usage

S3 method for class ’capthist’

print(x, ..., condense = FALSE, sortrows = FALSE)

Arguments

x capthist object

... arguments to pass to print.default

condense logical, if true then use condensed format for 3-D data

sortrows logical, if true then sort output by animal

Details

The condense option may be used to format data from proximity detectors in a slightly more read-

able form. Each row then presents the detections of an individual in a particular trap, dropping rows

(traps) at which the particular animal was not detected.

Value

Invisibly returns a dataframe (condense = TRUE) or array in the format printed.

See Also

print, capthist

Examples

simulated detections of simulated default population of 5/ha

print(sim.capthist(make.grid(nx=5,ny=3)))

120 print.secr

print.secr Print secr Object

Description

Print results from fitting a spatially explicit capture–recapture model.

Usage

S3 method for class ’secr’

print(x, newdata = NULL, alpha = 0.05, deriv = FALSE, ...)

Arguments

x secr object output from secr.fit

newdata optional dataframe of values at which to evaluate model

alpha alpha level

deriv logical for calculation of derived D and esa

... other arguments (not used currently)

Details

Results are potentially complex and depend upon the analysis (see below). Optional newdata should

be a dataframe with a column for each of the variables in the model. If newdata is missing then a

dataframe is constructed automatically. Default newdata are for a naive animal on the first occa-

sion; numeric covariates are set to zero and factor covariates to their base (first) level. Confidence

intervals are 100 (1 – alpha) % intervals.

call the function call

time date and time fitting started

N animals number of distinct animals detected

N captures number of detections

N occasions number of sampling occasions

N detectors number of detectors

Detector type ‘single’, ‘multi’, ‘proximity’ etc.

Model model formula for each ‘real’ parameter

Fixed fixed real parameters

Detection fn detection function type (halfnormal or hazard-rate)

N parameters number of parameters estimated

Log likelihood log likelihood

AIC Akaike’s information criterion

AICc AIC with small sample adjustment (Burnham and Anderson 2002)

Beta parameters coef of the fitted model, SE and confidence intervals

vcov variance-covariance matrix of beta parameters

Real parameters fitted (real) parameters evaluated at base levels of covariates

Derived parameters derived estimates of density and mean effective sampling area

Derived parameters (see derived) are computed only for models fitted by maximizing the condi-

tional likelihood (CL = TRUE).

print.traps 121

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical

information-theoretic approach. Second edition. New York: Springer-Verlag.

See Also

AIC.secr, secr.fit

Examples

load & print previously fitted null (constant parameter) model

print(secrdemo.0)

Not run:

print(secrdemo.CL, deriv = TRUE)

End(Not run)

print.traps Print Detectors

Description

Print method for traps objects.

Usage

S3 method for class ’traps’

print(x, ...)

Arguments

x traps object

... arguments to pass to print.default

See Also

print, traps

Examples

print(make.grid(nx = 5, ny = 3))

122 randomHabitat

randomHabitat Random Landscape

Description

The Modified Random Cluster algorithm of Saura and Martinez-Millan (2000) is used to generate

a mask object representing patches of contiguous ‘habitat’ cells (pixels) within a ‘non-habitat’ ma-

trix (‘non-habitat’ cells are optionally dropped). Spatial autocorrelation (fragmentation) of habitat

patches is controlled via the parameter ‘p’. ‘A’ is the expected proportion of ‘habitat’ cells.

Usage

randomHabitat(mask, p = 0.5, A = 0.5, directions = 4, minpatch = 1,

drop = TRUE, covname = "habitat", plt = FALSE)

Arguments

mask secr mask object to use as template

p parameter to control fragmentation

A parameter for expected proportion of habitat

directions integer code for adjacency (rook’s move 4 or queen’s move 8)

minpatch integer minimum size of patch

drop logical for whether to drop non-habitat cells

covname character name of covariate when drop = FALSE

plt logical for whether intermediate stages should be plotted

Details

Habitat is simulated within the region defined by the cells of mask. The region may be non-

rectangular.

The algorithm comprises stages A-D:

A. Randomly select proportion p of cells from the input mask

B. Cluster selected cells with any immediate neighbours as defined by directions

C. Assign clusters to ‘non-habitat’ (probability 1–A) and ‘habitat’ (probability A)

D. Cells not in any cluster from (B) receive the habitat class of the majority of the <=8 adjacent cells

assigned in (C), if there are any; otherwise they are assigned at random (with probabilities 1–A, A).

Fragmentation declines, and cluster size increases, as p increases up to the ‘percolation threshold’

which is about 0.59 in the default case (Saura and Martinez-Millan 2000 p.664).

If minpatch > 1 then habitat patches of less than minpatch cells are converted to non-habitat, and

vice versa. This is likely to cause the proportion of habitat to deviate from A.

If drop = FALSE a binary-valued (0/1) covariate with the requested name is included in the output

mask, which has the same extent as the input. Otherwise, non-habitat cells are dropped and no

covariate is added.

randomHabitat 123

Value

An object of class ‘mask’. By default (covariate = FALSE) this has fewer rows (points) than the

input mask.

Note

Single-linkage clustering and adjacency operations use functions ‘clump’ and ‘adjacency’ of the

package raster; ‘clump’ also requires package igraph0 (raster still uses this decrecated version).

Optional plotting of intermediate stages (plt = TRUE) uses the plot method for rasterLayers in

raster.

A non-rectangular input mask is padded out to a rectangular rasterLayer for operations in raster;

cells added as padding are ultimately dropped.

The procedure of Saura and Martinez-Millan (2000) has been followed as far as possible, but this

implementation may not match theirs in every detail.

This implementation allows only two habitat classes. The parameter A is the expected value of the

habitat proportion; the realised habitat proportion may differ quite strongly from A, especially for

large p (e.g., p > 0.5).

Anisotropy is not implemented; it would require skewed adjacency filters (i.e. other than rook- or

queen-move filters) that are not available in raster.

References

Hijmans, R. J. and van Etten, J. (2011) raster: Geographic analysis and modeling with raster data.

R package version 1.9-33. http://CRAN.R-project.org/package=raster.

Saura, S. and Martinez-Millan, J. (2000) Landscape patterns simulation with a modified random

clusters method. Landscape Ecology, 15, 661–678.

See Also

mask, make.mask, sim.popn

Examples

Not run:

tempmask <- make.mask(nx = 100, ny = 100, spacing = 20)

mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4)

plot(mrcmask, dots = FALSE, col = "green")

pop <- sim.popn(10, mrcmask, model2D = "IHP")

plot(pop, add = TRUE)

plot intermediate steps A, C, D

opar <- par(mfrow = c(1,3))

mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, plt = TRUE)

par(opar)

keep non-habitat cells

mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, drop = FALSE)

plot(mrcmask, covariate = "habitat", dots = FALSE,

col = c("grey","green"), breaks = 2)

effect of purging small patches

http://CRAN.R-project.org/package=raster

124 rbind.capthist

opar <- par(mfrow=c(1,2))

mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, minpatch = 1)

plot(mrcmask, dots = FALSE, col ="green")

mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, minpatch = 5)

plot(mrcmask, dots = FALSE, col ="green")

par(opar)

End(Not run)

rbind.capthist Combine capthist Objects

Description

Form a single capthist object from two or more compatible capthist objects.

Usage

MS.capthist(...)

rbind.capthist(..., renumber = TRUE, pool = NULL, verify = TRUE)

Arguments

... one or more capthist objects or lists of capthist objects

renumber logical, if TRUE assigns new composite individual ID

pool list of vectors of session indices or names

verify logical, if TRUE the output is checked with verify

Details

MS.capthist concatenates the sessions in the input objects as one multi-session capthist object.

Each session may use a different detector array (traps) and a different number of sampling occa-

sions. Session names are derived implicitly from the inputs, or may be given explicitly (see Exam-

ples); if any name is duplicated, all will be replaced with sequential integers. The . . . argument may

include lists of single-session capthist objects.

rbind.capthist is used to pool capture data from more than one session into a single session. The

number of rows in the output session is the sum of the number of rows in the input sessions (i.e.

each animal appears in only one session).

For rbind.capthist, the . . . argument may be

1. A series of single-session capthist objects, which are pooled to form one new single-session

object, or

2. One multi-session capthist object, when the components of ‘pool’ are used to define com-

binations of old sessions; e.g. pool = list(A=1:3, B=4:5) produces an object with

two sessions (named ‘A’ and ‘B’) from 5 old ones. If pool = NULL (the default) then all the

sessions are pooled to form one single-session capthist object.

rbind.capthist 125

Sessions to be pooled must have the same number of capture occasions and use the same detectors

(traps). At present there is no function to pool capthist data from different detector arrays. For this

it is recommended that you merge the input files and rebuild the capthist object from scratch.

The names of arguments other than . . . should be given in full. If renumber = TRUE (the default),

the session name will be prepended to the animal ID before pooling: animals 1, 2 and 3 in Session

A will become A.1, A.2 and A.3, while those in Session B become B.1, B.2 and B.3. This ensures

that each animal has a unique ID. If renumber = FALSE, the animal IDs will not change.

Other attributes (xy, signal) are handled appropriately. If the signal threshold (attribute ‘cutval’)

differs among sessions, the maximum is used and detections of lower signal strength are discarded.

The use of rbind.capthist to concatenate sessions is now deprecated: use MS.capthist.

Although MS.capthist and rbind.capthist look like S3 methods, they aren’t. The full function

names must be used.

Value

For MS.capthist, a multi-session object of class ‘capthist’ with number of sessions equal to the

number of sessions in the objects in

For rbind.capthist, either an object of class ‘capthist’ with one session formed by pooling the

sessions in the input objects, or a capthist object with more than one session, each formed by

pooling groups of sessions defined by the ‘pool’ argument. Covariate columns that appear in all

input sessions are retained in the output.

See Also

capthist, subset.capthist

Examples

extend a multi-session object

we fake the 2010 data by copying from 2005

note how we name the appended session

fakeCH <- ovenCH[["2005"]]

MS.capthist(ovenCH, "2010" = fakeCH)

simulate sessions for 2-part mixture

temptrap <- make.grid(nx = 8, ny = 8)

temp1 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.1, sigma = 40))

temp2 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.2, sigma = 20))

concatenate sessions

temp3 <- MS.capthist(large.range = temp1, small.range = temp2)

summary(temp3)

session-specific movement statistic

RPSV(temp3)

pool sessions

temp4 <- rbind.capthist(temp1, temp2)

summary(temp4)

RPSV(temp4)

compare mixture to sum of components

126 rbind.popn

note ‘detectors visited’ is not additive for ’multi’ detector

nor is ‘detectors used’

(summary(temp1)$counts + summary(temp2)$counts) -

summary(temp4)$counts

Not run:

compare two different model fits

tempfit3 <- secr.fit(temp3, CL = T, buffer = 150, model = list

(g0 ~ session, sigma ~ session), trace = FALSE)

predict(tempfit3)

if we can tell which animals had large ranges...

covariates(temp4) <- data.frame(range.size = rep(c("large",

"small"), c(nrow(temp1), nrow(temp2))))

tempfit4 <- secr.fit(temp4, CL = T, buffer = 150, model = list

(g0 ~ range.size, sigma ~ range.size), trace = FALSE)

predict(tempfit4, newdata = data.frame(range.size = c("large",

"small")))

End(Not run)

rbind.popn Combine popn Objects

Description

Form a single popn object from two or more existing popn objects, or a list.

Usage

rbind.popn(..., renumber = TRUE)

Arguments

... one or more popn objects, or a single list of popn objects

renumber logical for whether row names in the new object should be set to the row indices

Details

An attempt to combine objects will fail if they conflict in their covariates attributes. This is not

an S3 method.

Value

An object of class popn with number of rows equal to the sum of the rows in the input objects.

See Also

popn

rbind.traps 127

Examples

generate and combine two subpopulations

trapobj <- make.grid()

p1 <- sim.popn(D = 3, core = trapobj)

p2 <- sim.popn(D = 2, core = trapobj)

covariates(p1) <- data.frame(size = rep("small", nrow(p1)))

covariates(p2) <- data.frame(size = rep("large", nrow(p2)))

pop <- rbind.popn(p1,p2)

rbind.traps Combine traps Objects

Description

Form a single traps object from two or more existing traps objects.

Usage

S3 method for class ’traps’

rbind(..., renumber = TRUE)

Arguments

... one or more traps objects

renumber logical for whether row names in the new object should be set to the row indices

Details

An attempt to combine objects will fail if they conflict in their covariates attributes. Differences

in the usage attribute are handled as follows. If usage is specified for one input but not other(s),

the missing values are constructed assuming all detectors were operated for the maximum number

of occasions in any input. If inputs differ in the number of ‘usage’ columns (occasions), the smaller

matrices are padded with ‘zero’ columns to the maximum number of columns in any input.

Value

An object of class traps with number of rows equal to the sum of the rows in the input objects.

See Also

traps, subset.traps

Examples

nested hollow grids

hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)

hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE),

c(20, 20))

nested <- rbind (hollow1, hollow2)

plot(nested, gridlines = FALSE, label = TRUE)

128 read.capthist

read.capthist Import or export data

Description

Data in the DENSITY formats for capture data and trap layouts may be imported as a capthist

object for analysis in secr. Data in a capthist object may also be exported in these formats for use

in DENSITY (Efford 2009). read.capthist inputs data from text files and constructs a capthist

object in one step using the functions read.traps and make.capthist.

Usage

read.capthist(captfile, trapfile, detector = "multi", fmt = "trapID",

noccasions = NULL, covnames = NULL, trapcovnames = NULL,

cutval = NULL, verify = TRUE, noncapt = "NONE", ...)

write.capthist(object, filestem = deparse(substitute(object)),

sess = "1", ndec = 2, covariates = FALSE, ...)

Arguments

captfile name of capture data file

trapfile name of trap layout file

detector character value for detector type (‘single’, ‘multi’ etc.)

fmt character value for capture format (‘XY’ or ‘trapID’)

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields in ‘captfile’

trapcovnames character vector of names for detector covariate fields in ‘trapfile’

cutval numeric, threshold of signal strength for ‘signal’ detector type

verify logical if TRUE then the resulting capthist object is checked with verify

noncapt character value; animal ID used for ‘no captures’

... other arguments passed to read.table, write.table and count.fields

object capthist object with the captures and trap locations to export

filestem character value used to form names of output files

sess character session identifier

ndec number of digits after decimal point for x,y coordinates

covariates logical or a character vector of covariates to export

read.capthist 129

Details

read.capthist

captfile should record one detection on each line. A detection comprises a session identifier,

animal identifier, occasion number (1, 2,...,S where S is the number of occasions), and a detector

identifier (fmt = "trapID") or X- and Y-coordinates (fmt = "XY"). Each line of trapfile has a

detector identifier and its X- and Y-coordinates. In either file type the identifiers (labels) may be

numeric or alphanumeric values. Values should be separated by blanks or tabs unless (i) the file

name ends in ‘.csv’ or (ii) sep = "," is passed in . . . , in which case commas are assumed. Blank

lines and any text after ‘#’ are ignored. For further details see ../doc/secr-datainput.pdf,

make.capthist and ‘Data formats’ in the help for DENSITY.

The noccasions argument is needed only if there were no detections on the final occasion; it may

be a positive integer (constant across all sessions) or a vector of positive integers, one for each

session. covnames is needed only when captfile includes individual covariates. Likewise for

trapcovnames and detector covariates. Values of noccasions and covnames are passed directly to

make.capthist, and trapcovnames is passed to read.traps.

A session identifier is required even for single-session capture data. In the case of data from multiple

sessions, trapfile may be a vector of file names, one for each session.

Additional data may be coded as for DENSITY. Specifically, captfile may include extra columns

of individual covariates, and trapfile may code varying usage of each detector over occasions and

detector covariates.

write.capthist

For a single-session analysis, DENSITY requires one text file of capture data and one text file with

detector coordinates (the ‘trap layout’ file). write.capthist constructs names for these files by

appending ‘capt.txt’ and ‘trap.txt’ to filestem which defaults to the name of the capthist object. If

filestem is empty then output goes to the console.

If object contains multiple sessions with differing traps then a separate trap layout file is exported

for each session and each file name includes the session name. All capture data are exported to one

file regardless of the number of sessions. The DENSITY format used is ‘TrapID’ except when x-y

coordinates are specific to a detection (i.e., polygon and transect detectors).

covariates controls the export of both detector and individual covariates. If it is TRUE or FALSE

then it is taken to apply to both. A vector of covariate names is used as a lookup for both detector

and capthist covariate fields: covariates are exported if their name matches; this may be used to

export any combination of (uniquely named) detector and capthist covariates.

Existing text files will be replaced without warning. In the case of a multi-session capthist file,

session names are taken from object rather than sess. Session names are truncated to 17 characters

with blanks and commas removed.

To export data in comma-delimited (‘.csv’) format, pass sep = "," in The resulting files

have extension ‘.csv’ rather than ‘.txt’ and may be opened with spreadsheet software.

Note

The DENSITY formats accommodate ‘single’, ‘multi’ and ‘proximity’ data. Data for the newer de-

tector types (‘count’, ‘signal’, ‘polygon’, ‘polygonX’, ‘transect’ and ‘transectX’) may be input us-

ing the DENSITY formats with minor variations. They may also be output with write.capthist,

but a warning is given that DENSITY does not understand these data types. See detector and

../doc/secr-datainput.pdf for more.

The . . . argument is useful for some special cases. For example, if your input uses ‘;’ instead of ‘#’

for comments (‘;’ is also valid in DENSITY) then set comment.char = ";" in read.capthist.

../doc/secr-datainput.pdf
../doc/secr-datainput.pdf

130 read.mask

In a similar fashion, write comma- or tab-separated values by setting sep = "," or sep = "\t"

respectively.

The arguments of count.fields are a subset of those of read.table so . . . is limited to any of

{sep, quote, skip, blank.lines.skip, comment.char}.

If you fail to set fmt correctly in read.capthist then the error message from verify may be

uninformative.

References

Efford, M. G. (2009) DENSITY 4.4: software for spatially explicit capture–recapture. Department

of Zoology, University of Otago, Dunedin, New Zealand http://www.otago.ac.nz/density.

See Also

read.traps, make.capthist, write.captures, write.traps, read.table

Examples

export ovenbird capture histories

the files ’ovenCHcapt.txt’ and ’ovenCHtrap.txt’ are

placed in the current folder (check with dir())

write.capthist(ovenCH)

read.mask Read Habitat Mask From File

Description

Read coordinates of points on a habitat mask from a text file.

Usage

read.mask(file = NULL, data = NULL, spacing = NULL, columns = NULL, ...)

Arguments

file character string with name of text file

data dataframe

spacing spacing of grid points in metres

columns character vector naming the columns to save as covariates

... other arguments to pass to read.table

http://www.otago.ac.nz/density

read.traps 131

Details

For file input, the x and y coordinates are usually the first two values on each line, separated by

white space. If the file starts with a line of column headers and ‘header = TRUE’ is passed to

read.table in the . . . argument then ‘x’ and ‘y’ need not be the first two fields.

data is an alternative input route if the x and y coordinates already exist in R as columns in a

dataframe. Only one of data or file should be specified.

The grid cell size spacing should be provided if known. If it is not provided then an attempt is

made to infer it from the minimum spacing of points. This can be slow and may demand more

memory than is available. In rare cases (highly fragmented masks) it may also yield the wrong

answer.

From 2.3.0, additional columns in the input are saved as covariates. The default (columns = NULL)

is to save all columns.

Value

object of class mask with type ‘user’

Note

read.mask creates a single-session mask. If used in secr.fit with a multi-session capthist object

a single-session mask will be replicated to the number of sessions. This is appropriate if all sessions

relate to the same geographical region. If the ‘sessions’ relate to different regions you will need to

construct a multi-session mask as a list of single-session masks (e.g. mask <- list(mask1, mask2, mask3)).

The package SPACECAP uses a ‘state-space’ file in ‘csv’ text format with columns ‘X_COORD’,

‘Y_COORD’ and ‘HABITAT’. Such a file may be input directly to read.mask; rows with HABI-

TAT != 1 are dropped.

See Also

mask

Examples

Replace file name with a valid local name and remove ‘#’

read.mask (file = "c:\\myfolder\\mask.txt",

spacing = 3, header = TRUE)

‘mask.txt’ should have lines like this

x y

265 265

268 265

...

read.traps Read Detector Data From File

Description

Construct an object of class traps with detector locations from a text file or data frame. Usage per

occasion and covariates may be included.

132 read.traps

Usage

read.traps(file = NULL, data = NULL, detector = "multi", covnames =

NULL, binary.usage = TRUE, ...)

Arguments

file character string with name of text file

data data frame of detector coordinates

detector character string for detector type

covnames character vector of names for detector covariate fields

binary.usage logical; if FALSE will read usage fields as continuous effort

... other arguments to pass to read.table

Details

Reads a text file in which the first column is a character string (see Note) identifying a detector

and the next two columns are its x- and y-coordinates, separated by white space. The coordinates

optionally may be followed by a string of codes ‘0’ or ‘1’ indicating whether the detector was

operated on each occasion. Trap-specific covariates may be added at the end of the line preceded

by ‘/’. This format is compatible with the Density software (Efford 2007), except that all detectors

are assumed to be of the same type (usage codes greater than 1 are treated as 1), and more than one

covariate may be specified.

If file is missing then x-y coordinates will be taken instead from data. This option does not allow

for covariates or usage, but they maybe added later.

detector specifies the behaviour of the detector following Efford et al. (2009). ‘single’ refers to a

trap that is able to catch at most one animal at a time; ‘multi’ refers to a trap that may catch more

than one animal at a time. For both ‘single’ and ‘multi’ detectors a trapped animals can appear

at only one detector per occasion. Detectors of type ‘proximity’, such as camera traps and hair

snags for DNA sampling, allow animals to be recorded at several detectors on one occasion. See

detector for further detector types.

For polygon and transect detector types, each line corresponds to a vertex and starts with a code

to identify the polygon or transect (hence the same code appears on 2 or more lines). For input

from a dataframe the code column should be named ‘polyID’. Also, usage and covariates are for

the polygon or transect as a whole and not for each vertex. Usage and covariates are appended to

the end of the line, just as for point detectors (traps etc.). The usage and covariates for each polygon

or transect are taken from its first vertex. Although the end-of-line strings of other vertices are not

used, they cannot be blank and should use the same spacing as the first vertex.

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type (‘sin-

gle’, ‘multi’, ‘proximity’, ‘count’, ‘polygon’ etc.), and possibly other attributes.

Note

Detector names, which become row names in the traps object, should not contain underscores.

rectangularMask 133

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

traps, make.grid, detector

Examples

Replace file name with a valid local name and remove ’#’

read.traps ("c:\\myfolder\\mytraps.txt", detector="proximity")

\mytraps.txt’ should have lines like this

1 365 365

2 365 395

3 365 425

etc.

rectangularMask Rectangular Mask

Description

Convert a mask or Dsurface with an irregular outline into a mask or Dsurface with a rectangular

outline and the same bounding box. This enables contour plotting.

Usage

rectangularMask(mask)

Arguments

mask object of class mask or Dsurface

Details

The covariates of new points are set to missing. The operation may be reversed (nearly) with

subset(rectmask, attr(rectmask, "OK")).

The results are unpredictable if the mask has been rotated.

Value

A rectangular mask or Dsurface with the same ‘area’, ‘boundingbox’, ‘meanSD’, ‘polygon’ and

‘polygon.habitat’ attributes as mask. A logical vector attribute ‘OK’ is added identifying the points

inherited from mask.

http://www.otago.ac.nz/density

134 reduce

See Also

plot.Dsurface

Examples

rMask <- rectangularMask(possummask)

plot(rMask)

plot(possummask, add = TRUE, col = ’blue’)

reduce Combine Columns

Description

Combine columns in a matrix-like object to create a new data set using the first non-zero value.

Usage

reduce (object, ...)

Default S3 method:

reduce(object, columns, ...)

Arguments

object object that may be coerced to a matrix

columns list in which each component is a vector of subscripts for columns to be pooled

... other arguments (not used currently)

Details

The first element of columns defines the columns of object for the first new column, the second

for the second new column etc. This is a generic method. More useful methods exist for capthist

and traps objects.

Value

A matrix with number of columns equal to length(columns).

See Also

capthist, reduce.capthist, reduce.traps

Examples

matrix with random zeros

temp <- matrix(runif(20), nc = 4)

temp[sample(20,10)] <- 0

temp

reduce(temp, list(1:2, 3:4))

reduce.capthist 135

reduce.capthist Combine Occasions Or Detectors

Description

Use these methods to combine data from multiple occasions or multiple detectors in a capthist or

traps object, creating a new data set and possibly converting between detector types.

Usage

S3 method for class ’traps’

reduce(object, newtraps = NULL, span = NULL, rename = FALSE, ...)

S3 method for class ’capthist’

reduce(object, newtraps = NULL, span = NULL, rename =

FALSE, newoccasions = NULL, by = 1, outputdetector =

detector(traps(object)), select = ’last’, dropunused = TRUE, verify

= TRUE, sessions = NULL, ...)

Arguments

object traps or capthist object

newtraps list in which each component is a vector of subscripts for detectors to be pooled

span numeric maximum span in metres of new detector

rename logical; if TRUE the new detectors will be numbered from 1, otherwise a name

will be constructed from the old detector names

newoccasions list in which each component is a vector of subscripts for occasions to be pooled

by number of old occasions in each new occasion

outputdetector character value giving detector type for output

select character value for method to resolve conflicts

dropunused logical, if TRUE any never-used detectors are dropped

verify logical, if TRUE the verify function is applied to the output

sessions vector of session indices or names (optional)

... other arguments passed by reduce.traps to hclust

Details

reduce.traps –

Grouping may be specified explicitly via newtraps, or implicitly by span.

If span is specified a clustering of detector sites will be performed with hclust and detectors will

be assigned to groups with cutree. The default algorithm in hclust is complete linkage, which

tends to yield compact, circular clusters; each will have diameter less than or equal to span.

reduce.capthist –

The first component of newoccasions defines the columns of object for new occasion 1, the

second for new occasion 2, etc. If newoccasions is NULL then all occasions are output. Subscripts

136 reduce.capthist

in a component of newoccasions that do not match an occasion in the input are ignored. When the

output detector is one of the trap types (‘single’, ‘multi’), reducing capture occasions can result in

locational ambiguity for individuals caught on more than one occasion, and for single-catch traps

there may also be conflicts between individuals at the same trap. The method for resolving conflicts

among ‘multi’ detectors is determined by select which should be one of ‘first’, ‘last’ or ‘random’.

With ‘single’ detectors select is ignored and the method is: first, randomly select* one trap per

animal per day; second, randomly select* one animal per trap per day; third, when collapsing

multiple days use the first capture, if any, in each trap.

Usage data in the traps attribute are also pooled if present; usage is summed over contributing

occasions and detectors.

* i.e., in the case of a single capture, use that capture; in the case of multiple ‘competing’ captures

draw one at random.

If newoccasions is not provided then old occasions are grouped into new occasions as indicated by

the by argument. For example, if there are 15 old occasions and by = 5 then new occasions will be

formed from occasions 1:5, 6:10, and 11:15. A warning is given when the number of old occasions

is not a multiple of by as then the final new occasion will comprise fewer old occasions.

A special use of the by argument is to combine all occasions into one for each session in a multi-

session dataset. This is done by setting by = "all".

Value

reduce.traps –

An object of class traps with detectors combined according to newtraps or span. The new object

has an attribute ‘newtrap’, a vector of length equal to the original number of detectors. Each element

in newtrap is the index of the new detector to which the old detector was assigned (see Examples).

The object has no clusterID or clustertrap attribute.

reduce.capthist –

An object of class capthist with number of occasions (columns) equal to length(newoccasions);

detectors may simulataneously be aggregated as with reduce.traps. The detector type is inherited

from object unless a new type is specified with the argument outputdetector.

Warning

The argument named ‘columns’ was renamed to ‘newoccasions’ in version 2.5.0, and arguments

were added to reduce.capthist for the pooling of detectors. Old code should work as before if all

arguments are named and ‘columns’ is changed.

Note

The reduce method may be used to re-assign the detector type (and hence data format) of a capthist

object without combining occasions or detectors. Set the object and outputdetector arguments

and leave others at their default values.

Automated clustering can produce unexpected outcomes. In particular, there is no guarantee that

clusters will be equal in size. You should inspect the results of reduce.traps especially when using

span.

reduce.traps is not implemented for polygons or transects.

See Also

capthist, subset.capthist, hclust, cutree

region.N 137

Examples

tempcapt <- sim.capthist (make.grid(nx = 6, ny = 6), nocc = 6)

class(tempcapt)

pooled.tempcapt <- reduce(tempcapt, newocc = list(1,2:3,4:6))

summary (pooled.tempcapt)

pooled.tempcapt2 <- reduce(tempcapt, by = 2)

summary (pooled.tempcapt2)

collapse multi-session dataset to single-session ’open population’

onesess <- join(reduce(ovenCH, by = "all"))

summary(onesess)

group detectors within 60 metres

plot (traps(captdata))

plot (reduce(captdata, span = 60), add = TRUE)

plot linking old and new

old <- traps(captdata)

new <- reduce(old, span = 60)

newtrap <- attr(new, ’newtrap’)

plot(old, border = 10)

plot(new, add = TRUE, detpar = list(pch = 16), label = TRUE)

segments (new$x[newtrap], new$y[newtrap], oldx, oldy)

region.N Population Size

Description

Estimate the expected and realised populations in a region, using a fitted spatially explicit capture–

recapture model. Density is assumed to follow an inhomogeneous Poisson process in two dimen-

sions. Expected N is the volume under a fitted density surface; realised N is the number of in-

dividuals within the region for the current realisation of the process (cf Johnson et al. 2010; see

Note).

Usage

region.N (object, region = NULL, spacing = NULL, session = NULL,

group = NULL, se.N = TRUE, alpha = 0.05, loginterval = TRUE,

keep.region = FALSE, nlowerbound = TRUE, RN.method = ’poisson’)

Arguments

object secr object output from secr.fit

region mask object defining the possibly non-contiguous region for which population

size is required, or vector polygon(s) (see Details)

spacing spacing between grid points (metres) if region mask is constructed on the fly

138 region.N

session character session

group group – for future use

se.N logical for whether to estimate SE(N̂) and confidence interval

alpha alpha level for confidence intervals

loginterval logical for whether to base interval on log(N)

keep.region logical for whether to save the raster region

nlowerbound logical for whether to use n as lower bound when computing log interval for

realised N

RN.method character string for method used to calculate realised N (RN) and its sampling

variance. ‘poisson’ or ‘MSPE’.

Details

If the density surface of the fitted model is flat (i.e. object$model$D == ~1 or object$CL == TRUE)

then E(N) is simply the density multiplied by the area of region, and the standard error is also a

simple product. In the conditional likelihood case, the density and standard error are obtained by

first calling derived.

If, on the other hand, the density has been modelled then the density surface is predicted at each

point in region and E(N) is obtained by discrete summation. Pixel size may have a minor effect

on the result - check by varying spacing. Sampling variance is determined by the delta method,

using a numerical approximation to the gradient of E(N) with respect to each beta parameter.

The region may be defined as a mask object (if omitted, the mask component of object will be

used). Alternatively, region may be a SpatialPolygonsDataFrame object (see package sp), and

a raster mask will be constructed on the fly using the specified spacing. See make.mask for an

example importing a shapefile to a SpatialPolygonsDataFrame.

Note: The option of specifying a polygon rather than a mask for region does not work if the density

model in object uses spatial covariates: these must be passed in a mask.

Group-specific N has yet to be implemented.

Population size is adjusted automatically for the number of clusters in ‘mashed’ models (see mash).

However, the population size reported is that associated with a single cluster unless regionmask is

specified.

Value

If se.N = FALSE, the numeric value of expected population size, otherwise, a dataframe with rows

‘E.N’ and ‘R.N’, and columns as below.

estimate estimate of N (expected or realised, depending on row)

SE.estimate standard error of estimated N

lcl lower 100(1–alpha)% confidence limit

ucl upper 100(1–alpha)% confidence limit

n total number of individuals detected

For multiple sessions, the value is a list with one component per session, each component as above.

If keep.region = TRUE then the mask object for the region is saved as the attribute ‘region’ (see

Examples).

region.N 139

Note

The estimates of expected and realised N are generally very similar, or identical, but realised N
usually has lower estimated variance, especially if the n detected animals comprise a large fraction.

Realised N is given by R(N) = n+
∫
B
(1−p.(X))D(X)dX (the second term represents undetected

animals). This definition strictly holds only when region B is at least as large as the region of

integration used to fit the model; only with this condition can we be sure all n detected animals

have centres within B. The sampling variance of R(N), technically a mean square prediction error

(Johnson et al. 2010), is approximated by summing the expected Poisson variance of the true

number of undetected animals and a delta-method estimate of its sampling variance, obtained as for

E(N).

By default, a shortcut is used to compute the sampling variance of realised N . With this option

(RN.method = ‘poisson’) the sampling variance is the sampling variance of E(N) minus the esti-

mate of E(N) (representing Poisson process variance). This has been found to give reliable confi-

dence intervals in simulations (Efford and Fewster 2012).

If RN.method is neither ‘MSPE’ nor ‘poisson’ (ignoring case) then the estimate of expected N is

also used for realised N , and the ‘poisson’ shortcut variance is used.

Johnson et al. (2010) use the notation µ(B) for expected N and N(B) for realised N in region B.

In our case, the relative SE (CV) of µ(B) is the same as that for the estimated density D if D has

been estimated using the Poisson distribution option in secr.fit or derived(). If D has been

estimated with the binomial distribution option, its relative SE for simple models will be the same

as that of N(B), assuming that B is the full extent of the original mask.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture–

recapture. Oikos 122, 918–928.

Johnson, D. S., Laake, J. L. and Ver Hoef, J. M. (2010) A model-based approach for making eco-

logical inference from distance sampling data. Biometrics 66, 310–318.

See Also

secr.fit, derived, make.mask, expected.n, closedN

Examples

region.N(secrdemo.0)

Not run:

a couple more routine examples

region.N(secrdemo.CL)

region.N(ovenbird.model.D)

region defined as vector polygon

retain and plot region mask

temp <- region.N(possum.model.0, possumarea, spacing = 40,

keep.region = TRUE)

temp

plot (attr(temp, "region"), type = ’l’)

140 RMarkInput

End(Not run)

RMarkInput Convert Data to RMark Input Format

Description

A single-session capthist object is formed by RMarkInput into a dataframe that may be passed

directly to RMark.

Usage

RMarkInput(object, grouped = FALSE, covariates = TRUE)

unRMarkInput(df, covariates = TRUE)

Arguments

object secr capthist object

grouped logical for whether to replace each group of identical capture histories with a

single line

covariates logical or character vector; see Details

df dataframe with fields ‘ch’ and ‘freq’

Details

To convert a multi-session object first collapse the sessions with join.

If covariates is TRUE the all columns of individual covariates in the input are appended as

columns in the output. If covariates is a character-valued vector then only the specified covariates

will be appended.

If both grouped and covariates are specified in RMarkInput, grouped will be ignored, with a

warning.

Value

For RMarkInput –

Dataframe with fields ch and freq. ‘ch’ is a character string of 0’s and 1’s. If grouped = FALSE the

rownames are retained and the value of ‘freq’ is 1 or -1. Negative values of ‘freq’ indicate removal.

The dataframe also includes individual covariates specified with covariates.

The attribute ‘interval’ is copied from ‘object’, if present; otherwise it is set to a vector of zeros

(indicating a closed-population sample).

For unRMarkInput –

A single-session capthist object with no traps attribute and hence no detector type (i.e. non-spatial

capture histories). Covariates are copied as requested.

score.test 141

Note

In versions before 2.4.0, a spurious occasion was added by RMarkInput when grouped = FALSE.

Thanks to Jeff Stetz for spotting this.

The default value for grouped changed to FALSE in secr 2.4.0

References

Laake, J. and Rexstad E. (2008) Appendix C. RMark - an alternative approach to building linear

models in MARK. In: Cooch, E. and White, G. (eds) Program MARK: A Gentle Introduction. 6th

edition. Available at http://www.phidot.org/software/mark/docs/book/.

See Also

join

Examples

ovenCH is a 5-year mist-netting dataset

ovenRD <- RMarkInput (join(ovenCH))

head(ovenRD)

unRMarkInput(ovenRD)

RMarkInput(deermouse.ESG, grouped = TRUE)

RMarkInput(deermouse.ESG, covariates = TRUE)

Not run:

fit robust-design model in RMark (MARK must be installed)

library(RMark)

ovenRD.data <- process.data(ovenRD, model = ’Robust’,

time.interval = attr(ovenRD, ’interval’))

ovenRD.model <- mark(data = ovenRD.data, model = ’Robust’,

model.parameters = list(p = list(formula = ~1, share = TRUE),

GammaDoublePrime = list(formula = ~1),

GammaPrime = list(formula = ~1),

N = list(formula = ~1)))

cleanup(ask = FALSE)

End(Not run)

score.test Score Test for SECR Models

Description

Compute score tests comparing a fitted model and a more general alternative model.

http://www.phidot.org/software/mark/docs/book/

142 score.test

Usage

score.test(secr, ..., betaindex = NULL, trace = FALSE, ncores = 1)

score.table(object, ..., sort = TRUE, dmax = 10)

Arguments

secr fitted secr model

... one or more alternative models OR a fitted secr model

trace logical. If TRUE then output one-line summary at each evaluation of the likeli-

hood

ncores integer number of cores available for parallel processing

betaindex vector of indices mapping fitted values to parameters in the alternative model

object score.test object or list of such objects

sort logical for whether output rows should be in descending order of AICc

dmax threshold of dAICc for inclusion in model set

Details

Score tests allow fast model selection (e.g. Catchpole & Morgan 1996). Only the simpler model

need be fitted. This implementation uses the observed information matrix, which may sometimes

mislead (Morgan et al. 2007). The gradient and second derivative of the likelihood function are

evaluated numerically at the point in the parameter space of the second model corresponding to the

fit of the first model. This operation uses the function fdHess of the nlme package; the likelihood

must be evaluated several times, but many fewer times than would be needed to fit the model. The

score statistic is an approximation to the likelihood ratio; this allows the difference in AIC to be

estimated.

Covariates are inferred from components of the reference model secr. If the new models require

additional covariates these may usually be added to the respective component of secr.

Mapping of parameters between the fitted and alternative models sometimes requires user inter-

vention via the betaindex argument. For example betaindex = c(1,2,4) is the correct mapping

when comparing the null model (D∼ 1, g0∼ 1, sigma∼ 1) to one with a behavioural effect on g0

(D∼ 1, g0∼ b, sigma∼ 1).

score.table summarises one or more score tests in the form of a model comparison table. The

. . . argument here allows the inclusion of additional score test objects (note the meaning differs from

score.test). Approximate AICc values are used to compute relative AIC model weights for all

models within dmax AICc units of the best model.

Multiple cores provide some speed improvment in score.test when comparing more than two

models.

Value

An object of class ‘score.test’ that inherits from ‘htest’, a list with components

statistic the value the chi-squared test statistic (score statistic)

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-

tic (difference in number of parameters H0, H1)

p.value probability of test statistic assuming chi-square distribution

score.test 143

method a character string indicating the type of test performed

data.name character string with null hypothesis, alternative hypothesis and arguments to

function call from fit of H0

H0 simpler model

np0 number of parameters in simpler model

H1 alternative model

H1.beta coefficients of alternative model

AIC Akaike’s information criterion, approximated from score statistic

AICc AIC with small-sample adjustment of Hurvich & Tsai 1989

If . . . defines several alternative models then a list of score.test objects is returned.

The output from score.table is a dataframe with one row per model, including the reference

model.

Note

This implementation is experimental. The AIC values, and values derived from them, are approx-

imations that may differ considerably from AIC values obtained by fitting and comparing the re-

spective models. Use of the observed information matrix may not be optimal.

score.test cannot be used to compare models that differ in the arguments scalesigma or scaleg0.

References

Catchpole, E. A. and Morgan, B. J. T. (1996) Model selection of ring-recovery models using score

tests. Biometrics 52, 664–672.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.

Biometrika 76, 297–307.

McCrea, R. S. and Morgan, B. J. T. (2011) Multistate mark-recapture model selection using score

tests. Biometrics 67, 234–241.

Morgan, B. J. T., Palmer, K. J. and Ridout, M. S. (2007) Negative score test statistic. American

statistician 61, 285–288.

See Also

AIC, LR.test

Examples

Not run:

AIC (secrdemo.0, secrdemo.b)

st <- score.test (secrdemo.0, g0 ~ b)

st

score.table(st)

adding a time covariate to separate occasions (1,2) from (3,4,5)

secrdemo.0$timecov <- data.frame(t2 = factor(c(1,1,2,2,2)))

st2 <- score.test (secrdemo.0, g0 ~ t2)

score.table(st,st2)

End(Not run)

144 secr.design.MS

secr.design.MS Construct Detection Model Design Matrices and Lookups

Description

Internal functions used by secr.fit.

Usage

secr.design.MS (capthist, models, timecov = NULL, sessioncov = NULL,

groups = NULL, hcov = NULL, dframe = NULL, naive = FALSE, bygroup = FALSE,

keep.dframe = FALSE, full.dframe = FALSE, ...)

make.lookup (tempmat)

Arguments

capthist capthist object

models list of formulae for parameters of detection

timecov optional dataframe of values of time (occasion-specific) covariate(s).

sessioncov optional dataframe of values of session-specific covariate(s).

groups optional vector of one or more variables with which to form groups. Each el-

ement should be the name of a factor variable in the covariates attribute of

capthist.

hcov character name of an individual (capthist) covariate for known class membership

in h2 models

dframe optional data frame of design data for detection parameters

naive logical if TRUE then modelled detection probability is for a naive animal (not

caught previously); if FALSE then detection probability is contingent on indi-

vidual’s history of detection

bygroup logical if TRUE then the individual dimension of the parameter matrix is auto-

matically collapsed to one row per group; if FALSE then the full dimensionality

is retained (one row per individual)

keep.dframe logical; if TRUE the dataframe of design data is included in the output

full.dframe logical; if FALSE then padding rows are purged from output dframe (ignored if

keep.dframe = FALSE)

... other arguments passed to the R function model.matrix

tempmat matrix for which row lookup required

Details

This is an internal secr function that you are unlikely ever to use. . . . may be used to pass contrasts.arg

to model.matrix.

Each real parameter is notionally different for each unique combination of session, individual, oc-

casion, detector and latent class, i.e., for R sessions, n individuals, S occasions and K detectors

there are potentially R×n×S×K different values. Actual models always predict a much reduced

set of distinct values, and the number of rows in the design matrix is reduced correspondingly; a

secr.design.MS 145

parameter index array allows these to retrieved for any combination of session, individual, occasion

and detector.

The keep.dframe option is provided for the rare occasions that a user may want to check the data

frame that is an intermediate step in computing each design matrix with model.matrix (i.e. the

data argument of model.matrix).

Value

For secr.design.MS, a list with the components

designMatrices list of reduced design matrices, one for each real detection parameter

parameterTable index to row of the reduced design matrix for each real detection parameter;

dim(parameterTable) = c(uniquepar, np), where uniquepar is the number of

unique combinations of paramater values (uniquepar < RnSKM) and np is

the number of parameters in the detection model.

PIA Parameter Index Array - index to row of parameterTable for a given session,

animal, occasion and detector; dim(PIA) = c(R,n,S,K,M)

R number of sessions

Optionally (keep.dframe = TRUE) -

dframe dataframe of design data, one column per covariate, one row for each c(R,n,S,K,M).

For multi-session models n, S, and K refer to the maximum across sessions

validdim list giving the valid dimensions (n, S, K, M) before padding

For make.lookup, a list with components

lookup matrix of unique rows

index indices in lookup of the original rows

See Also

D.designdata, model.matrix

Examples

secr.design.MS (captdata, models = list(g0 = ~b))$designMatrices

secr.design.MS (captdata, models = list(g0 = ~b))$parameterTable

peek at design data constructed for learned response model

head(captdata)

temp <- secr.design.MS (captdata, models = list(g0 = ~b),

keep.dframe = TRUE)

a1 <- temp$dframe$animal == 1 & temp$dframe$detector %in% 8:10

temp$dframe[a1,]

... and trap specific learned response model

temp <- secr.design.MS (captdata, models = list(g0 = ~bk),

keep.dframe = TRUE)

a1 <- temp$dframe$animal == 1 & temp$dframe$detector %in% 8:10

temp$dframe[a1,]

146 secr.fit

secr.fit Spatially Explicit Capture–Recapture

Description

Estimate animal population density with data from an array of passive detectors (traps) by fitting a

spatial detection model by maximizing the likelihood. Data must have been assembled as an object

of class capthist. Integration is by summation over the grid of points in mask.

Usage

secr.fit (capthist, model = list(D~1, g0~1, sigma~1),

mask = NULL, buffer = NULL, CL = FALSE, detectfn = NULL,

binomN = NULL, start = NULL, link = list(), fixed = list(),

timecov = NULL, sessioncov = NULL, hcov = NULL, groups = NULL,

dframe = NULL, details = list(), method = "Newton-Raphson",

verify = TRUE, biasLimit = 0.01, trace = NULL, ncores = 1, ...)

Arguments

capthist capthist object including capture data and detector (trap) layout

mask mask object

buffer scalar mask buffer radius if mask not specified (default 100 m)

CL logical, if true then the model is fitted by maximizing the conditional likelihood

detectfn integer code or character string for shape of detection function 0 = halfnormal,

1 = hazard rate etc. – see detectfn

binomN integer code for distribution of counts (see Details)

start vector of initial values for beta parameters, or secr object from which they may

be derived

link list with optional components ‘D’, ‘g0’, ‘sigma’ and ‘z’, each a character string

in {"log", "logit", "identity", "sin"} for the link function of the relevant real

parameter

fixed list with optional components corresponding to each ‘real’ parameter (e.g., ‘D’,

‘g0’, ‘sigma’), the scalar value to which parameter is to be fixed

model list with optional components ‘D’, ‘g0’, ‘sigma’ and ‘z’, each symbolically

defining a linear predictor for the relevant real parameter using formula no-

tation

timecov optional dataframe of values of time (occasion-specific) covariate(s).

sessioncov optional dataframe of values of session-specific covariate(s).

hcov character name of individual covariate for known membership of mixture classes

(ignored if not h2 or h3 model).

groups optional vector of one or more variables with which to form groups. Each el-

ement should be the name of a factor variable in the covariates attribute of

capthist.

dframe optional data frame of design data for detection parameters

details list of additional settings, mostly model-specific (see Details)

secr.fit 147

method character string giving method for maximizing log likelihood

verify logical, if TRUE the input data are checked with verify

biasLimit numeric threshold for predicted relative bias due to buffer being too small

trace logical, if TRUE then output each evaluation of the likelihood, and other mes-

sages

ncores integer number of cores available for parallel processing

... other arguments passed to the maximization function

Details

secr.fit fits a SECR model by maximizing the likelihood. The likelihood depends on the detector

type ("multi", "proximity", "count", "polygon" etc.) of the traps attribute of capthist (Borchers

and Efford 2008, Efford, Borchers and Byrom 2009, Efford, Dawson and Borchers 2009, Efford

2011). The ‘multi’ form of the likelihood is also used, with a warning, when detector type =

"single" (see Efford et al. 2009 for justification). The default model is null (constant density and

detection probability). The set of variables available for use in linear predictors includes some

that are constructed automatically (t, T, b, B, bk, Bk, k, K), group (g), and others that appear in

the covariates of the input data. See also usage for varying effort, timevaryingcov to construct

other time-varying detector covariates, and secr models and ../doc/secr-overview.pdf for more

on defining models.

buffer and mask are alternative ways to define the region of integration (see mask). If mask is

not specified then a mask of type "trapbuffer" will be constructed automatically using the specified

buffer width in metres.

The length of timecov should equal the number of sampling occasions (ncol(capthist)). Argu-

ments timecov, sessioncov and groups are used only when needed for terms in one of the model

specifications. Default link is list(D="log",g0="logit", sigma="log").

If start is missing then autoini is used for D, g0 and sigma, and other beta parameters are set

initially to arbitrary values, mostly zero. start may be a previously fitted nested model. In this

case, a vector of starting beta values is constructed from the nested model and additional betas are

set to zero. Mapping of parameters follows the default in score.test, but user intervention is not

allowed.

binomN (previously a component of details) determines the distribution that is fitted for the num-

ber of detections of an individual at a particular detector, on a particular occasion, when the detectors

are of type ‘count’, ‘polygon’ or ‘transect’:

• binomN > 1 binomial with size binomN

• binomN = 1 binomial with size determined by usage

• binomN = 0 Poisson

• binomN < 0 negative binomial with size abs(binomN) – see dnbinom

The default with these detectors is to fit a Poisson distribution. The ‘size’ parameter of the negative

binomial is not estimated: it must be supplied. binomN should be an integer unless negative.

details is used for various specialized settings listed below. These are described separately - see

details.

centred centre x-y coordinates

distribution binomial vs Poisson N

fixedbeta specify fixed beta parameter(s)

hessian variance method

../doc/secr-overview.pdf

148 secr.fit

ignoreusage override usage in traps object of capthist

intwidth2 controls optimise when only one parameter

LLonly compute one likelihood for values in start

param optional parameterisation for multi-catch detectors

scaleg0 structural relationshp between g0 and sigma

scalesigma structural relationship between sigma and density

telemetrysigma use coordinate information from telemetry

If method = "Newton-Raphson" then nlm is used to maximize the log likelihood (minimize the

negative log likelihood); otherwise optim is used with the chosen method ("BFGS", "Nelder-Mead",

etc.). If maximization fails a warning is given appropriate to the method.

From secr 2.5.1, method = ’none’ may be used to skip likelihood maximization and compute only

the hessian for the current dataset at the values in start, and the corresponding variance-covariance

matrix of beta parameters. The computation uses fdHess from nlme.

If verify = TRUE then verify is called to check capthist and mask; analysis is aborted if "errors"

are found. Some conditions that trigger an "error" are benign (e.g., no detections in some sessions

of a multi-session study of a sparse population); use verify = FALSE to avoid the check. See also

Note.

If buffer is used rather than mask, and biasLimit is valid, then the estimated density is checked

for bias due to the choice of buffer. A warning is generated when buffer appears to be too small

(predicted RB(D-hat) > biasLimit, default 1% relative bias). The prediction uses bias.D. No

check is performed when mask is specified, when biasLimit is 0, negative or NA, or when the

detector type is "polygon", "transect", "polygonX" or "transectX".

If ncores > 1 the parallel package will be used to create processes on multiple cores (see Parallel

for more). Specifying extra cores may improve the speed of multi-session analyses (it may also slow

them down, as data must be copied back and forth). There is presently no benefit for single-session

analyses.

Value

The function secr.fit returns an object of class secr. This has components

call function call (as character string prior to secr 1.5)

capthist saved input

mask saved input

detectfn saved input

CL saved input

timecov saved input

sessioncov saved input

hcov saved input (from 2.6.0)

groups saved input

dframe saved input

design reduced design matrices, parameter table and parameter index array for actual

animals (see secr.design.MS)

design0 reduced design matrices, parameter table and parameter index array for ‘naive’

animal (see secr.design.MS)

secr.fit 149

start vector of starting values for beta parameters

link list with one component for each real parameter (typically ‘D’, ‘g0’, ‘sigma’),giving

the name of the link function used for each real parameter.

fixed saved input

parindx list with one component for each real parameter giving the indices of the ‘beta’

parameters associated with each real parameter

model saved input

details saved input

vars vector of unique variable names in model

betanames names of beta parameters

realnames names of fitted (real) parameters

fit list describing the fit (output from nlm or optim)

beta.vcv variance-covariance matrix of beta parameters

N if CL = FALSE, array of predicted number in each group at in each session,

summed across mask, dim(N) = c(ngroups, nsessions), otherwise NULL

version secr version number

starttime character string of date and time at start of fit

proctime processor time for model fit, in seconds

Note

One system of units is used throughout secr. Distances are in metres and areas are in hectares (ha).

The unit of density is animals per hectare. 1 ha = 10000 m^2 = 0.01 km^2. To convert density to

animals / km^2, multiply by 100.

print, AIC, vcov, and predict methods are provided. derived is used to compute the derived

parameters ‘esa’ (effective sampling area) and ‘D’ (density) for models fitted by maximizing the

conditional likelihood (CL = TRUE).

Components ‘version’ and ‘starttime’ were introduced in version 1.2.7, and recording of the com-

pletion time in ‘fitted’ was discontinued.

The Newton-Raphson algorithm is fast, but it sometimes fails to compute the information matrix

correctly, causing some or all standard errors to be set to NA. This usually indicates a major problem

in fitting the model, and parameter estimates should not be trusted. See Troubleshooting.

The component D in output was replaced with N from version 2.3. Use region.N to obtain SE or

confidence intervals for N-hat, or to infer N for a different region.

Prior to version 2.3.2 the buffer bias check could be switched off by setting verify = FALSE. This

is now done by setting biasLimit = 0.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with

area or transect searches. Unpublished manuscript.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

150 secr.make.newdata

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

Detection functions, AIC.secr, capthist, details, derived, mask, predict.secr, print.secr,

region.N, Speed tips Troubleshooting usage, vcov.secr, verify,

Examples

Not run:

construct test data (array of 48 ‘multi-catch’ traps)

detectors <- make.grid (nx = 6, ny = 8, detector = "multi")

detections <- sim.capthist (detectors, popn = list(D = 10,

buffer = 100), detectpar = list(g0 = 0.2, sigma = 25))

fit & print null (constant parameter) model

secr0 <- secr.fit (detections)

secr0 ## uses print method for secr

compare fit of null model with learned-response model for g0

secrb <- secr.fit (detections, model = g0~b)

AIC (secr0, secrb)

typical result

model detectfn npar logLik AIC AICc dAICc AICwt

secr0 D~1 g0~1 sigma~1 halfnormal 3 -347.1210 700.242 700.928 0.000 0.7733

secrb D~1 g0~b sigma~1 halfnormal 4 -347.1026 702.205 703.382 2.454 0.2267

End(Not run)

secr.make.newdata Create Default Design Data

Description

Internal function used to generate a dataframe containing design data for the base levels of all

predictors in an secr object.

Usage

secr.make.newdata(object)

Arguments

object fitted secr model object

secr.model 151

Details

secr.make.newdata is used by predict in lieu of user-specified ‘newdata’. There is seldom any

need to call secr.make.newdata directly.

Value

A dataframe with one row for each session and group, and columns for the predictors used by

object$model.

See Also

predict.secr, secr.fit

Examples

from previously fitted model

secr.make.newdata(secrdemo.b)

secr.model Spatially Explicit Capture–Recapture Models

Description

A family of capture–recapture models (e.g. SECR) may include submodels that constrain variation

in core parameters and include the effects of covariates. The language of generalised linear models

is convenient for describing submodels (e.g., Huggins 1989, Lebreton et al. 1992). Each parameter

is treated as a linear combination of effects on its transformed (‘link’) scale. This is useful for

combining effects because, given a suitable link function, any combination maps to a feasible value

of the parameter. The logit scale has this property for probabilities in (0,1), and the natural log scale

works for positive parameters i.e. (0, +Inf).

Submodels for spatially explicit capture–recapture in secr are defined symbolically using the R

formula notation. A separate linear predictor is used for each core parameter. Core parameters

are ‘real’ parameters in the terminology of MARK, and secr uses that term to reduce confu-

sion. Four real parameters are commonly modelled in secr: D (density), g0, sigma and z. Only

the last three real parameters, the ones jointly defining detection probability as a function of lo-

cation, can be estimated directly when the model is fitted by maximizing the conditional like-

lihood. D is then a derived parameter. ‘z’ is a shape parameter used only when the detection

function requires three parameters. Other real parameters are used for acoustic models (beta0,

beta1; ../doc/secr-sound.pdf) and for the mixture proportion (pmix) in finite mixture models

(../doc/secr-finitemixtures.pdf).

Each real parameter has a linear predictor of the form

y = X * beta,

where y is vector of parameter values on the link scale, X is a design matrix of predictor values,

beta is a vector of coefficients, and ‘*’ stands for matrix multiplication. The elements of beta are

estimated when we fit the model; in MARK these are called ‘beta parameters’ to distinguish them

from the ‘real’ parameter values in y. X has one column for each element of beta. To repeat: there

is an X and a beta for each real parameter; elsewhere in the documentation we use ‘beta’ to refer to

../doc/secr-sound.pdf
../doc/secr-finitemixtures.pdf

152 secr.model.density

the vector got by concatenating all the parameter-specific beta’s. We now describe design matrices

in more detail.

[Some variations on the basic SECR model do not fit easily into this framework. An example is the

choice of detection function (halfnormal vs hazard-rate). These are treated as higher-level choices.]

Design matrices

The design matrix contains a column of ‘1’s (for the constant or intercept term) and additional

columns as needed to describe the effects in the submodel. Depending on the model, these may

be continuous predictors (e.g. air temperature to predict occasion-to-occasion variation in g0),

indicator variables (e.g. 1 if animal i was caught before occasion s, 0 otherwise), or coded factor

levels.

Within secr.fit, a design matrix is constructed automatically from the input data (capthist)

and the model formula (e.g. model$g0) in a 2-stage process. First, a data frame is built con-

taining ‘design data’ with one column for each variable in the formula. Second, the R function

model.matrix() is used to construct the design matrix. This process is hidden from the user. The

design matrix will have at least one more column than the design data, and more if the formula

includes interactions or factors with more than two levels. For a good description of the general

approach see the documentation for RMark (Laake and Rexstad 2008). The key point is that the

necessary design data can be either extracted from the inputs (capthist and mask) or generated

automatically (e.g. indicator of previous capture, mentioned in the previous paragraph).

Real parameters fall into two groups: density (D) and detection (g0, sigma and z). Density and

detection parameters are subject to different types of effect, so they use different design matrices

and are described separately here secr detection models and here secr density models.

Note

The structure of secr precludes certain types of model. Unlike density, detection parameters (g0,

sigma etc.) cannot be modelled as varying in space per se, whether continuously or discretely (e.g.

as a function of habitat class). However, such variation may be modelled between detectors or

between sessions. As an example, consider a measure of vegetation cover in a 50-m circle centred

on each detector. This may be used as a detector covariate in models for g0 or sigma. A ‘detector-

centred’ view of habitat effects is almost as sensible as an ‘animal-centred’ view; the one reservation

is that the spatial scale (radius of the circle) is arbitrary rather than being driven by sigma as you

might like. Perhaps this could be fixed in future versions by computing the trap covariate ‘on the

fly’ from covariates in the habitat mask, given the current magnitude of sigma.

References

Laake, J. and Rexstad E. (2008) Appendix C. RMark - an alternative approach to building linear

models in MARK. In: Cooch, E. and White, G. (eds) Program MARK: A Gentle Introduction. 6th

edition. Available online at http://www.phidot.org.

secr.model.density Density Models

Description

SECR can fit an inhomogeneous Poisson model to describe the distribution of animals. This may

be viewed as a surface of expected density across the study area.

http://www.phidot.org

secr.model.density 153

The log likelihood is evaluated in secr.fit by summing values at points on a ‘habitat mask’. Each

point in a habitat mask represents a grid cell of potentially occupied habitat (their combined area

may be almost any shape and may include disjunct patches).

The density model may take one of two forms: a user-provided R function or a linear model on the

link scale (see the link argument of secr.fit; the default link for density is ‘log’). User-provided

functions are described in the accompanying vignette ../doc/secr-densitysurfaces.pdf. Here

we focus on linear models.

The full design matrix for density (D) has one row for each point in the mask. The design matrix

has one column for the intercept (constant) term and one for each predictor. Predictors may be

based on Cartesian coordinates (e.g. ‘x’ for an east-west trend), a continuous habitat variable (e.g.

vegetation cover) or a categorical (factor) habitat variable. Predictors must be known for all points

in the mask (non-habitat excluded). The variables ‘x’, ‘y’, ‘x2’, ‘y2’, ‘xy’, ‘session’, ‘Session’

and ‘g’ are provided automatically. Other covariates should be named columns in the ‘covariates’

attribute of the habitat mask.

Variable Description Data source

x x-coordinate automatic

y y-coordinate automatic

x2 x-coordinate^2 automatic

y2 y-coordinate^2 automatic

xy x-coordinate * y-coordinate automatic

session session factor automatic

Session session number 0:(R-1) automatic

g group factor automatic

[user] mask covariate covariates(mask) as named in formula

The submodel for density (D) is a named component of the list used in the model argument of

secr.fit. It is expressed in R formula notation by appending terms to ∼ .

Density surfaces resulting from the fitting of SECR models are manipulated in secr as objects of

class ‘Dsurface’. See the vignette ../doc/secr-densitysurfaces.pdf for details and examples,

including functions for prediction and plotting.

Note

Note that no density model is fitted when secr.fit is called with CL = TRUE.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

See Also

secr models, secr detection models, secr.fit, Dsurface, predictDsurface, plot.Dsurface

Examples

D = ~ 1 ## constant density (homogeneous Poisson)

D = ~ x ## east-west trend

D = ~ cover ## requires ’cover’ as a mask covariate

../doc/secr-densitysurfaces.pdf
../doc/secr-densitysurfaces.pdf

154 secr.model.detection

secr.model.detection Models for Detection Parameters

Description

For spatially explicit capture–recapture estimation of a closed population, we model the detection

of individual i on occasion s at detector k. Given n observed individuals on S occasions at K
detectors there are therefore n.S.K detection probabilities of interest. We can think of these as

elements of a 3-dimensional array. Strictly, we are also interested in the detection probabilities of

unobserved individuals, but these are estimated only by extrapolation from those observed so we do

not consider them in the array.

In a null (constant) model, all n.S.K detection probabilities are the same. The conventional sources

of variation in capture probability (Otis et al. 1978) appear as variation in the n dimension (‘in-

dividual heterogeneity’ h), in the S dimension (‘time variation’ t) or as a particular interaction in

these two dimensions (‘behavioural response to capture’ b). Combined effects are possible.

Spatially explicit capture–recapture introduces two sorts of additional complexity. Firstly, detection

probability is no longer a scalar (even for a particular animal, occasion and detector combination);

it is described by the detection function, which may have two parameters (e.g. g0, sigma for half-

normal), three parameters (e.g. g0, sigma, z for the hazard-rate function), or potentially more.

Secondly, many more types of variation are possible. Any of the parameters of the detection func-

tion may vary with respect to individual (i), occasion (s) or detector (k). For example, there may

be a covariate associated with trap location that influences detection probability, and this effect may

vary between occasions (see timevaryingcov.

The full design matrix for each detection submodel has one row for each combination of i, s and

k (animal, occasion and trap). Allowing a distinct probability for each animal (the ‘n’ dimension)

may seem excessive, as continuous individual-specific covariates are feasible only when a model is

fitted by maximizing the conditional likelihood (cf Huggins 1989). However, the full n.S.K array

is convenient for coding both group membership (Lebreton et al. 1992, Cooch and White 2008) and

experience of capture, even when individual-level heterogeneity cannot be modelled.

Variation between ‘sessions’ and between latent classes in a finite mixture adds two further di-

mensions: in principle there is an n.S.K array for each latent class (classes are numbered 1..M),

and an n.S.K.M array for each session (sessions are numbered 1..R). The full design matrix has

n.S.K.M.R rows. We do not expand on this here.

Specifying effects on detection parameters

Effects on parameters of detection probability are specified with R formulae using standard variable

names or named covariates supplied by the user. The formula for each detection parameter (g0,

sigma, z) may be constant (∼ 1, the default) or some combination of terms in standard R formula

notation (see formula).

Variable Description Data source Dim

t time factor (one level for each occasion) automatic S
T time trend (integer covariate 0:(S-1)) automatic S
tcov default time covariate timecov[,1] S
kcov default trap covariate covariates (traps)[,1] K
b learned response capthist n.S
B transient (Markovian) response capthist n.S
bk animal x site learned response capthist n.S.K

secr.model.detection 155

Bk animal x site transient response capthist n.S.K
k site learned response capthist S.K
K site transient response capthist S.K
g group see below n
h2 2-class mixture – 2

h3 3-class mixture – 2

session session factor (one level for each session) automatic R
Session session number 0:(R-1) automatic R
[user] individual covariate covariates (capthist) n
[user] session covariate sessioncov R
[user] time covariate timecov S
[user] detector covariate covariates (traps) K

The classic ‘learned response’ is a step change following first detection; this is implemented with

the predictor variable ‘b’ which is FALSE up to and including the time of first capture and TRUE

afterwards. An alternative is a response that depends only on detection at the last opportunity (‘B’).

The site-specific learned and transient responses ‘bk’ and ‘Bk’ imply that an individual becomes

trap happy or trap shy in relation to a particular detector, as in the wolverine example of Royle et

al. (2011).

Groups (‘g’) are defined by the interaction of the capthist categorical (factor) individual covari-

ates identified in secr.fit argument ‘groups’. Groups are redundant with conditional likelihood

because individual covariates of whatever sort (continuous or categorical) may be included freely

in the model.

Individual heterogeneity (‘h’ in the notation of Otis et al. 1978) may modelled by treating any detec-

tion parameter as a 2-part or 3-part finite mixture e.g. g0 ∼ h2. See ../doc/secr-finitemixtures.

pdf.

Any other variable name appearing in a formula is assumed to refer to a user-defined predictor.

These will be interpreted by searching for name matches in the dataframes of individual, session,

time and trap covariates, in that order (remembering that individual covariates other than groups

are allowed only when the model is fitted by maximizing the conditional likelihood). The type of

the predictor is inferred from the data frame in which it first occurs. Thus if the model included

the formula ‘g0 ~ wetness’, and ‘wetness’ was a column in the data frame of time covariates (time-

cov), then ‘wetness’ would be interpreted as a time covariate, and a column of the same name in

covariates(traps) would be ignored. In this case, renaming the column in timecov would expose the

traps covariate, and ‘wetness’ would be interpreted as an attribute of detectors, rather than sample

intervals. This is a good reason to give covariates distinctive names!

The design matrix for detection parameters may also be provided manually in the argument dframe.

This feature requires some care and is better avoided.

The submodels for ‘g0’, ‘sigma’ and ‘z’ are named components of the model argument of secr.fit.

They are expressed in R formula notation by appending terms to ∼ . The name of the response

may optionally appear on the left hand side of the formula (e.g. g0∼ b).

Note

The parameter ‘z’ was previously called ‘b’; it was renamed to avoid confusion with the predictor

b used in a formula for a learned trap response.

../doc/secr-finitemixtures.pdf
../doc/secr-finitemixtures.pdf

156 secrdemo

References

Cooch, E. and White, G. (eds) (2008) Program MARK: A Gentle Introduction. 6th edition. Avail-

able online at http://www.phidot.org.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-

metrics 39, 29–42.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992) Modeling survival and test-

ing biological hypotheses using marked animals: a unified approach with case studies. Ecological

Monographs 62, 67–118.

Royle, J. A., Magoun, A. J., Gardner, B., Valkenburg, P. and Lowell, R. E. (2011) Density estimation

in a wolverine population using spatial capture–reecapture models. Journal of Wildlife Management

75, 604–611.

See Also

secr models, secr density models, secr.fit

Examples

constant (null) model

list(g0 = ~1, sigma = ~1)

both detection parameters change after first capture

list(g0 = ~b, sigma = ~b)

group-specific parameters; additive time effect on g0

groups are defined via the ’‘groups’ argument of secr.fit

list(g0 = ~ g + t, sigma = ~ g)

g0 depends on trap-specific covariate

list(g0 = ~ kcov)

secrdemo SECR Models Fitted to Demonstration Data

Description

Demonstration data from program Density are provided as text files in the ‘extdata’ folder, as raw

dataframes (trapXY, captXY), and as a combined capthist object (captdata) ready for input to

secr.fit.

The fitted models are objects of class secr formed by

secrdemo.0 <- secr.fit (captdata)

secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))

secrdemo.CL <- secr.fit (captdata, CL = TRUE)

Usage

data(secrdemo)

http://www.phidot.org

secrdemo 157

Details

The raw data are 235 fictional captures of 76 animals over 5 occasions in 100 single-catch traps 30

metres apart on a square grid with origin at (365,365).

Dataframe trapXY contains the data from the Density input file ‘trap.txt’, and captXY contains the

data from ‘capt.txt’ (Efford 2007).

The fitted models use a halfnormal detection function and the likelihood for multi-catch traps (ex-

pect estimates of g0 to be biased because of trap saturation Efford et al. 2009). The first is a null

model (i.e. parameters constant) and the second fits a learned trap response.

Object Description

captXY data.frame of capture data

trapXY data.frame of trap locations

captdata capthist object

secrdemo.0 fitted secr model – null

secrdemo.b fitted secr model – g0 trap response

secrdemo.CL fitted secr model – null, conditional likelihood

Source

Efford, M.G. (2007) Density 4.1: software for spatially explicit capture-recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

capthist, read.capthist

Examples

Not run:

navigate to folder with raw data files

olddir <- setwd (system.file("extdata", package="secr"))

construct capthist object from raw data

captdata <- read.capthist (’capt.txt’, ’trap.txt’, fmt = ’XY’)

generate demonstration fits

secrdemo.0 <- secr.fit (captdata)

secrdemo.CL <- secr.fit (captdata, CL = TRUE)

secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))

restore previous setting

setwd(olddir)

End(Not run)

display the null model fit, using the print method for secr

secrdemo.0

http://www.otago.ac.nz/density

158 session

compare fit of models

AIC(secrdemo.0, secrdemo.b)

display estimates for the two models (single session)

collate(secrdemo.0, secrdemo.b)[1,,,]

session Session Vector

Description

Extract or replace the session names of a capthist object.

Usage

session(object, ...)

session(object) <- value

Arguments

object object with ‘session’ attribute e.g. capthist

value character vector or vector that may be coerced to character, one value per session

... other arguments (not used)

Details

Replacement values will be coerced to character.

Value

a character vector with one value for each session in capthist

Note

Like Density, secr uses the term ‘session’ for a closed-population sample. A session usually in-

cludes data from several closely-spaced capture occasions (often consecutive days). Each ‘primary

session’ in the ‘robust’ design of Pollock (1982) would be treated as a session in secr. secr also

uses ‘session’ for independent subsets of the capture data distinguished by characteristics other than

sampling time (as above). For example, two grids trapped simultaneously could be analysed as dis-

tinct sessions if (i) they were far enough apart that there was negligible prospect of the same animal

being caught on both grids, and (ii) there was interest in comparing estimates from the two grids, or

fitting a common detection model.

The log likelihood for a session model is the sum of the separate session log likelihoods. Although

this assumes independence of sampling, parameters may be shared across sessions, or session-

specific parameter values may be functions of session-level covariates. For many purposes, ‘ses-

sions’ are equivalent to ‘groups’. For multi-session models the detector array and mask are specified

separately for each session. Group models are therefore generally simpler to implement. On the

other hand, sessions offer more flexibility in defining and evaluating between-session models, in-

cluding trend models.

Sessions are a recent addition to secr and the documentation and testing of session capability is

therefore less advanced than for other features.

signalmatrix 159

References

Pollock, K. H. (1982) A capture-recapture design robust to unequal probability of capture. Journal

of Wildlife Management 46, 752–757.

See Also

capthist

Examples

session(captdata)

signalmatrix Reformat Signal Data

Description

Produce sound x microphone matrix, possibly with sound covariates as extra columns.

Usage

signalmatrix(object, noise = FALSE, recodezero = FALSE,

prefix = ’Ch’, signalcovariates = NULL)

Arguments

object object inheriting from secr class ‘capthist’

noise logical; if TRUE, noise is extracted instead of signal

recodezero logical; if TRUE zero signals are set to NA

prefix character value used to form channel names

signalcovariates

character vector of covariate names from signalframe to add as columns

Details

This function extracts signal or noise data from a capthist object where is stored in the ‘signalframe’

attribute. in a natural sound x microphone table. There is no equivalent replacement function.

The signalcovariates argument may be used to specify additional columns of the signal frame to

collapse and add as columns to the right of the actual signal data. Ordinarily there will be multiple

rows in signalframe for each row in the output; the covariate value is taken from the first matching

row.

Value

A dataframe with dim = c(n,K+j) where n is the number of separate sounds, K is the number of

microphones, and j is the number of covariates (by default j = 0).

See Also

ovensong

160 sim.capthist

Examples

use ’secr’ ovenbird data

signalmatrix(signalCH)

sim.capthist Simulate Detection Histories

Description

Create a set of capture or marking-and-resighting histories by simulated sampling of a 2-D popula-

tion using an array of detectors.

Usage

sim.capthist(traps, popn = list(D = 5, buffer = 100,

Ndist = "poisson"), detectfn = 0, detectpar = list(),

noccasions = 5, nsessions = 1, binomN = NULL,

p.available = 1, renumber = TRUE, seed = NULL,

maxperpoly = 100)

sim.resight(traps, ..., q = 1, pID = 1, unmarked = TRUE,

nonID = TRUE)

Arguments

traps traps object with the locations and other attributes of detectors

popn locations of individuals in the population to be sampled, either as a popn object

or a list with named components ‘D’ (density) and ‘buffer’

detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of occasions to simulate

nsessions number of sessions to simulate

binomN integer code for distribution of counts (see Details)

p.available vector of one or two probabilities (see Details)

renumber logical for whether output rows should labeled sequentially (TRUE) or retain

the numbering of the population from which they were drawn (FALSE)

seed an object specifying if and how the random number generator should be initial-

ized (‘seeded’)

maxperpoly integer maximum number of detections of an individual in one polygon or tran-

sect on any occasion

... arguments to pass to sim.capthist

q number of marking occasions

pID probability of individual identification for marked animals

unmarked logical, if true unmarked individuals are not recorded during ‘sighting’

nonID logical, if true then unidentified marked individuals are not recorded during

‘sighting’

sim.capthist 161

Details

If popn is not of class ‘popn’ then a homogeneous Poisson population with the desired density

(animals/ha) is first simulated over the rectangular area of the bounding box of traps plus a buffer

of the requested width (metres). The detection algorithm depends on the detector type of traps. For

‘proximity’ detectors, the actual detection probability of animal i at detector j is the naive probability

given by the detection function. For ‘single’ and ‘multi’ detectors the naive probability is modified

by competition between detectors and, in the case of ‘single’ detectors, between animals. See Efford

(2004) and other papers below for details.

Detection parameters in detectpar are specific to the detection function, which is indicated by

a numeric code (detectfn). Parameters may vary with time - for this provide a vector of length

noccasions. The g0 parameter may vary both by time and detector - for this provide a matrix with

noccasions rows and as many columns as there are detectors. The default detection parameters are

list(g0 = 0.2, sigma = 25, z = 1).

The default is to simulate a single session. This may be overridden by providing a list of populations

to sample (argument popn) or by specifying nsessions > 1 (if both then the number of sessions

must match). Using nsessions > 1 results in replicate samples of populations with the same density

etc. as specified directly in the popn argument.

binomN determines the statistical distribution of the number of detections of an individual at a par-

ticular ‘count’ detector or polygon on a particular occasion. A Poisson distribution is indicated by

binomN = 0; see secr.fit for more. The distribution is always Bernoulli (binary) for ‘proximity’

and ‘signal’ detectors.

p.available specifies temporary non-availability for detection in multi-session simulations. If a

single probability is specified then temporary non-availability is random (independent from session

to session). If two probabilities are given then non-availability is Markovian (dependent on previous

state) and the two values are for animals available and not available at the preceding session. In the

Markovian case, availability in the first session is assigned at random according to the equilibrium

probability p2 / (1 - p1 + p2). Incomplete availability is not implemented for sampling lists of

populations.

detectpar may include a component ‘truncate’ for the distance beyond which detection probability

is set to zero. By default this value is NULL (no specific limit).

detectpar may also include a component ‘recaptfactor’ for a general learned trap response. For

‘single’ and ‘multi’ detector types the probability of detection changes by this factor for all occa-

sions after the occasion of first capture. Attempted use with other detector types causes an error. If

recapfactor x g(d) > 1.0, g(d) is truncated at 1.0. Other types of response (site-specific bk, Marko-

vian B) are not allowed.

If popn is specified by an object of class ‘popn’ then any individual covariates will be passed on;

the covariates attribute of the output is otherwise set to NULL.

The random number seed is managed as in simulate.

sim.resight generates mark-resight data for ‘q’ marking occasions followed by ‘noccasions – q’

sighting occasions. sim.capthist is first called with the arguments ‘traps’ and The detector

type must be ‘proximity’. The ‘usage’ attribute of traps is ignored at present, so the same detectors

are operated on all occasions. Any detection-parameter vector of length 2 in . . . is interpreted as

providing differing constant values for the marking and sighting phases.

Value

For sim.capthist, an object of class capthist, a matrix or 3-dimensional array with additional

attributes. Rows represent individuals and columns represent occasions; the third dimension, used

when detector type = ‘proximity’, codes presence or absence at each detector. For trap detectors

162 sim.capthist

(‘single’, ‘multi’) each entry in capthist is either zero (no detection) or the sequence number of

the trap.

The initial state of the R random number generator is stored in the ‘seed’ attribute.

For sim.resight, an object of class capthist, always a 3-dimensional array, with additional at-

tributes Tu and Tm containing counts of ‘unmarked’ and ‘marked, not identified’ sightings.

Note

External code is called to speed the simulations. The present version assumes a null model, i.e.,

naive detection probability is constant except for effects of distance and possibly time (using vector-

valued detection parameters from 1.2.10). You can, however, use rbind.capthist to combine

detections of population subclasses (e.g. males and females) simulated with different parameter

values. This is not valid for detector type "single" because it fails to allow for competition for traps

between subclasses. Future versions may allow more complex models.

truncate has no effect (i) when using a uniform detection function with radius (sigma) <= truncate

and (ii) with signal strength detection (detectfn 10, 11). Note that truncated detection functions are

provided for de novo simulation, but are not available when fitting models with in secr.fit or

simulating from a fitted model with sim.secr.

maxperpoly limits the size of the array allocated for detections in C code; an error results if the is

number is exceeded.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for

capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-

tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

sim.popn, capthist, traps, popn, Detection functions, simulate

Examples

simple example

detector = "multi" (default)

temptrap <- make.grid(nx = 6, ny = 6, spacing = 20)

sim.capthist (temptrap, detectpar = list(g0 = 0.2, sigma = 20))

with detector = "proximity", there may be more than one

detection per individual per occasion

temptrap <- make.grid(nx = 6, ny = 6, spacing = 20, detector =

"proximity")

summary(sim.capthist (temptrap, detectpar =

list(g0 = 0.2, sigma = 20)))

multiple sessions

grid4 <- make.grid(nx = 2, ny = 2)

sim.popn 163

temp <- sim.capthist (grid4, popn = list(D = 1), nsessions = 20)

summary(temp, terse = TRUE)

unmarked or presence types

grid <- make.grid(nx = 10, ny = 10, detector = "unmarked")

CH <- sim.capthist (grid, noccasions = 5)

CH

"presence" and "unmarked" data are stored as "count" data

behaviour is controlled by detector type, e.g.

detector(traps(CH)) <- "presence"

CH

sim.popn Simulate 2-D Population

Description

Simulate a Poisson process representing the locations of individual animals.

Usage

sim.popn (D, core, buffer = 100, model2D = "poisson",

buffertype = "rect", poly = NULL, covariates =

list(sex = c(M = 0.5, F = 0.5)), number.from = 1,

Ndist = "poisson", nsession = 1, details = NULL,

seed = NULL, ...)

tile(popn, method = "reflect")

Arguments

D density animals / hectare (10 000 m\^2) (see Details for IHP case)

core data frame of points defining the core area

buffer buffer radius about core area

model2D character string for 2-D distribution ("poisson", "cluster", "IHP", "coastal")

buffertype character string for buffer type

poly bounding polygon (see Details)

covariates list of named covariates

number.from integer ID for animal

Ndist character string for distribution of number of individuals

nsession number of sessions to simulate

details optional list with additional parameters

seed value for setting .Random.seed - either NULL or an integer

... arguments passed to subset if poly is not NULL

popn popn object

method character string "reflect" or "copy"

164 sim.popn

Details

core must contain columns ‘x’ and ‘y’; a traps object is suitable. For buffertype = "rect",

animals are simulated in the rectangular area obtained by extending the bounding box of core by

buffer metres to top and bottom, left and right. This box has area A.

A notional random covariate ‘sex’ is generated by default.

Each element of covariates defines a categorical (factor) covariate with the given probabilities

of membership in each class. No mechanism is provided for generating continuous covariates, but

these may be added later (see Examples).

Ndist may be ‘poisson’ or ‘fixed’. The number of individuals N has expected value DA. If DA is

non-integer then Ndist = "fixed" results in N ∈ {trunc(DA), trunc(DA) + 1}, with probabilities

set to yield DA individuals on average.

If model2D = "cluster" then the simulated population approximates a Neyman-Scott clustered

Poisson distribution. Ancillary parameters are passed as components of details: details$mu is the

fixed number of individuals per cluster and details$hsigma is the spatial scale (σ) of a 2-D kernel

for location within each cluster. The algorithm is

1. Determine the number of clusters (parents) as a random Poisson variate with λ = DA/µ

2. Locate each parent by drawing uniform random x- and y-coordinates

3. Generate mu offspring for each parent and locate them by adding random normal error to each

parent coordinate

4. Apply toroidal wrapping to ensure all offspring locations are inside the buffered area

Function tile replicates a popn pattern by either reflecting or copying and translating it to fill

a 3 x 3 grid.

Toroidal wrapping is a compromise. The result is more faithful to the Neyman-Scott distribution if

the buffer is large enough that only a small proportion of the points are wrapped.

If model2D = "IHP" then an inhomogeneous Poisson distribution is simulated. core should be a

habitat mask and D should be either a vector of length equal to the number of cells (rows) in core

or the name of a covariate in core that contains cell-specific densities (animals / hectare), or a

constant. The number of individuals in each cell is Poisson-distributed with mean DA where A is

the cell area (an attribute of the mask). buffertype and buffer are ignored, as the extent of the

population is governed entirely by the mask in core.

If model2D = "coastal" then a form of inhomogeneous Poisson distribution is simulated in which

the x- and y-coordinates are drawn from independent Beta distributions. Default parameters gener-

ate the ‘coastal’ distribution used by Fewster and Buckland (2004) for simulations of line-transect

distance sampling (x ~ Beta(1, 1.5), y ~ Beta(5, 1), which places 50% of the population in the

‘northern’ 13% of the rectangle). The four Beta parameters may be supplied in the vector compo-

nent Beta of the ‘details’ list (see Examples). The Beta parameters (1,1) give a uniform distribution.

Coordinates are scaled to fit the limits of a sampled rectangle, so this method assumes buffertype =

"rect".

If model2D = "hills" then a form of inhomogeneous Poisson distribution is simulated in which

intensity is a sine curve in the x- and y- directions (density varies symmetrically between 0 and 2 x D

along each axis). The number of hills in each direction (default 1) is determined by the ‘hills’ com-

ponent of the ‘details’ list (e.g. details = list(hills=c(2,3)) for 6 hills). If either number is negative

then alternate rows will be offset by half a hill. Displacements of the entire pattern to the right and

top are indicated by further elements of the ‘hills’ component (e.g. details = list(hills=c(1,1,0.5,0.5))

for 1 hill shifted half a unit to the top right; coordinates are wrapped, so the effect is to split the hill

into the four corners). Negative displacements are replaced by runif(1). Density is zero at the edge

when the displacement vector is (0,0) and rows are not offset.

If poly is specified, points outside poly are dropped. poly may be either

sim.popn 165

• a matrix or dataframe of two columns interpreted as x and y coordinates, or

• a SpatialPolygonsDataFrame object as defined in the package ‘sp’, possibly from reading a

shapefile with readShapePoly() from package ‘maptools’.

The subset method is called internally when poly is used; the . . . argument may be used to pass

values for keep.poly and poly.habitat.

The random number seed is managed as in simulate.lm.

Value

An object of class ‘popn’, a data frame with columns ‘x’ and ‘y’. Rows correspond to individuals.

Individual covariates (optional) are stored as a data frame attribute. The initial state of the R random

number generator is stored in the ‘seed’ attribute.

Note

Other buffertypes will be defined later (e.g. convex hull, concave)

References

Fewster, R. M. and Buckland, S. T. 2004. Assessment of distance sampling estimators. In: S.

T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas (eds)

Advanced distance sampling. Oxford University Press, Oxford, U. K. Pp. 281–306.

See Also

popn, plot.popn, randomHabitat, simulate

Examples

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100), y =

c(0,100)), buffer = 50)

plot, distinguishing "M" and "F"

plot(temppop, pch = 1, cex= 1.5,

col = c("green","red")[covariates(temppop)$sex])

add a continuous covariate

assumes covariates(temppop) is non-null

covariates(temppop)$size <- rnorm (nrow(temppop), mean = 15, sd = 3)

summary(covariates(temppop))

Neyman-Scott cluster distribution

oldpar <- par(xpd = TRUE, mfrow=c(2,3))

for (h in c(5,15))

for (m in c(1,4,16)) {

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100),

y = c(0,100)), model2D = "cluster", buffer = 100,

details = list(mu = m, hsigma = h))

plot(temppop)

text (50,230,paste(" mu =",m, "hsigma =",h))

}

par(oldpar)

166 sim.secr

Inhomogeneous Poisson distribution

xy <- secrdemo.0$mask$x + secrdemo.0$mask$y - 900

tempD <- xy^2 / 1000

plot(sim.popn(tempD, secrdemo.0$mask, model2D = "IHP"))

Coastal distribution in 1000-m square, homogeneous in

x-direction

arena <- data.frame(x = c(0, 1000, 1000, 0),

y = c(0, 0, 1000, 1000))

plot(sim.popn(D = 5, core = arena, buffer = 0, model2D =

"coastal", details = list(Beta = c(1, 1, 5, 1))))

Hills

plot(sim.popn(D = 100, core = arena, model2D = "hills",

buffer = 0, details = list(hills = c(-2,3,0,0))),

cex = 0.4)

tile demonstration

pop <- sim.popn(D = 100, core = make.grid(), model2D = "coastal")

par(mfrow = c(1,2), mar = c(2,2,2,2))

plot(tile(pop, "copy"))

polygon(cbind(-100,200,200,-100), c(-100,-100,200,200),

col = "red", density = 0)

title("copy")

plot(tile(pop, "reflect"))

polygon(cbind(-100,200,200,-100), c(-100,-100,200,200),

col = "red", density = 0)

title("reflect")

Not run:

simulate from inhomogeneous fitted density model

regionmask <- make.mask(traps(possumCH), type = ’polygon’,

spacing = 20, poly = possumremovalarea)

dsurf <- predictDsurface(possum.model.Dh2, regionmask)

possD <- covariates(dsurf)$D.0

posspop <- sim.popn(D = possD, core = dsurf, model = "IHP")

plot(regionmask, dots = FALSE, ppoly = FALSE)

plot(posspop, add = TRUE, frame = FALSE)

plot(traps(possumCH), add = TRUE)

End(Not run)

sim.secr Simulate From Fitted secr Model

Description

Simulate a spatially distributed population, sample from that population with an array of detectors,

and optionally fit an SECR model to the simulated data.

Usage

sim.secr 167

S3 method for class ’secr’

simulate(object, nsim = 1, seed = NULL, maxperpoly = 100,

chat = 1, ...)

sim.secr(object, nsim = 1, extractfn = function(x) c(deviance =

deviance(x), df = df.residual(x)), seed = NULL, maxperpoly = 100,

data = NULL, tracelevel = 1, hessian = "none", start =

objectfitpar, ncores = 1)

Arguments

object an secr object

nsim number of replicates

seed value for setting .Random.seed - either NULL or an integer

maxperpoly integer maximum number of detections of an individual in one polygon or tran-

sect on any occasion

chat real value for overdispersion parameter

extractfn function to extract output values from fitted model

data optional list of simulated data saved from previous call to simulate.secr

tracelevel integer for level of detail in reporting (0,1,2)

hessian character or logical controlling the computation of the Hessian matrix

start vector of starting ‘beta’ values for secr.fit

ncores integer number of cores available for parallel processing

... other arguments (not used)

Details

For each replicate, simulate.secr calls sim.popn to generate session- and group-specific realiza-

tions of the (possibly inhomogeneous) 2-D Poisson distribution fitted in object, across the habitat

mask(s) in object. Group subpopulations are combined using rbind.popn within each session; in-

formation to reconstruct groups is retained in the individual-level factor covariate(s) of the resulting

popn object (corresponding to object$groups). Each population is then sampled using the fitted

detection model and detector (trap) array(s) in object.

The random number seed is managed as in simulate.lm.

simulate.secr does not yet work with models fitted using conditional likelihood (object$CL = TRUE).

Detector type is determined by detector(traps(object$capthist)), which should be one of

"single", "multi", "proximity", "areasearch" or "count".

sim.secr is a wrapper function. If data = NULL (the default) then it calls simulate.secr to

generate nsim new datasets. If data is provided then nsim is taken to be length(data). secr.fit

is called to fit the original model to each new dataset. Results are summarized according to the

user-provided function extractfn. The default extractfn returns the deviance and its degrees

of freedom; a NULL value for extractfn returns the fitted secr objects after trimming to reduce

bulk. Simulation uses the detector type of the data, even when another likelihood is fitted (this is the

case with single-catch data, for which a multi-catch likelihood is fitted). Warning messages from

secr.fit are suppressed.

extractfn should be a function that takes an secr object as its only argument.

168 sim.secr

tracelevel=0 suppresses most messages; tracelevel=1 gives a terse message at the start of each

fit; tracelevel=2 also sets ‘details$trace = TRUE’ for secr.fit, causing each likelihood evalua-

tion to be reported.

hessian controls computation of the Hessian matrix from which variances and covariances are

obtained. hessian replaces the value in object$details. Options are "none" (no variances),

"auto" (the default) or "fdhess" (see secr.fit). It is OK (and faster) to use hessian="none"

unless extractfn needs variances or covariances. Logical TRUE and FALSE are interpreted by

secr.fit as "auto" and "none".

If ncores > 1 the parallel package is used to create processes on multiple cores (see Parallel for

more) and progress messages are suppressed. New datasets are generated in the master process, so

there is no need to manage the random number streams in the worker processes.

sim.capthist is a more direct way to simulate data from a null model (i.e. one with constant

parameters for density and detection), or from a time-varying model.

Value

For simulate.secr, a list of data sets (‘capthist’ objects). This list has class c("list","secrdata");

the initial state of the random number generator (roughly, the value of .Random.seed) is stored as

the attribute ‘seed’.

The value from sim.secr depends on extractfn: if that returns a numeric vector of length n.extract

then the value is a matrix with dim = c(nsim, n.extract) (i.e., the matrix has one row per repli-

cate and one column for each extracted value). Otherwise, the value returned by sim.secr is a

list with one component per replicate (strictly, an object of class = c("list","secrlist")). Each

simulated fit may be retrieved in toto by specifying extractfn = identity, or slimmed down by

specifying extractfn = NULL or extractfn = trim, which are equivalent.

For either form of output from sim.secr the initial state of the random number generator is stored

as the attribute ‘seed’.

Note

The value returned by simulate.secr is a list of ‘capthist’ objects; if there is more than one session,

each ‘capthist’ is itself a sort of list .

The classes ‘secrdata’ and ‘secrlist’ are used only to override the ugly and usually unwanted print-

ing of the seed attribute. However, a few other methods are available for ‘secrlist’ objects (e.g.

plot.secrlist).

The default value for start in sim.secr is the previously fitted parameter vector. Alternatives are

NULL or object$start.

See Also

sim.capthist, secr.fit, simulate

Examples

previously fitted model

simulate(secrdemo.0, nsim = 2)

Not run:

this would take a long time...

sims <- sim.secr(secrdemo.0, nsim = 99)

skink 169

deviance(secrdemo.0)

devs <- c(deviance(secrdemo.0),sims$deviance)

quantile(devs, probs=c(0.95))

rank(devs)[1] / length(devs)

to assess bias and CI coverage

extrfn <- function (object) unlist(predict(object)["D",-1])

sims <- sim.secr(secrdemo.0, nsim = 50, hessian = "auto",

extractfn = extrfn)

sims

with a larger sample, could get parametric bootstrap CI

quantile(sims[,1], c(0.025, 0.975))

End(Not run)

skink Skink Pitfall Data

Description

Data from a study of skinks (Oligosoma infrapunctatum and O. lineoocellatum) in New Zealand.

Usage

data(skink)

Details

Lizards were studied over several years on a steep bracken-covered hillside on Lake Station in the

Upper Buller Valley, South Island, New Zealand. Pitfall traps (sunken cans baited with a morsel

of fruit in sugar syrup) were set in two large grids, each 11 x 21 traps nominally 5 meters apart,

surveyed by tape and compass (locations determined later with precision surveying equipment - see

Examples). Three diurnal lizard species were trapped: Oligosoma infrapunctatum, O. lineoocella-

tum and O. polychroma (Scincidae). The smallest species O. polychroma was seldom caught and

these data are not included. The two other species are almost equal in average size (about 160 mm

total length); they are long-lived and probably mature in their second or third year. The study aimed

to examine their habitat use and competitive interactions.

Traps were set for 12 3-day sessions over 1995–1996, but some sessions yielded very few captures

because skinks were inactive, and some sessions were incomplete for logistical reasons. The data

are from sessions 6 and 7 in late spring (17–20 October 1995 and 14–17 November 1995). Traps

were cleared daily; the few skinks present when traps were closed on the morning of the fourth

day are treated as Day 3 captures. Individuals were marked uniquely by clipping one toe on each

foot. Natural toe loss caused some problems with long-term identification; captures were dropped

from the dataset when identity was uncertain. Released animals were occasionally recaptured in a

different trap on the same day; these records were also discarded.

The data are provided as two two-session capthist objects ‘infraCH’ and ‘lineoCH’. Also in-

cluded is ‘LStraps’, the traps object with the coordinates and covariates of the trap sites (these

data are also embedded in each of the capthist objects). Pitfall traps are multi-catch traps so

detector(LStraps) = ‘multi’.

170 skink

Habitat data for each trap site are included as a dataframe of trap covariates in LStraps. Ground

cover and vegetation were recorded for a 1-m radius plot at each trap site. The dataframe also

gives the total number of captures of each species by site on 31 days between April 1995 and

March 1996, and the maximum potential annual solar radiation calculated from slope and aspect

(Frank and Lee 1966). Each site was assigned to a habitat class by fuzzy clustering (Kaufman and

Rousseauw 1990; package cluster) of a distance matrix using the ground cover, vegetation and solar

radiation variables. Sites in class 1 were open with bare ground or low-canopy vegetation including

the heath-like Leucopogon fraseri and grasses; sites in class 2 had more-closed vegetation, lacking

Leucopogon fraseri and with a higher canopy that often included Coriaria arborea. Site variables

are listed with definitions in the attribute habitat.variables of LStraps (see Examples).

Object Description

infraCH multi-session capthist object O. infrapunctatum

lineoCH multi-session capthist object O. lineoocellatum

LStraps traps object – Lake Station grids

Source

M. G. Efford, B. W. Thomas and N. J. Spencer unpublished data.

References

Efford, M. G., Spencer, N. J., Thomas, B. W., Mason, R. F. and Williams, P. In prep. Distribution

of sympatric skink species in relation to habitat.

Frank, E. C. and Lee , R. (1966) Potential solar beam irradiation on slopes. United States Forest

Service Research Paper RM-118.

Kaufman, L. and Rousseauw, P. J. (1990) Finding groups in data: an introduction to cluster analy-

sis. John Wiley & Sons, New York.

Spencer, N. J., Thomas, B. W., Mason, R. F. and Dugdale, J. S. (1998) Diet and life history variation

in the sympatric lizards Oligosoma nigriplantare polychroma and Oligosoma lineoocellatum. New

Zealand Journal of Zoology 25: 457–463.

See Also

capthist, covariates

Examples

summary (infraCH)

summary (lineoCH)

check mean distance to nearest trap etc.

summary(LStraps)

LStraps has several site covariates; terse descriptions are in

an extra attribute that may be displayed thus

attr(LStraps, "habitat.variables")

For density modelling we need covariate values at each point in the

habitat mask. This requires both on-grid interpolation and

extrapolation beyond the grids. One (crude) possibility is to

extrapolate a mask covariate from a covariate of the nearest trap:

snip 171

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer")

temp <- nearesttrap(LSmask, LStraps)

habclass <- covariates(LStraps)$class[temp]

habclass <- factor (habclass, levels = c(1,2))

covariates(LSmask) <- data.frame(habclass)

plot mask with colour-coded covariate

oldpar <- par(fg="white") ## white pixel borders

plot (LSmask, covariate = "habclass", dots = FALSE, axes = FALSE,

col = c("yellow","green"), border = 0)

plot(LStraps, add = TRUE, detpar = list(pch = 16))

par(oldpar)

snip Slice Transect Into Shorter Sections

Description

This function splits the transects in a ‘transect’ or ‘transectX’ traps object into multiple shorter

sections. The function may also be applied directly to a capthist object based on transect data. This

makes it easy to convert detection data collected along linear transects to point detection data (see

Example).

Usage

snip(object, from = 0, by = 1000, length.out = NULL, keep.incomplete = TRUE)

Arguments

object secr ‘traps’ or ‘capthist’ object based on transects

from numeric starting posiiton (m)

by numeric length of new transects (m)

length.out numeric number of new transects, as alternative to ‘by’

keep.incomplete

logical; if TRUE then initial or terminal sections of each original transect that

are less than ‘by’ will be retained in the output

Details

If a positive length.out is specified, by will be computed as (transectlength(object) - from) / length.out.

Value

A ‘traps’ or ‘capthist’ object, according to the input. If keep.incomplete == FALSE animals and

detections from the

See Also

transectlength

172 sort.capthist

Examples

x <- seq(0, 4*pi, length = 41)

temptrans <- make.transect(x = x*100, y = sin(x)*300,)

plot (snip(temptrans, by = 200), markvertices = 1)

Not run:

simulate some captures

tempcapt <- sim.capthist(temptrans, popn = list(D = 2,

buffer = 300), detectpar = list(g0 = 0.5, sigma = 50),

binomN = 0)

snip capture histories

tempCH <- snip(tempcapt, by = 20)

collapse from ’transect’ to ’multi’, discarding location within transects

tempCH <- reduce(tempCH, outputdetector = ’count’)

fit secr model and examine H-T estimates of density

derived(secr.fit(tempCH, buffer = 300, CL = TRUE, trace = FALSE))

also, may split an existing transect into equal lengths

same result:

plot(snip(temptrans, by = transectlength(temptrans)/10),

markvertices = 1)

plot(snip(temptrans, length.out = 10), markvertices = 1)

End(Not run)

sort.capthist Sort Rows of capthist Object

Description

Rows are sorted by fields in covariates or by a provided sort key of length equal to the number of

rows.

Usage

S3 method for class ’capthist’

sort(x, decreasing = FALSE, by = "",

byrowname = TRUE,...)

Arguments

x capthist object

decreasing logical. Should the sort be increasing or decreasing?

by character vector (names of covariates) or data frame whose columns will be used

as sort keys

byrowname logical. Should row name be used as a final sort key?

... other arguments (not used)

SPACECAP 173

Details

For multi-session capthist objects only the named covariate form is suitable as the number of rows

varies between sessions.

If requested, rows are sorted by rowname within by. The effect of the defaultsis to sort by rowname.

Value

capthist object with sorted rows; any relevant attributes are also sorted (covariates, signal, xy)

See Also

capthist

Examples

sort(ovenCH, by = "Sex")

covariates(ovenCH)[["2005"]]

covariates(sort(ovenCH, by = "Sex"))[["2005"]]

SPACECAP Exchange data with SPACECAP package

Description

Data in a single-session secr capthist object may be written directly to the ‘csv’ format used by

SPACECAP, a package for Bayesian spatially explicit capture–recapture (Singh et al. 2010). Data

in csv format may also be read to construct a capthist object for analysis in secr.

Usage

write.SPACECAP(object, mask = NULL, buffer = 100, ndec = 2,

filestem = "")

read.SPACECAP(AC, TD, detector = "proximity", session = "1")

Arguments

object capthist object with the captures and trap locations to export

mask mask object to use for state-space file

buffer width of buffer in metres to use when creating a mask if none is specified

ndec number of digits after decimal point for coordinates of mask on output

filestem character value used to form names of output files

AC character value giving name of ‘animal capture’ .csv file

TD character value giving name of ‘trap deployment’ .csv file

detector detector type (‘proximity’ or ‘count’)

session character value to use as session name

174 SPACECAP

Details

If successful, write.SPACECAP creates three output files with names ending in ‘AC.csv’,‘TD.csv’

and ‘SS.csv’. These are respectively the ‘Animal Capture’, ‘Trap Deployment’ and ‘State-Space’

files required by SPACECAP.

Value

write.SPACECAP is used for its side effect of writing the required csv files. read.SPACECAP returns

a capthist object.

Note

State-space csv files may be imported with read.mask.

References

Gopalaswamy, A.M., Royle, J.A., Hines, J.E., Singh, P., Jathanna, D., Kumar, N.S. and Karanth,

K.U. (2012) Program SPACECAP: software for estimating animal density using spatially explicit

capture–recapture models. Methods in Ecology and Evolution 3, 1067–1072.

Singh, P., Gopalaswamy, A. M., Royle, A. J., Kumar, N. S. and Karanth, K. U. (2010) SPACECAP:

A program to estimate animal abundance and density using Bayesian spatially explicit capture-

recapture models. Version 1.0. Wildlife Conservation Society - India Program, Centre for Wildlife

Studies, Bangalure, India.

See Also

capthist, mask, read.mask

Examples

Not run:

coerce data to proximity detector type for export

demo <- reduce(captdata, output = "proximity")

write.SPACECAP (demo, filestem = "demo")

now read back the data just exported...

temp <- read.SPACECAP ("demoAC.csv", "demoTD.csv")

temp <- reduce(temp, output = "single")

summary (temp)

summary (captdata)

should match exactly

identical(summary(temp), summary(captdata))

End(Not run)

spacing 175

spacing Detector or Mask Spacing

Description

Extract or replace the spacing attribute of a detector array or mask.

Usage

spacing(object, ...)

spacing(object) <- value

S3 method for class ’traps’

spacing(object, ..., recalculate = FALSE)

S3 method for class ’mask’

spacing(object, ..., recalculate = FALSE)

Arguments

object object with ‘spacing’ attribute e.g. traps

value numeric value for spacing

... other arguments (not used)

recalculate logical; if TRUE compute average spacing afresh

Details

The ‘spacing’ attribute of a detector array is the average distance from one detector to the nearest

other detector.

The attribute was not always set by make.grid() and read.traps() in versions of secr before

1.5.0. If the attribute is found to be NULL then spacing will compute it on the fly.

Value

scalar numeric value of mean spacing, or a vector if object has multiple sessions

See Also

traps

Examples

temptrap <- make.grid(nx = 6, ny = 8)

spacing(temptrap)

176 speed

speed Speed Tips

Description

A compendium of ways to make secr.fit run faster.

Use an appropriate mask

Check the extent and spacing of the habitat mask that you are using. Execution time is roughly

proportional to the number of mask points (nrow(mymask)). Default settings can lead to very large

masks for detector arrays that are elongated ‘north-south’ because the number of points in the east-

west direction is fixed. Compare results with a much sparser mask (e.g., nx = 32 instead of nx =

64).

Use conditional likelihood

If you don’t need to model variation in density over space or time then consider maximizing the

conditional likelihood in secr.fit (CL = TRUE). This reduces the complexity of the optimization

problem, especially where there are several sessions and you want session-specific density estimates

(by default, derived() returns a separate estimate for each session even if the detection parameters

are constant across sessions).

Model selection

Do you really need to fit all those complex models? Chasing down small decrements in AIC is

so last-century. Remember that detection parameters are mostly nuisance parameters, and models

with big differences in AIC may barely differ in their density estimates. This is a good topic for

further research - we seem to need a ‘focussed information criterion’ (Claeskens and Hjort 2008) to

discern the differences that matter. Be aware of the effects that can really make a difference: learned

responses (b, bk etc.) and massive unmodelled heterogeneity.

Use score.test() to compare nested models. At each stage this requires only the more simple model

to have been fitted in full; further processing is required to obtain a numerical estimate of the gradi-

ent of the likelihood surface for the more complex model, but this is much faster than maximizing

the likelihood. The tradeoff is that the score test is only approximate, and you may want to later

verify the results using a full AIC comparison.

Mash replicated clusters of detectors

If your detectors are arranged in similar clusters (e.g., small square grids) then try the function mash.

Reduce sparse ‘proximity’ data to ‘multi’

Full data from ‘proximity’ detectors has dimensions n x S x K (n is number of individuals, S is num-

ber of occasions, K is number of traps). If the data are sparse (i.e. multiple detections of an individ-

ual on one occasion are rare) then it is efficient to treat proximity data as multi-catch data (dimen-

sion n x S, maximum of one detection per occasion). Use reduce(proxCH, outputdetector =

’multi’).

stoatDNA 177

Use multiple cores when applicable

Some computations can be run in parallel on multiple processors (most desktops these days have

multiple cores), but capability is limited. Check the ’ncores’ argument of sim.secr() and secr.fit()

and ?ncores. The speed gain is significant for parametric bootstrap computations in sim.secr. Paral-

lelisation is also allowed for the session likelihood components of a multi-session model in secr.fit(),

but gains there seem to be small or negative.

Avoid covariates with many levels

Categorical (factor) covariates with many levels and continuous covariates that take many values are

not handled efficiently in secr.fit, and can dramatically slow down analyses and increase memory

requirements.

Simulations

Model fitting is not needed to assess power. The precision of estimates from secr.fit can be predicted

without laboriously fitting models to simulated datasets. Just use method = ’none’ to obtain the

asymptotic variance at the known parameter values for which data have been simulated (e.g. with

sim.capthist()).

Suppress computation of standard errors by derived(). For a model fitted by conditional likelihood

(CL = TRUE) the subsequent computation of derived density estimates can take appreciable time.

If variances are not needed (e.g., when the aim is to predict the bias of the estimator across a large

number of simulations) it is efficient to set se.D = FALSE in derived().

It is tempting to save a list with the entire ‘secr’ object from each simulated fit, and to later extract

summary statistics as needed. Be aware that with large simulations the overheads associated with

storage of the list can become very large. The solution is to anticipate the summary statistics you

will want and save only these.

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-

bridge University Press.

stoatDNA Stoat DNA Data

Description

Data of A. E. Byrom from a study of stoats (Mustela erminea) in New Zealand. Individuals were

identified from DNA in hair samples.

Usage

data(stoatDNA)

178 stoatDNA

Details

The data are from a pilot study of stoats in red beech (Nothofagus fusca) forest in the Matakitaki

Valley, South Island, New Zealand. Sticky hair-sampling tubes (n = 94) were placed on a 3-km x 3-

km grid with 500-m spacing between lines and 250-m spacing along lines. Tubes were baited with

rabbit meat and checked daily for 7 days, starting on 15 December 2001. Stoat hair samples were

identified to individual using DNA microsatellites amplified by PCR from follicular tissue (Gleeson

et al. 2010). Six loci were amplified and the mean number of alleles was 7.3 per locus. Not all

loci could be amplified in 27% of samples. A total of 40 hair samples were collected (Gleeson et

al. 2010), but only 30 appear in this dataset; the rest presumably did not yield sufficient DNA for

genotyping.

The data are provided as a single-session capthist object ‘stoatCH’. Hair tubes are treated as

‘proximity’ detectors which allow an individual to be detected at multiple detectors on one oc-

casion (day), although there are no multiple detections in this dataset. Three pre-fitted models are

included: stoat.model.HN, stoat.model.HZ, and stoat.model.EX (with halfnormal, hazard-rate

and negative exponential detection functions, respectively).

Object Description

stoatCH capthist object

stoat.model.EX fitted secr model – null, exponential detection function

stoat.model.HN fitted secr model – null, halfnormal detection function

stoat.model.HZ fitted secr model – null, hazard-rate detection function

Note

The log-likelihood values reported for these data by secr.fit differ by a constant from those

published by Efford et al. (2009) because the earlier version of DENSITY used in that analysis

did not include the multinomial coefficient, which in this case is log(20!) or about +42.336. The

previous analysis also used a coarser habitat mask than the default in secr (32 x 32 rather than 64 x

64) and this slightly alters the log-likelihood and ∆AIC values.

Fitting the hazard-rate detection function previously required the shape parameter z (or b) to be

fixed, but the model can be fitted in secr without fixing z. However, the hazard rate function can

cause problems owing to its long tail, and it is not recommended. The check on the buffer width,

usually applied automatically on completion of secr.fit, causes an error and must be suppressed with

biasLimit = NA (see Examples).

Gleeson et al. (2010) address the question of whether there is enough variability at the sampled

microsatellite loci to distinguish individuals. The reference to 98 sampling sites in that paper is a

minor error (A. E. Byrom pers. comm.).

Source

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

References

Gleeson, D. M., Byrom, A. E. and Howitt, R. L. J. (2010) Non-invasive methods for genotyping of

stoats (Mustela erminea) in New Zealand: potential for field applications. New Zealand Journal of

Ecology 34, 356–359. Available on-line at http://www.newzealandecology.org.

http://www.newzealandecology.org

subset.capthist 179

See Also

capthist, Detection functions, secr.fit

Examples

summary(stoatCH)

Not run:

stoat.model.HN <- secr.fit(stoatCH, buffer = 1000, detectfn = 0)

this generates an error unless we use biasLimit = NA

to suppress the default bias check

stoat.model.HZ <- secr.fit(stoatCH, buffer = 1000, detectfn = 1,

biasLimit = NA)

stoat.model.EX <- secr.fit(stoatCH, buffer = 1000, detectfn = 2)

confint(stoat.model.HN, "D")

Profile likelihood interval(s)...

lcl ucl

D 0.01275125 0.04055662

End(Not run)

plot fitted detection functions

xv <- seq(0,800,10)

plot(stoat.model.EX, xval = xv, ylim = c(0,0.12), limits = FALSE,

lty = 2)

plot(stoat.model.HN, xval = xv, limits = FALSE, lty = 1, add = TRUE)

plot(stoat.model.HZ, xval = xv, limits = FALSE, lty = 3, add = TRUE)

review density estimates

collate(stoat.model.HZ, stoat.model.HN, stoat.model.EX,

realnames = "D", perm = c(2,3,4,1))

model.average(stoat.model.HN, stoat.model.EX,

realnames = "D")

subset.capthist Subset or Split capthist Object

Description

Create a new capthist object or list of objects by selecting rows (individuals), columns (occasions)

and traps from an existing capthist object.

Usage

S3 method for class ’capthist’

subset(x, subset = NULL, occasions = NULL, traps = NULL,

sessions = NULL, cutval = NULL, dropnullCH = TRUE, dropnullocc = FALSE,

dropunused = TRUE, droplowsignals = TRUE, dropNAsignals = FALSE,

cutabssignal = TRUE, renumber = FALSE, ...)

180 subset.capthist

S3 method for class ’capthist’

split(x, f, drop = FALSE, prefix = "S", bytrap = FALSE, ...)

Arguments

x object of class capthist

subset vector of subscripts to select rows (individuals)

occasions vector of subscripts to select columns (occasions)

traps vector of subscripts to select detectors (traps)

sessions vector of subscripts to select sessions

cutval new threshold for signal strength

dropnullCH logical for whether null (all-zero) capture histories should be dropped

dropnullocc logical for whether occasions with no detections should be dropped

dropunused logical for whether never-used detectors should be dropped

droplowsignals logical for whether cutval should be applied at each microphone rather than to

sound as a whole

dropNAsignals logical for whether detections with missing signal should be dropped

cutabssignal logical for whether to apply cutval to absolute signal strength or the difference

between signal and noise

renumber logical for whether row.names should be replaced with sequence number in new

capthist

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

bytrap logical; if TRUE then each level of f identifies traps to include

... other arguments (not used currently)

Details

Subscript vectors may be either logical- (length equal to the relevant dimension of x), character- or

integer-valued. Subsetting is applied to attributes (e.g. covariates, traps) as appropriate. The

default action is to include all animals, occasions, and detectors if the relevant argument is omitted.

When traps is provided, detections at other detectors are set to zero, as if the detector had not been

used, and the corresponding rows are removed from traps. If the detector type is ‘proximity’ then

selecting traps also reduces the third dimension of the capthist array.

split generates a list in which each component is a capthist object. Each component corresponds

to a level of f.

To combine (pool) occasions use reduce.capthist. There is no equivalent of unlist for lists of

capthist objects.

The effect of droplowsignals = FALSE is to retain below-threshold measurements of signal strength

on all channels (microphones) as long as the signal is above cutval on at least one. In this case

all retained sounds are treated as detected on all microphones. This fails when signals are already

missing on some channels.

Subsetting is awkward with multi-session input when the criterion is an individual covariate. See

the Examples for omne way this can be tackled.

subset.mask 181

Value

capthist object with the requested subset of observations, or a list of such objects (i.e., a multi-

session capthist object). List input results in list output, except when a single session is selected.

See Also

capthist, rbind.capthist, reduce.capthist

Examples

tempcapt <- sim.capthist (make.grid(nx=6, ny=6), nocc=6)

summary(subset(tempcapt, occ=c(1,3,5)))

Consider ‘proximity’ detections at a random subset of detectors

This would not make sense for ‘multi’ detectors, as the

excluded detectors influence detection probabilities in

sim.capthist.

tempcapt2 <- sim.capthist (make.grid(nx = 6, ny = 6,

detector = "proximity"), nocc = 6)

tempcapt3 <- subset(tempcapt2, traps = sample(1:36, 18,

replace=FALSE))

summary(tempcapt3)

plot(tempcapt3)

split (tempcapt2, f = sample (c("A","B"), nrow(tempcapt2),

replace = TRUE))

split out captures on alternate rows of a grid

split(captdata, f = rep(1:2, 50), bytrap = TRUE)

Applying a covariate criterion across all sessions of a

multi-session capthist object e.g. selecting male ovenbirds from the

2005--2009 ovenCH dataset. We include a resriction on occasions

to demonstrate the use of ’MoreArgs’. Note that mapply() creates a

list, and the class of the output must be restored manually.

ovenCH.males <- mapply(subset, ovenCH,

subset = lapply(ovenCH, function(x) covariates(x)$Sex == ’M’),

MoreArgs = list(occasions = 1:5))

class(ovenCH.males) <- class(ovenCH)

summary(ovenCH.males)

subset.mask Subset Mask Object

Description

Retain selected rows of a mask object.

182 subset.mask

Usage

S3 method for class ’mask’

subset(x, subset, ...)

S3 method for class ’mask’

rbind(...)

Arguments

x mask object

subset numeric or logical vector to select rows of mask

... two or more mask objects (rbind only)

Details

The subscripts in subset may be of type integer, character or logical as described in Extract.

Covariates are ignored by rbind.mask.

Value

For subset, an object of class ‘mask’ with only the requested subset of rows and ‘type’ attribute

set to ‘subset’.

For rbind, an object of class ‘mask’ with all unique rows from the masks in . . . , and ‘type’ attribute

set to ‘rbind’.

Warning

The spacing attribute is carried over from the input (it is not updated automatically). In the case

of very sparse masks (i.e. those with isolated points) this may lead to an unexpected value for this

attribute. (Automatic updating requires excessive computation time and/or memory for very large

masks).

See Also

mask

Examples

tempmask <- make.mask(make.grid())

OK <- (tempmask$x + tempmask$y) > 100

tempmask <- subset(tempmask, subset = OK)

plot(tempmask)

subset.popn 183

subset.popn Subset popn Object

Description

Retain selected rows of a popn object.

Usage

S3 method for class ’popn’

subset(x, subset = NULL, sessions = NULL, poly = NULL,

poly.habitat = TRUE, keep.poly = TRUE, renumber = FALSE, ...)

Arguments

x popn object

subset vector to subscript the rows of x

sessions vector to subscript sessions if x is a multi-session population

poly bounding polygon (see Details)

poly.habitat logical for whether poly represents habitat or its inverse (non-habitat)

keep.poly logical; if TRUE any bounding polygon is saved as the attribute ‘polygon’

renumber logical for whether to renumber rows in output

... arguments passed to other functions

Details

The subscripts in subset may be of type integer, character or logical as described in Extract. By

default, all rows are retained.

In the case of a multi-session popn object (a list of populations), subset may be a list with one

component for the subscripts in each new session.

Value

An object of class popn with only the requested subset of rows. Subsetting is applied to the

covariates attribute if this is present. Attributes ‘Ndist’ and ‘model2D’ are set to NULL.

If poly is specified, points outside poly are dropped. poly may be either

• a matrix or dataframe of two columns interpreted as x and y coordinates, or

• a SpatialPolygonsDataFrame object as defined in the package ‘sp’, possibly from reading a

shapefile with readShapePoly() from package ‘maptools’.

See Also

popn

184 subset.traps

Examples

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100), y =

c(0,100)), buffer = 50)

50% binomial sample of simulated population

temppops <- subset(temppop, runif(nrow(temppop)) < 0.5)

plot(temppop)

plot(temppops, add = TRUE, pch = 16)

subset.traps Subset traps Object

Description

Retain selected rows of a traps object.

Usage

S3 method for class ’traps’

subset(x, subset = NULL, occasions = NULL, ...)

S3 method for class ’traps’

split(x, f, drop = FALSE, prefix = "S", byoccasion = FALSE, ...)

Arguments

x traps object

subset vector to subscript the rows of x

occasions vector to subscript columns in usage(x)

... arguments passed to other functions

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

byoccasion logical ; if TRUE then f is used to split occasions

Details

The subscripts in subset may be of type integer, character or logical as described in Extract. By

default, all rows are retained.

In the case of ‘polygon’ and ‘transect’ detectors, subsetting is done at the level of whole polygons or

transects. subset should therefore have the same length as levels(polyID(x)) or levels(transectID(x)).

split generates a list in which each component is a traps object. Each component corresponds to

a level of f. The argument x of split cannot be a list (i.e. x must be a single-session traps object).

Value

An object of class traps with only the requested subset of rows. Subsetting is applied to usage and

covariates attributes if these are present.

Splitting with byoccasion = TRUE produces a list of traps objects, each with usage codes for a

subset of occasions. Traps not used on any occasion within a session are automatically dropped

from that session.

suggest.buffer 185

See Also

traps, rbind.traps

Examples

odd-numbered traps only, using modulo operator

temptrap <- make.grid(nx = 7, ny = 7)

t2 <- subset(temptrap, as.logical(1:nrow(temptrap) %% 2))

plot(t2)

suggest.buffer Mask Buffer Width

Description

Determines a suitable buffer width for an integration mask. The ‘buffer’ in question defines a con-

cave polygon around a detector array constructed using make.mask with type = "trapbuffer".

The method relies on an approximation to the bias of maximum likelihood density estimates (M.

Efford unpubl).

Usage

suggest.buffer(object, detectfn = NULL, detectpar = NULL,

noccasions = NULL, ignoreusage = FALSE, RBtarget = 0.001,

interval = NULL, binomN = NULL, ...)

bias.D (buffer, traps, detectfn, detectpar, noccasions, binomN = NULL,

control = NULL)

Arguments

object single-session ‘secr’, ‘traps’ or ‘capthist’ object

detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn

detectpar list of values for named parameters of detection function – see detectpar

noccasions number of sampling occasions

ignoreusage logical for whether to discard usage information from traps(capthist)

RBtarget numeric target for relative bias of density estimate

interval a vector containing the end-points of the interval to be searched

binomN integer code for distribution of counts (see secr.fit)

... other argument(s) passed to bias.D

buffer vector of buffer widths

traps ‘traps’ object

control list of mostly obscure numerical settings (see Details)

186 suggest.buffer

Details

The basic input style of suggest.buffer uses a ‘traps’ object and a detection model specified by

‘detectpar’, ‘detectfn’ and ‘noccasions’, plus a target relative bias (RB). A numerical search is con-

ducted for the buffer width that is predicted to deliver the requested RB. If interval is omitted it de-

faults to (1, 100S) where S is the spatial scale of the detection function (usually detectpar$sigma).

An error is reported if the required buffer width is not within interval. This often happens with

heavy-tailed detection functions (e.g., hazard-rate): choose another function, a larger RBtarget or

a wider interval.

Convenient alternative input styles are –

• secr object containing a fitted model. Values of ‘traps’, ‘detectpar’, ‘detectfn’ and ‘nocca-

sions’ are extracted from object and any values supplied for these arguments are ignored.

• capthist object containing raw data. If detectpar is not supplied then autoini is used to

get ‘quick and dirty’ values of g0 and sigma for a halfnormal detection function. noccasions

is ignored. autoini tends to underestimate sigma, and the resulting buffer also tends to be

too small.

bias.D is called internally by suggest.buffer.

Value

suggest.buffer returns a scalar value for the suggested buffer width in metres, or a vector of such

values in the case of a multi-session object.

bias.D returns a dataframe with columns buffer and RB.D (approximate bias of density estimate

using finite buffer width, relative to estimate with infinite buffer).

Note

The algorithm in bias.D uses one-dimensional numerical integration of a polar approximation to

site-specific detection probability. This uses a further 3-part linear approximation for the length of

contours of distance-to-nearest-detector (r) as a function of r.

The approximation seems to work well for a compact detector array, but it should not be taken as

an estimate of the bias for any other purpose: do not report RB.D as "the relative bias of the density

estimate". RB.D addresses only the effect of using a finite buffer. The effect of buffer width on final

estimates should be checked with mask.check.

The default buffer type in make.mask, and hence in secr.fit, is ‘traprect’, not ‘trapbuffer’, but a

buffer width that is adequate for ‘trapbuffer’ is always adequate for ‘traprect’.

control contains various settings of little interest to the user.

The potential components of control are –

method = 1 code for method of modelling p.(X) as a function of buffer (q(r))

bfactor = 20 q(r) vs p.(X) calibration mask buffer width in multiples of trap spacing

masksample = 1000 maximum number of points sampled from calibration mask

spline.df = 10 effective degrees of freedom for smooth.spline

See Also

mask, make.mask, mask.check, esa.plot

summary.capthist 187

Examples

Not run:

temptraps <- make.grid()

detpar <- list(g0 = 0.2, sigma = 25)

suggest.buffer(temptraps, "halfnormal", detpar, 5)

RB <- bias.D(50:150, temptraps, "halfnormal", detpar, 5)

plot(RB)

detpar <- list(g0 = 0.2, sigma = 25, z=5)

RB <- bias.D(50:150, temptraps, "hazard rate", detpar, 5)

lines(RB)

compare to esa plot

esa.plot (temptraps, max.buffer = 150, spacing = 4, detectfn = 0,

detectpar = detpar, noccasions = 5, as.density = F)

End(Not run)

compare detection histories and fitted model as input

suggest.buffer(captdata)

suggest.buffer(secrdemo.0)

summary.capthist Summarise Detections

Description

Concise description of capthist object.

Usage

S3 method for class ’capthist’

summary(object, terse = FALSE, ...)

S3 method for class ’summary.capthist’

print(x, ...)

counts(CHlist, counts = "M(t+1)")

Arguments

object capthist object

terse logical; provide only summary counts for multi-session object

x summary.capthist object

... arguments passed to other functions

CHlist capthist object, especially a multi-session object

counts character vector of count names

188 summary.capthist

Details

These counts are reported by summary.capthist

n number of individuals detected on each occasion

u number of individuals detected for the first time on each occasion

f number of individuals detected exactly f times

M(t+1) cumulative number of individuals detected

losses number of individuals reported as not released on each occasion

detections number of detections, including within-occasion ‘recaptures’

traps visited number of detectors at which at least one detection was recorded

traps set number of detectors, excluding any ‘not set’ in usage attribute of traps attribute

counts may be used to return the specified counts in a compact session x occasion table. If more

than one count is named then a list is returned with one component for each type of count.

Value

From summary.capthist, an object of class summary.capthist, a list with at least these compo-

nents

detector detector type ("single", "multi", "proximity" etc.)

ndetector number of detectors

xrange range of x coordinates of detectors

yrange range of y coordinates of detectors

spacing mean distance from each trap to nearest other trap

counts matrix of summary counts (rows) by occasion (columns). See Details.

dbar mean recapture distance

RPSV root pooled spatial variance

or, when terse = TRUE and object contains multiple sessions, a dataframe of counts per session.

See Also

dbar, RPSV, capthist

Examples

temptrap <- make.grid(nx = 5, ny = 3)

summary(sim.capthist(temptrap))

summary(sim.capthist(temptrap))$counts["n",]

summary.mask 189

summary.mask Summarise Habitat Mask

Description

Concise summary of a mask object.

Usage

S3 method for class ’mask’

summary(object, ...)

S3 method for class ’summary.mask’

print(x, ...)

Arguments

object mask object

x summary.mask object

... other arguments (not used)

Details

The bounding box is the smallest rectangular area with edges parallel to the x- and y-axes that

contains all points and their associated grid cells. A print method is provided for objects of class

summary.mask.

Value

Object of class ‘summary.mask’, a list with components

detector character string for detector type ("single","multi","proximity")

type mask type ("traprect", "trapbuffer", "pdot", "polygon", "user", "subset")

nmaskpoints number of points in mask

xrange range of x coordinates

yrange range of y coordinates

meanSD dataframe with mean and SD of x, y, and each covariate

spacing nominal spacing of points

cellarea area (ha) of grid cell associated with each point

bounding box dataframe with x-y coordinates for vertices of bounding box

covar summary of each covariate

See Also

mask

Examples

tempmask <- make.mask(make.grid())

left to right gradient

covariates (tempmask) <- data.frame(x = tempmask$x)

summary(tempmask)

190 summary.traps

summary.traps Summarise Detector Array

Description

Concise description of traps object.

Usage

S3 method for class ’traps’

summary(object, getspacing = TRUE, ...)

S3 method for class ’summary.traps’

print(x, terse = FALSE, ...)

Arguments

object traps object

getspacing logical to calculate spacing of detectors from scratch

x summary.traps object

terse if TRUE suppress printing of usage and covariate summary

... arguments passed to other functions

Details

When object includes both categorical (factor) covariates and usage, usage is tabulated for each

level of the covariates.

Computation of spacing (mean distance to nearest trap) is slow and may hit a memory limit when

there are many traps. In this case, turn off the computation with getspacing = FALSE.

Value

An object of class summary.traps, a list with elements

detector detector type ("single", "multi", "proximity" etc.)

ndetector number of detectors

xrange range of x coordinates

yrange range of y coordinates

spacing mean distance from each trap to nearest other trap

usage table of usage by occasion

covar summary of covariates

See Also

print, traps

Examples

demo.traps <- make.grid()

summary(demo.traps) ## uses print method for summary.traps object

timevaryingcov 191

timevaryingcov Time-varying Detector Covariates

Description

Extract or replace time varying trap covariates

Usage

timevaryingcov(object, ...)

timevaryingcov(object) <- value

Arguments

object an object of class traps

value a list of named vectors

... other arguments (not used)

Details

The timevaryingcov attribute of a traps object is a list of one or more named vectors. Each vector

identifies a subset of columns of covariates(object), one for each occasion. If character values are

used they should correspond to covariate names.

The name of the vector may be used in a model formula; when the model is fitted, the value of the

trap covariate on a particular occasion is retrieved from the column indexed by the vector.

For replacement, if object already has a usage attribute, the length of each vector in value must

match exactly the number of columns in usage(object).

Value

timevaryingcov(object) returns the timevaryingcov attribute of object (may be NULL).

Note

It is usually better to model varying effort directly, via the usage attribute (see ../doc/secr-varyingeffort.

pdf).

Models for data from detectors of type ‘multi’, ‘polygonX’ or ‘transectX’ take much longer to fit

when detector covariates of any sort are used.

See ../doc/secr-varyingeffort.pdf for input of detector covariates from a file.

Examples

make a trapping grid with simple covariates

temptrap <- make.grid(nx = 6, ny = 8, detector = ’proximity’)

covariates (temptrap) <- data.frame(matrix(

c(rep(1,48*3),rep(2,48*2)), ncol = 5))

head(covariates (temptrap))

identify columns 1-5 as daily covariates

timevaryingcov(temptrap) <- list(blockt = 1:5)

../doc/secr-varyingeffort.pdf
../doc/secr-varyingeffort.pdf
../doc/secr-varyingeffort.pdf

192 transformations

timevaryingcov(temptrap)

Not run:

default density = 5/ha, noccasions = 5

CH <- sim.capthist(temptrap, detectpar = list(g0 = c(0.15, 0.15,

0.15, 0.3, 0.3), sigma = 25))

fit.1 <- secr.fit(CH, trace = FALSE)

fit.tvc2 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)

because variation aligns with occasions, we get the same with:

fit.t2 <- secr.fit(CH, model = g0 ~ tcov, timecov = c(1,1,1,2,2),

trace = FALSE)

predict(fit.t2, newdata = data.frame(tcov = 1:2))

predict(fit.tvc2, newdata = data.frame(blockt = 1:2))

now model some more messy variation

covariates (traps(CH))[1:10,] <- 3

fit.tvc3 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)

AIC(fit.tvc2, fit.t2, fit.tvc3)

fit.tvc3 is the ’wrong’ model

End(Not run)

transformations Transform Point Array

Description

Flip (reflect), rotate or slide (translate) an array of points. Methods are provided for ‘traps’ objects

that ensure other attributes are retained. The methods may be used with rbind.traps to create

complex geometries.

Usage

flip (object, lr = F, tb = F, ...)

rotate (object, degrees, centrexy = NULL, ...)

shift (object, shiftxy, ...)

S3 method for class ’traps’

flip(object, lr = F, tb = F, ...)

S3 method for class ’traps’

rotate(object, degrees, centrexy = NULL, ...)

S3 method for class ’traps’

shift(object, shiftxy, ...)

S3 method for class ’popn’

transformations 193

flip(object, lr = F, tb = F, ...)

S3 method for class ’popn’

rotate(object, degrees, centrexy = NULL, ...)

S3 method for class ’popn’

shift(object, shiftxy, ...)

Arguments

object a 2-column matrix or object that can be coerced to a matrix

lr either logical for whether array should be flipped left-right, or numeric value for

x-coordinate of axis about which it should be flipped left-right

tb either logical for whether array should be flipped top-bottom, or numeric value

for y-coordinate of axis about which it should be flipped top-bottom

degrees clockwise angle of rotation in degrees

centrexy vector with xy coordinates of rotation centre

shiftxy vector of x and y displacements

... other arguments (not used)

Details

flip reflects points about a vertical or horizontal axis. Logical values for lr or tb indicate that

points should be flipped about the mean on the relevant axis. Numeric values indicate the particular

axis value(s) about which points should be flipped. The default arguments result in no change.

shift shifts the location of each point by the desired amount on each axis.

rotate rotates the array about a designated point. If centrexy is NULL then rotation is about

(0,0) (rotate.default), the array centre (rotate.traps), or the centre of the bounding box

(rotate.popn).

Value

A matrix or object of class ‘traps’ or ‘popn’ with the coordinates of each point transformed as

requested.

See Also

traps, popn

Examples

temp <- matrix(runif (20) * 2 - 1, nc = 2)

flip

temp2 <- flip(temp, lr = 1)

plot(temp, xlim=c(-1.5,4), ylim = c(-1.5,1.5), pch = 16)

points (temp2, pch = 1)

arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

abline(v = 1, lty = 2)

rotate

temp2 <- rotate(temp, 25)

194 trap.builder

plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)

points (0,0, pch=2)

points (temp2, pch = 1)

arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

shiftxy

temp2 <- shift(temp, c(0.1, 0.1))

plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)

points (0,0, pch=2)

points (temp2, pch = 1)

arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

flip.traps

oldpar <- par(mfrow=c(1,2), xpd = TRUE)

traps1 <- make.grid(nx = 8, ny = 6, ID = "numxb")

traps2 <- flip (traps1, lr = TRUE)

plot(traps1, border = 5, label = TRUE, offset = 7, gridl = FALSE)

plot(traps2, border = 5, label = TRUE, offset = 7, gridl = FALSE)

par(oldpar)

rotate.traps

hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)

nested <- rbind (hollow1, rotate(hollow1, 45, c(70, 70)))

plot(nested, gridlines = FALSE)

shift.traps

hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)

hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE), c(20, 20))

nested <- rbind (hollow1, hollow2)

plot(nested, gridlines = FALSE, label = TRUE)

trap.builder Complex Detector Layouts

Description

Construct detector layouts comprising small arrays (clusters) replicated across space, possibly at a

probability sample of points.

Usage

trap.builder (n = 10, cluster, region = NULL, frame = NULL, method = "SRS",

edgemethod = "clip", samplefactor = 2, ranks = NULL, rotation = NULL,

detector, exclude = NULL, exclmethod = "clip", plt = FALSE, add = FALSE)

mash (object, origin = c(0,0), clustergroup = NULL, ...)

cluster.counts (object)

cluster.centres (object)

trap.builder 195

Arguments

n integer number of clusters (ignored if method = "all")

cluster traps object

region bounding polygon

frame data frame of points used as a finite sampling frame

method character string (see Details)

edgemethod character string (see Details)

samplefactor oversampling to allow for rejection of edge clusters (multiple of n)

ranks vector of relative importance (see Details)

rotation angular rotation of each cluster about centre (degrees)

detector character detector type (see detector)

exclude polygon(s) from which detectors are to be excluded

exclmethod character string (see Details)

plt logical: should array be plotted?

add logical: add to existing plot

object single-session multi-cluster capthist object, or traps object for cluster.centres

origin new coordinate origin for detector array

clustergroup list of vectors subscripting the clusters to be mashed

... other arguments passed by mash to make.capthist (e.g., sortrows)

Details

The detector array in cluster is replicated n times and translated to centres sampled from the area

sampling frame in region or the finite sampling frame in frame. Each cluster may be rotated about

its centre either by a fixed number of degrees (rotation positive), or by a random angle (rotation

negative).

If the cluster argument is not provided then single detectors of the given type are placed according

to the design.

The sampling frame is finite (the points in frame) whenever frame is not NULL. If region and

frame are both specified, sampling uses the finite frame but sites may be clipped using the polygon.

region and exclude may be a two-column matrix or dataframe of x-y coordinates for the boundary,

or a SpatialPolygonsDataFrame object from sp.

method may be "SRS", "GRTS", "all" or "rank". "SRS" takes a simple random sample (without

replacement in the case of a finite sampling frame). "GRTS" takes a spatially representative sample

using the ‘generalized random tessellation stratified’ (GRTS) method of Stevens and Olsen (2004).

"all" replicates cluster across all points in the finite sampling frame. "rank" selects n sites from

frame on the basis of their ranking on the vector ‘ranks’, which should have length equal to the

number of rows in frame; ties are resolved by drawing a site at random.

edgemethod may be "clip" (reject individual detectors), "allowoverlap" (no action) or "allinside"

(reject whole cluster if any component is outside region). Similarly, exclmethod may be "clip" (re-

ject individual detectors) or "alloutside" (reject whole cluster if any component is outside exclude).

Sufficient additional samples ((samplefactor--1) * n) must be drawn to allow for replacement

of any rejected clusters; otherwise, an error is reported (‘not enough clusters within polygon’).

The package sp is required. GRTS samples require function grts in package spsurvey of Olsen

and Kincaid. Much more sophisticated sampling designs may be specified by using grts directly.

196 trap.builder

mash collapses a multi-cluster capthist object as if all detections were made on a single cluster.

The new detector coordinates in the ‘traps’ attribute are for a single cluster with (min(x), min(y))

given by origin. clustergroup optionally selects one or more groups of clusters to mash; if

length(clustergroup) > 1 then a multisession capthist object will be generated, one ‘session’

per clustergroup. By default, all clusters are mashed.

mash discards detector-level covariates and occasion-specific ‘usage’, with a warning.

cluster.counts returns the number of distinct individuals detected per cluster in a single-session

multi-cluster capthist object.

Value

trap.builder produces an object of class ‘traps’.

method = "GRTS" causes messages to be displayed regarding the stratum (always "None"), and the

initial, current and final number of levels from the GRTS algorithm.

plt = TRUE causes a plot to be displayed, including the polygon or finite sampling frame as appro-

priate.

mash produces a capthist object with the same number of rows as the input but different detector

numbering and ‘traps’. An attribute ‘n.mash’ is a vector of the numbers recorded at each cluster;

its length is the number of clusters. An attribute ‘centres’ is a dataframe containing the x-y coor-

dinates of the cluster centres. The predict method for secr objects and the function derived both

recognise and adjust for mashing.

cluster.counts returns a vector with the number of individuals detected at each cluster.

cluster.centres returns a dataframe of x- and y-coordinates.

Note

The function make.systematic should be used to generate systematic random layouts. It calls

trap.builder.

The sequence number of the cluster to which each detector belongs, and its within-cluster sequence

number, may be retrieved with the functions clusterID and clustertrap.

References

Stevens, D. L., Jr., and Olsen, A. R. (2004) Spatially-balanced sampling of natural resources. Jour-

nal of the American Statistical Association 99, 262–278.

See Also

make.grid, traps, make.systematic, clusterID, clustertrap

Examples

solitary detectors placed randomly within a rectangle

tempgrid <- trap.builder (n = 10, method = "SRS",

region = cbind(x = c(0,1000,1000,0),

y = c(0,0,1000,1000)), plt = TRUE)

GRTS sample of mini-grids within a rectangle

edgemethod = "allinside" avoids truncation at edge

minigrid <- make.grid(nx = 3, ny = 3, spacing = 50,

detector = "proximity")

trap.builder 197

tempgrid <- trap.builder (n = 20, cluster = minigrid,

method = "GRTS", edgemethod = "allinside", region =

cbind(x = c(0,6000,6000,0), y = c(0,0,6000,6000)),

plt = TRUE)

as before, but excluding detectors from a polygon

tempgrid <- trap.builder (n = 40, cluster = minigrid,

method = "GRTS", edgemethod = "allinside", region =

cbind(x = c(0,6000,6000,0), y = c(0,0,6000,6000)),

exclude = cbind(x = c(3000,7000,7000,3000), y =

c(2000,2000,4000,4000)), exclmethod=’alloutside’,

plt = TRUE)

one detector in each 100-m grid cell -

a form of stratified simple random sample

origins <- expand.grid(x = seq(0, 900, 100),

y = seq(0, 1100, 100))

XY <- origins + runif(10 * 12 * 2) * 100

temp <- trap.builder (frame = XY, method = "all",

detector = "multi")

same as temp <- read.traps(data = XY)

plot(temp, border = 0) ## default grid is 100 m

simulate some data

regular lattice of mini-arrays

minigrid <- make.grid(nx = 3, ny = 3, spacing = 50,

detector = "proximity")

tempgrid <- trap.builder (cluster = minigrid , method =

"all", frame = expand.grid(x = seq(1000, 5000, 2000),

y = seq(1000, 5000, 2000)), plt = TRUE)

tempcapt <- sim.capthist(tempgrid, popn = list(D = 10))

cluster.counts(tempcapt)

cluster.centres(tempgrid)

"mash" the CH

summary(mash(tempcapt))

compare timings (estimates are near identical)

Not run:

tempmask1 <- make.mask(tempgrid, type = "clusterrect",

buffer = 200, spacing = 10)

fit1 <- secr.fit(tempcapt, mask = tempmask1, trace = FALSE) ## 680 s

tempmask2 <- make.mask(minigrid, spacing = 10)

fit2 <- secr.fit(mash(tempcapt), mask = tempmask2, trace = FALSE) ## 6.2 s

density estimate is adjusted automatically

for the number of mashed clusters (9)

predict(fit1)

predict(fit2)

fit1$proctime

fit2$proctime

End(Not run)

two-phase design: preliminary sample across region,

followed by selection of sites for intensive grids

198 traps

Not run:

arena <- data.frame(x = c(0,2000,2000,0), y = c(0,0,2500,2500))

t1 <- make.grid(nx = 1, ny = 1)

t4 <- make.grid(nx = 4, ny = 4, spacing = 50)

singletraps <- make.systematic (n = c(8,10), cluster = t1,

region = arena)

CH <- sim.capthist(singletraps, popn = list(D = 2))

plot(CH, type = "n.per.cluster", title = "Number per cluster")

temp <- trap.builder(10, frame = traps(CH), cluster = t4,

ranks = cluster.counts(CH), method = "rank",

edgemethod = "allowoverlap", plt = TRUE, add = TRUE)

End(Not run)

traps Detector Array

Description

An object of class traps encapsulates a set of detector (trap) locations and related data. A method

of the same name extracts or replaces the traps attribute of a capthist object.

Usage

traps(object, ...)

traps(object) <- value

Arguments

object a capthist object.

value traps object to replace previous.

... other arguments (not used).

Details

An object of class traps holds detector (trap) locations as a data frame of x-y coordinates. Trap

identifiers are used as row names. The required attribute ‘detector’ records the type of detector

("single", "multi" or "proximity" etc.; see detector for more).

Other possible attributes of a traps object are:

spacing mean distance to nearest detector

spacex

spacey

covariates dataframe of trap-specific covariates

clusterID identifier of the cluster to which each detector belongs

clustertrap sequence number of each trap within its cluster

usage a traps x occasions matrix of effort (may be binary 0/1)

newtrap vector recording aggregation of detectors by reduce.traps

traps.info 199

If usage is specified, at least one detector must be ‘used’ (usage non-zero) on each occasion.

Various array geometries may be constructed with functions such as make.grid and make.circle,

and these may be combined or placed randomly with trap.builder.

Note

Generic methods are provided to select rows (subset.traps), combine two or more arrays (rbind.traps),

aggregate detectors (reduce.traps), shift an array (shift.traps), or rotate an array (rotate.traps).

The attributes usage and covariates may be extracted or replaced using generic methods of the

same name.

References

Efford, M. G. (2007) Density 4.1: software for spatially explicit capture–recapture. Department of

Zoology, University of Otago, Dunedin, New Zealand. http://www.otago.ac.nz/density

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit

capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy

(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

make.grid, read.traps, rbind.traps, reduce.traps, plot.traps, secr.fit, spacing, detector,

covariates, trap.builder

Examples

demotraps <- make.grid(nx = 8, ny = 6, spacing = 30)

demotraps ## uses print method for traps

summary (demotraps)

plot (demotraps, border = 50, label = TRUE, offset = 8,

gridlines=FALSE)

generate an arbitrary covariate ‘randcov’

covariates (demotraps) <- data.frame(randcov = rnorm(48))

overplot detectors that have high covariate values

temptr <- subset(demotraps, covariates(demotraps)$randcov > 0.5)

plot (temptr, add = TRUE,

detpar = list (pch = 16, col = "green", cex = 2))

traps.info Detector Attributes

Description

Extract or replace attributes of an object of class ‘traps’.

http://www.otago.ac.nz/density

200 traps.info

Usage

polyID(object)

polyID(object) <- value

transectID(object)

transectID(object) <- value

searcharea(object)

transectlength(object)

Arguments

object a ‘traps’ object

value replacement value (see Details)

Details

The ‘polyID’ and ‘transectID’ functions assign and extract the attribute of a ‘traps’ object that

relates vertices (rows) to particular polygons or transects. The replacement value should be a factor

of length equal to nrow(object).

The ‘searcharea’ of a ‘polygon’ traps object is a vector of the areas of the component polygons in

hectares. This value is read-only.

The ‘transectlength’ of a ‘transect’ traps object is a vector of the lengths of the component transects

in metres. This value is read-only.

Value

polyID - a factor with one level per polygon. searcharea - numeric value of polygon areas, in

hectares. transectlength - numeric value of transect lengths, in metres.

See Also

traps

Examples

default is a single polygon

temp <- make.grid(detector = "polygon", hollow = TRUE)

polyID(temp)

plot(temp)

split in two

temp <- make.grid(detector = "polygon", hollow = TRUE)

polyID(temp) <- factor(rep(c(1,2),rep(10,2)))

plot(temp)

trim 201

trim Drop Unwanted List Components

Description

Drop unwanted components from a list object, usually to save space.

Usage

Default S3 method:

trim(object, drop, keep)

S3 method for class ’secr’

trim(object, drop = c("mask", "design", "design0"),

keep = NULL)

Arguments

object a list object

drop vector identifying components to be dropped

keep vector identifying components to be kept

Details

drop may be a character vector of names or a numeric vector of indices. If both drop and keep are

given then the action is conservative, dropping only components in drop and not in keep.

Be warned that some further operations on fitted secr objects become impossible once you have

discarded the default components.

Value

a list retaining selected components.

Examples

names(secrdemo.0)

names(trim(secrdemo.0))

object.size(secrdemo.0)

object.size(trim(secrdemo.0))

202 Troubleshooting

Troubleshooting Problems in Fitting SECR Models

Description

Although secr.fit is quite robust, it does not always work. Inadequate data or an overambi-

tious model occasionally cause numerical problems in the algorithms used for fitting the model, or

problems of identifiability, as described for capture–recapture models in general by Gimenez et al.

(2004). Here are some tips that may help you.

secr.fit finishes, but some or all of the variances are missing

This usually means the model did not fit and the estimates should not be used. Extremely large

variances or standard errors also indicate problems.

• Try another maximization method (method = ’Nelder-Mead’ is more robust than the de-

fault). The same maximum likelihood should be found regardless of method, so AIC values

are comparable across methods.

• Repeat the maximization with different starting values. You can use secr.fit(..., start = last.model)

where last.model is a previously fitted secr object.

• Try a finer mask (e.g., vary argument nx in make.mask). Check that the extent of the mask

matches your data.

• The maximization algorithms work poorly when the beta coefficients are of wildly differ-

ent magnitude. This may happen when using covariates: ensure beta coefficients are similar

(within a factor of 5–10 seems adequate, but this is not based on hard evidence) by scaling

any covariates you provide. This can be achieved by setting the typsize argument of nlm or

the parscale control argument of optim.

• Examine the model. Boundary values (e.g., g0 near 1.0) may give problems. In the case of

more complicated models you may gain insight by fixing the value of a difficult-to-estimate

parameter (argument fixed).

See also the section ‘Potential problems’ in ../doc/secr-densitysurfaces.pdf.

secr.fit finishes with warning nlm code 1 or 3

These conditions do not invariably indicate a failure of model fitting. Proceed with caution, check-

ing as suggested in the preceding section.

secr.fit crashes part of the way through maximization

A feature of the maximization algorithm used by default in nlm is that it takes a large step in the

parameter space early on in the maximization. The step may be so large that it causes floating

point underflow or overflow in one or more real parameters. This can be controlled by passing

the ‘stepmax’ argument of nlm in the . . . argument of secr.fit (see first example). See also the

previous point about scaling of covariates.

../doc/secr-densitysurfaces.pdf

usage 203

secr.fit crashes near end

When fitting a model with verify = TRUE you see the log likelihood converge (assuming trace = TRUE),

but secr.fit crashes without returning, perhaps with an obscure message referring to nls, or

"Error in integrate... : the integral is probably divergent". This is most likely

due to numerical problems in the optional bias check with bias.D. Simply set verify = FALSE

and repeat.

secr.fit demands more memory than is available

This is a problem particularly when using individual covariates in a model fitted by maximizing

the conditional likelihood. The memory required is then roughly proportional to the product of

the number of individuals, the number of occasions, the number of detectors and the number of

latent classes (for finite-mixture models). When maximizing the full-likelihood, substitute ‘number

of groups’ for ‘number of individuals’. [The limit is reached in external C used for the likelihood

calculation, which uses the R function ‘R_alloc’.]

The mash function may be used to reduce the number of detectors when the design uses many

identical and independent clusters. Otherwise, apply your ingenuity to simplify your model, e.g.,

by casting ‘groups’ as ‘sessions’. Memory is less often an issue on 64-bit systems (see link below).

Estimates from mixture models appear unstable

These models have known problems due to multimodality of the likelihood. See ../doc/secr-finitemixtures.

pdf.

References

Gimenez, O., Viallefont, A., Catchpole, E. A., Choquet, R. and Morgan, B. J. T. (2004) Methods

for investigating parameter redundancy. Animal Biodiversity and Conservation 27, 561–572.

See Also

secr.fit, Memory-limits

usage Detector Usage

Description

Extract or replace usage information of a traps object.

Usage

usage(object, ...)

usage(object) <- value

Arguments

object traps object

value numeric matrix of detectors x occasions, or a vector (see Details).

... other arguments (not used)

../doc/secr-finitemixtures.pdf
../doc/secr-finitemixtures.pdf

204 usage

Details

In secr versions before 2.5.0, usage was defined as a binary value (1 if trap k used on occasion s,

zero otherwise).

In later versions, usage may take nonnegative real values and will be interpreted as effort. This

corresponds to the constant T_s used for the duration of sampling by Borchers and Efford (2008).

Effort is modelled as a known linear coefficient of detection probability on the hazard scale (..

/doc/secr-varyingeffort.pdf; Efford et al. 2013).

For replacement, various forms are possible for value:

- a matrix in which the number of rows of value exactly matches the number of traps K in object

- a vector of two values, the usage (typically 1) and the number of occasions S (a K x S matrix will

be filled with the first value)

- a vector of R+1 values where R is the number of sessions in a multi-session object and elements

2..R+1 correspond to the numbers of occasions S1, S2,... in each session

- the usage only (typically 1) (only works when replacing an existing usage matrix with known

number of occasions).

Value

usage(object) returns the usage matrix of the traps object. usage(object) may be NULL.

Note

At present, assignment of usage to the traps objects of a multisession capthist object results in the

loss of session names from the latter.

References

Efford, M. G., Borchers D. L. and Mowat, G. (2013) Varying effort in capture–recapture studies.

Methods in Ecology and Evolution. http://dx.doi.org/10.1111/2041-210X.12049.

See Also

traps, usagePlot

Examples

demo.traps <- make.grid(nx = 6, ny = 8)

random usage over 5 occasions

usage(demo.traps) <- matrix (sample(0:1, 48*5, replace = TRUE,

p = c(0.5,0.5)), nc = 5)

usage(demo.traps)

summary(demo.traps)

usage(traps(ovenCH)) <- c(1,9,10,10,10,10)

restore lost names

names(ovenCH) <- 2005:2009

../doc/secr-varyingeffort.pdf
../doc/secr-varyingeffort.pdf
http://dx.doi.org/10.1111/2041-210X.12049

usagePlot 205

usagePlot Plot Usage

Description

This function displays variation in effort (usage) over detectors as a bubble plot (circles with radius

scaled so that area is proportional to effort).

Usage

usagePlot(object, add = FALSE, occasion = NULL, col = "black", fill =

FALSE, scale = 2, metres = TRUE, rad = 5, ...)

Arguments

object traps object with usage attribute

add logical; if FALSE plot.traps is called to create a base plot

occasion integer number of the occasion for which effort is plotted, or NULL

col character or integer colour value

fill logical; if TRUE the circle is filled with the line colour

scale numeric value used to scale radius

metres logical; if TRUE scale is a value in metres (see Details)

rad numeric; radial displacement of symbol centre for each occasion from true de-

tector location (metres)

... other arguments passed to plot.traps

Details

By default (occasion = NULL) circles representing usage on each occasion are plotted around the

detector location at distance rad, as in the petal plot of plot.capthist. Otherwise, the usage on a

single specified occasion is plotted as a circle centred at the detector location.

The metres argument switches between two methods. If metres = TRUE, the symbols function is

used with inches = FALSE to plot circles with radius scaled in the units of object (i.e. metres;

scale is then the radius in metres of the symbol for a detector with usage = 1.0). Otherwise, plotting

uses points; this has the advantage of producing better filled circles, but a suitable value of scale

must be found by trial and error.

Package sp provides an alternative (see Examples).

Value

No value is returned.

See Also

usage, symbols, codebubble

206 vcov.secr

Examples

simgrid <- make.grid(nx = 10, ny = 10, detector = ’proximity’)

usage(simgrid) <- matrix(rep(1:10, 50), nrow = 100, ncol = 5)

usagePlot(simgrid, border = 20, scale = 1.5, fill = FALSE,

metres = FALSE)

It is hard to get the legend just right

here is one attempt

legend (x = -50, y = 185, legend = c(1,2,5,10), pch = 1, pt.cex =

c(1,2,5,10)^0.5 * 1.5, x.intersp = 3, y.intersp = 1.8, adj = 1,

bty = ’n’, title = ’Usage’)

usagePlot(simgrid, occasion = NULL, border = 20, scale = 1.5, fill = FALSE,

metres = FALSE)

Not run:

bubble plot in package ’sp’

library(sp)

simgrid$usage <- usage(simgrid)[,1] ## occasion 1

class(simgrid) <- ’data.frame’

coordinates(simgrid) <- c(’x’,’y’)

bubble(simgrid)

End(Not run)

vcov.secr Variance - Covariance Matrix of SECR Parameters

Description

Variance-covariance matrix of beta or real parameters from fitted secr model.

Usage

S3 method for class ’secr’

vcov(object, realnames = NULL, newdata = NULL,

byrow = FALSE, ...)

Arguments

object secr object output from the function secr.fit

realnames vector of character strings for names of ‘real’ parameters

newdata dataframe of predictor values

byrow logical for whether to compute covariances among ‘real’ parameters for each

row of new data, or among rows for each real parameter

... other arguments (not used)

verify 207

Details

By default, returns the matrix of variances and covariances among the estimated model coefficients

(beta parameters).

If realnames and newdata are specified, the result is either a matrix of variances and covariances

for each ‘real’ parameter among the points in predictor-space given by the rows of newdata or

among real parameters for each row of newdata. Failure to specify newdata results in a list of

variances only.

Value

A matrix containing the variances and covariances among beta parameters on the respective link

scales, or a list of among-parameter variance-covariance matrices, one for each row of newdata, or

a list of among-row variance-covariance matrices, one for each ‘real’ parameter.

See Also

vcov, secr.fit, print.secr

Examples

previosuly fitted secr model

vcov(secrdemo.0)

verify Check SECR Data

Description

Check that the data and attributes of an object are internally consistent to avoid crashing functions

such as secr.fit

Usage

Default S3 method:

verify(object, report, ...)

S3 method for class ’traps’

verify(object, report = 2, ...)

S3 method for class ’capthist’

verify(object, report = 2, tol = 0.01, ...)

S3 method for class ’mask’

verify(object, report = 2, ...)

Arguments

object an object of class ‘traps’, ‘capthist’ or ‘mask’

report integer code for level of reporting to the console. 0 = no report, 1 = errors only,

2 = full.

tol numeric tolerance for deviations from transect line (m)

... other arguments (not used)

208 verify

Details

Checks are performed specific to the class of ‘object’. The default method is called when no specific

method is available (i.e. class not ‘traps’, ‘capthist’ or ‘mask’), and does not perform any checks.

verify.capthist

1. No ‘traps’ component

2. Invalid ‘traps’ component reported by verify.traps

3. No live detections

4. Missing values not allowed in capthist

5. Live detection(s) after reported dead

6. More than one capture in single-catch trap(s)

7. More than one detection per detector per occasion at proximity detector(s)

8. Signal detector signal(s) less than threshold or invalid threshold

9. Number of rows in ‘traps’ object not compatible with reported detections

10. Number of rows in dataframe of individual covariates differs from capthist

11. Number of occasions in usage matrix differs from capthist

12. Detections at unused detectors

13. Number of coordinates does not match number of detections (‘polygon’, ‘polygonX’, ‘tran-

sect’ or ‘transectX’ detectors)

14. Coordinates of detection(s) outside polygons (‘polygon’ or ‘polygonX’ detectors)

15. Coordinates of detection(s) do not lie on any transect (‘transect’ or ‘transectX’ detectors)

16. Row names (animal identifiers) not unique

17. Levels of factor covariate(s) differ between sessions

verify.traps

1. Missing detector coordinates not allowed

2. Number of rows in dataframe of detector covariates differs from expected

3. Number of detectors in usage matrix differs from expected

4. Occasions with no used detectors

5. Polygons overlap

6. Polygons concave east-west (‘polygon’ detectors)

7. PolyID missing or not factor

8. Polygon detector is concave in east-west direction

9. Levels of factor trap covariate(s) differ between sessions

verify.mask

1. Valid x and y coordinates

2. Number of rows in covariates dataframe differs from expected

3. Levels of factor mask covariate(s) differ between sessions

Earlier errors may mask later errors: fix & re-run.

write.captures 209

Value

A list with the component errors, a logical value indicating whether any errors were found. If

object contains multi-session data then session-specific results are contained in a further list com-

ponent bysession.

Full reporting is the same as ‘errors only’ except that a message is posted when no errors are found.

See Also

capthist, secr.fit

Examples

verify(captdata)

create null (complete) usage matrix, and mess it up

temptraps <- make.grid()

usage(temptraps) <- matrix(1, nr = nrow(temptraps), nc = 5)

usage(temptraps)[,5] <- 0

verify (temptraps)

create mask, and mess it up

tempmask <- make.mask(temptraps)

verify(tempmask)

tempmask[1,1] <- NA

verify(tempmask)

write.captures Write Data to Text File

Description

Export detections or detector layout to a text file in format suitable for input to DENSITY.

Usage

write.captures(object, file = "", deblank = TRUE, header = TRUE,

append = FALSE, sess = "1", ndec = 2, covariates = FALSE, ...)

write.traps(object, file = "", deblank = TRUE, header = TRUE,

ndec = 2, covariates = FALSE, ...)

Arguments

object capthist or traps object

file character name of output file

deblank logical; if TRUE remove any blanks from character string used to identify de-

tectors

210 writeGPS

header logical; if TRUE output descriptive header

append logical; if TRUE output is appended to an existing file

sess character session identifier

ndec number of digits after decimal point for x,y coordinates

covariates logical or a character vector of covariates to export

... other arguments passed to write.table

Details

Existing file will be replaced without warning if append = FALSE. In the case of a multi-session

capthist file, session names are taken from object rather than sess.

write.capthist is generally simpler to use if you want to export both the capture data and trap

layout from a capthist object.

By default individual covariates are not exported. When exported they are repeated for each detec-

tion of an individual. Factor covariates are coerced to numeric before export.

Examples

write.captures (captdata)

writeGPS Upload to GPS

Description

Upload a set of point locations as waypoints to a GPS unit connected by USB or via a serial port.

Intended primarily for detector locations in a traps object. Uses the GPSBabel package which must

have been installed. Coordinates are first inverse-projected to latitude and longitude using function

project from rgdal.

Usage

writeGPS(xy, o = "garmin", F = "usb:", proj = "+proj=nzmg")

Arguments

xy 2-column matrix or dataframe of x-y coordinates

o character output format (see GPSBabel documentation)

F character for destination (see Details)

proj character string describing projection

writeGPS 211

Details

This function is derived in part from readGPS in maptools.

For users of Garmin GPS units, useful values of o are "garmin" for direct upload via USB or serial

ports, and "gdb" for a file in Mapsource database format.

F may be "usb:" or "com4:" etc. for upload via USB or serial ports, or the name of a file to create.

The proj argument may be complex. For further information see the Examples, http://www.

remotesensing.org/geotiff/proj_list/ and the help for related package rgdal. If proj is

an empty string then coordinates are assumed already to be latitudes (column 1) and longitudes

(column 2).

Waypoint names are derived from the rownames of xy.

Value

No value is returned. The effect is to upload waypoints to an attached GPS or file.

Note

GPSBabel is available free from http://www.gpsbabel.org/. Remember to add it to the Path.

On Windows this means following something like Settings > Control panel > System > Advanced

settings > Environment variables > (select Path) Edit and adding ";C:/Program Files (x86)/gpsbabel"

to the end (without the quotes). Or ";C:/Program Files/gpsbabel" on 32-bit systems.

See Also

make.systematic, readGPS, project

Examples

Example using shapefile "possumarea.shp" in

"extdata" folder. As ’cluster’ is not specified,

the grid comprises single multi-catch detectors.

Not run:

library(maptools)

setwd(system.file("extdata", package = "secr"))

possumarea <- readShapePoly("possumarea")

possumgrid <- make.systematic(spacing = 100, region =

possumarea, plt = TRUE)

May upload directly to GPS...

writeGPS(possumgrid, proj = "+proj=nzmg")

...or save as Mapsource file

writeGPS(possumgrid, o = "gdb", F = "tempgrid.gdb",

proj = "+proj=nzmg")

If ‘region’ had been specified in another projection we

would need to specify this as in Proj.4. Here is a

hypothetical example for New Zealand Transverse Mercator

with datum NZGD2000 (EPSG:2193)

NZTM <- paste("+proj=tmerc +lat_0=0 +lon_0=173 +k=0.9996",

"+x_0=1600000 +y_0=10000000 +ellps=GRS80",

http://www.remotesensing.org/geotiff/proj_list/
http://www.remotesensing.org/geotiff/proj_list/
http://www.gpsbabel.org/

212 writeGPS

" +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

writeGPS(possumgridNZTM, o = "gdb", F = "tempNZTM.txt",

proj = NZTM)

Or to upload coordinates from UTM Zone 18 in eastern

Maryland, USA...

writeGPS(MarylandUTMgrid, proj =

"+proj=utm +zone=18 +ellps=WGS84")

End(Not run)

Index

∗Topic IO
BUGS, 13

read.capthist, 128

read.mask, 130

read.traps, 131

SPACECAP, 173

write.captures, 209

writeGPS, 210

∗Topic classes
capthist, 15

Dsurface, 43

mask, 85

popn, 112

traps, 198

∗Topic datagen
make.mask, 77

make.traps, 81

make.tri, 84

randomHabitat, 122

sim.capthist, 160

sim.popn, 163

sim.secr, 166

∗Topic datasets
deermouse, 32

hornedlizard, 61

housemouse, 63

ovenbird, 93

ovensong, 95

possum, 113

secrdemo, 156

skink, 169

stoatDNA, 177

∗Topic hplot
contour, 28

ellipse.secr, 44

esa.plot, 49

esa.plot.secr, 51

fxi, 56

LLsurface.secr, 70

plot.capthist, 100

plot.mask, 103

plot.popn, 106

plot.secr, 107

plot.traps, 109

usagePlot, 205

∗Topic htest
closure.test, 23

LR.test, 74

score.test, 141

∗Topic manip
addCovariates, 6

addTelemetry, 7

capthist.parts, 16

cluster, 24

covariates, 30

D.designdata, 31

distancetotrap, 42

FAQ, 54

head, 58

join, 69

logit, 72

make.capthist, 75

make.systematic, 80

mask.check, 86

ms, 92

pdot, 99

pointsInPolygon, 110

polyarea, 111

predictDsurface, 117

rbind.capthist, 124

rbind.popn, 126

rbind.traps, 127

rectangularMask, 133

reduce, 134

reduce.capthist, 135

RMarkInput, 140

secr.design.MS, 144

signalmatrix, 159

snip, 171

sort.capthist, 172

speed, 176

subset.capthist, 179

subset.popn, 183

subset.traps, 184

timevaryingcov, 191

transformations, 192

213

214 INDEX

trap.builder, 194

traps.info, 199

trim, 201

usage, 203

verify, 207

∗Topic models
AIC.secr, 9

autoini, 11

circular, 18

closedN, 20

coef.secr, 25

confint.secr, 26

derived, 33

details, 36

detectfn, 37

detector, 39

deviance, 40

empirical.varD, 45

expected.n, 52

homerange, 59

ip.secr, 64

logmultinom, 73

model.average, 89

predict.secr, 115

region.N, 137

secr.fit, 146

secr.make.newdata, 150

secr.model, 151

secr.model.density, 152

secr.model.detection, 154

session, 158

sim.secr, 166

spacing, 175

subset.mask, 181

suggest.buffer, 185

summary.capthist, 187

summary.mask, 189

summary.traps, 190

Troubleshooting, 202

vcov.secr, 206

∗Topic package
secr-package, 4

∗Topic print
print.capthist, 119

print.secr, 120

print.traps, 121

addCovariates, 6

addTelemetry, 7, 37, 83

AIC, 11, 143

AIC.secr, 9, 75, 90, 91, 121, 150

AIC.secrlist (AIC.secr), 9

alive (capthist.parts), 16

alongtransect (capthist.parts), 16

animalID (capthist.parts), 16

ARL (homerange), 59

attenuationplot (plot.secr), 107

autoini, 11, 60, 66, 68, 147, 186

axis, 110

bias.D, 148, 203

bias.D (suggest.buffer), 185

binomN (secr.fit), 146

bubble, 205

buffer.contour, 78, 112

buffer.contour (contour), 28

BUGS, 13

captdata (secrdemo), 156

capthist, 5, 8, 13–15, 15, 17, 21, 22, 24, 59,

62, 68, 73, 76, 92, 94, 96, 102, 114,

119, 125, 134, 136, 146, 150, 157,

159, 162, 170, 173, 174, 179, 181,

187, 188, 209

capthist.parts, 16

captXY (secrdemo), 156

circular, 18

clip.hex, 83

clip.hex (make.tri), 84

closedN, 20, 139

closure.test, 22, 23, 33

cluster, 24, 46

cluster.centres, 25, 80

cluster.centres (trap.builder), 194

cluster.counts, 25

cluster.counts (trap.builder), 194

clusterID, 110, 196, 198

clusterID (cluster), 24

clusterID<- (cluster), 24

clustertrap, 196, 198

clustertrap (cluster), 24

clustertrap<- (cluster), 24

coef.secr, 25

collate (model.average), 89

colours, 105, 110

confint.secr, 26, 31

contour, 28, 57, 71, 104, 105

Coulombe (housemouse), 63

count (detector), 39

counts (summary.capthist), 187

covariates, 30, 170, 198, 199

covariates<- (covariates), 30

cutree, 135, 136

D.designdata, 31, 145

dbar, 13, 188

INDEX 215

dbar (homerange), 59

deermouse, 5, 32

derived, 33, 46, 47, 97, 120, 139, 150

derived.cluster, 25

derived.cluster (empirical.varD), 45

derived.external (empirical.varD), 45

derived.mash (empirical.varD), 45

derived.nj (empirical.varD), 45

derived.session (empirical.varD), 45

details, 36, 147, 150

detectfn, 12, 18, 19, 28, 37, 49, 65, 108, 146,

160, 161, 185

detectfnplot, 19, 39

detectfnplot (plot.secr), 107

Detection functions, 150

Detection functions (detectfn), 37

detector, 38, 39, 62, 83, 85, 129, 132, 133,

135, 188, 190, 195, 198, 199

detector<- (detector), 39

detectpar, 108, 185

detectpar (predict.secr), 115

deviance, 40

deviance.secr, 11

df.residual (deviance), 40

distancetotrap, 42

dnbinom, 147

Dsurface, 43, 104, 105, 153

effort (usage), 203

ellipse.secr, 44

empirical.varD, 36, 45

esa, 12, 47

esa (derived), 33

esa.plot, 26, 49, 52, 86, 88, 186

esa.plot.secr, 51

ESG.0 (deermouse), 32

ESG.b (deermouse), 32

ESG.h2 (deermouse), 32

ESG.t (deermouse), 32

expected.n, 52, 139

Extract, 182–184

FAQ, 54

flip (transformations), 192

formula, 154

fxi, 56

hclust, 135, 136

head, 58, 59

heat.colors, 105

homerange, 59

hornedlizard, 5, 61

hornedlizardCH, 15

hornedlizardCH (hornedlizard), 61

housemouse, 5, 63

infraCH (skink), 169

integrate, 18

invlogit (logit), 72

ip.secr, 60, 64, 97

join, 69, 140, 141

lineoCH (skink), 169

LLsurface.secr, 70, 97

logit, 72

logLik.secr (AIC.secr), 9

logmultinom, 73

LR.test, 11, 74, 143

LStraps (skink), 169

make.capthist, 16, 75, 129, 130

make.circle, 199

make.circle (make.traps), 81

make.grid, 80, 85, 133, 196, 199

make.grid (make.traps), 81

make.lookup (secr.design.MS), 144

make.mask, 7, 29, 42, 50, 52, 77, 86, 88, 100,

113, 123, 138, 139, 186, 202

make.poly (make.traps), 81

make.systematic, 78, 80, 196, 211

make.telemetry, 8

make.telemetry (make.traps), 81

make.transect (make.traps), 81

make.traps, 81

make.tri, 83, 84

mash, 25, 46, 117, 138, 176, 203

mash (trap.builder), 194

mask, 5, 13, 16, 31, 49–52, 78, 85, 92, 105,

122, 123, 131, 146, 147, 150, 164,

174, 182, 185, 186, 189

mask.check, 50, 52, 86, 86, 97, 186

MMDM (homerange), 59

model.average, 10, 11, 89

model.matrix, 144, 145

morning.0 (housemouse), 63

morning.0h2 (housemouse), 63

morning.b (housemouse), 63

morning.h2 (housemouse), 63

morning.h2h2 (housemouse), 63

morning.t (housemouse), 63

moves (homerange), 59

ms, 92

MS.capthist, 16, 70

MS.capthist (rbind.capthist), 124

mtext, 110

216 INDEX

multi (detector), 39

Multi-core processing (Parallel), 97

ncores (Parallel), 97

nearesttrap (distancetotrap), 42

nlm, 57, 148

noise (capthist.parts), 16

noise<- (capthist.parts), 16

occasion (capthist.parts), 16

optim, 148

ovenbird, 5, 93, 95, 96

ovenCH (ovenbird), 93

ovenmask (ovenbird), 93

ovensong, 5, 95, 159

overlay, 111

par, 110

Parallel, 35, 66, 71, 87, 97, 148, 168

parallel, 97

pdot, 28, 29, 50, 52, 78, 85, 99

pdot.contour, 57, 100

pdot.contour (contour), 28

persp, 104, 105

pfn (ip.secr), 64

pgamma, 38

plogis, 72

plot, 108, 110

plot.capthist, 100, 205

plot.Dsurface, 43, 117, 134, 153

plot.Dsurface (plot.mask), 103

plot.mask, 103

plot.popn, 106, 112, 165

plot.secr, 107

plot.secrlist (plot.secr), 107

plot.traps, 83, 109, 199

pointsInPolygon, 110

polyarea, 111

polygon (detector), 39

polygonX (detector), 39

polyID, 17

polyID (traps.info), 199

polyID<- (traps.info), 199

popn, 106, 112, 126, 160, 162, 165, 183, 193

population size (region.N), 137

possum, 5, 113

possumarea (possum), 113

possumCH (possum), 113

possummask (possum), 113

possumremovalarea (possum), 113

predict.secr, 36, 90, 115, 117, 150, 151

predict.secrlist (predict.secr), 115

predictDsurface, 43, 116, 117, 153

print, 119, 121, 190

print.capthist, 119

print.default, 119, 121

print.Dsurface (Dsurface), 43

print.secr, 11, 36, 120, 150, 207

print.summary.capthist

(summary.capthist), 187

print.summary.mask (summary.mask), 189

print.summary.traps (summary.traps), 190

print.traps, 83, 121

project, 211

proximity (detector), 39

qlogis, 72

randomHabitat, 122, 165

rbind.capthist, 16, 70, 124, 162, 181

rbind.mask (subset.mask), 181

rbind.popn, 126, 167

rbind.traps, 127, 185, 192, 199

read.capthist, 5, 16, 75, 76, 128, 157

read.DA (BUGS), 13

read.mask, 7, 86, 130, 174

read.SPACECAP (SPACECAP), 173

read.table, 130

read.traps, 7, 83, 130, 131, 199

readGPS, 211

readShapePoly, 80

rectangularMask, 105, 133

reduce, 134

reduce.capthist, 16, 62, 70, 134, 135, 180,

181

reduce.traps, 134, 198, 199

reduce.traps (reduce.capthist), 135

region.N, 22, 53, 137, 149, 150

RMarkInput, 140

rotate (transformations), 192

rotate.traps, 199

RPSV, 12, 68, 188

RPSV (homerange), 59

RShowDoc, 40

save, 54

score.table (score.test), 141

score.test, 11, 31, 75, 97, 141, 147

searcharea (traps.info), 199

secr, 100, 108

secr (secr-package), 4

secr density models

(secr.model.density), 152

secr detection models

(secr.model.detection), 154

secr models, 115, 147

INDEX 217

secr models (secr.model), 151

secr-package, 4

secr.design.MS, 31, 144, 148

secr.fit, 4, 5, 9, 11–13, 16, 26, 28, 31, 36,

37, 41, 49, 68, 76, 86, 88, 91, 92, 97,

100, 116, 117, 121, 131, 139, 144,

146, 151, 153, 156, 161, 168, 176,

179, 185, 199, 203, 206, 207, 209

secr.make.newdata, 150

secr.model, 151

secr.model.density, 152

secr.model.detection, 154

secrdemo, 156

secrlist (AIC.secr), 9

session, 158

session<- (session), 158

shift (transformations), 192

shift.traps, 199

signal (capthist.parts), 16

signal<- (capthist.parts), 16

signalCH (ovensong), 95

signalframe (capthist.parts), 16

signalframe<- (capthist.parts), 16

signalmatrix, 17, 159

sim.capthist, 12, 14, 16, 65, 76, 160, 168

sim.popn, 65, 68, 106, 112, 123, 162, 163, 167

sim.resight (sim.capthist), 160

sim.secr, 41, 97, 166

simulate, 161, 162, 165, 168

simulate (sim.secr), 166

single (detector), 39

skink, 5, 169

snip, 171

sort.capthist, 172

SPACECAP, 173

spacing, 175, 198, 199

spacing<- (spacing), 175

speed, 176

Speed tips, 55, 150

Speed tips (speed), 176

split.capthist, 70

split.capthist (subset.capthist), 179

split.traps (subset.traps), 184

spotHeight (plot.mask), 103

stoat.model.EX (stoatDNA), 177

stoat.model.HN (stoatDNA), 177

stoat.model.HZ (stoatDNA), 177

stoatCH (stoatDNA), 177

stoatDNA, 5, 74, 177

subset, 165

subset.capthist, 16, 69, 125, 136, 179

subset.mask, 78, 181

subset.popn, 183

subset.traps, 127, 184, 199

suggest.buffer, 86, 185

summary.capthist, 187

summary.Dsurface (Dsurface), 43

summary.mask, 189

summary.traps, 190

symbols, 205

tail, 59

tail.capthist (head), 58

tail.Dsurface (head), 58

tail.mask (head), 58

tail.traps (head), 58

terrain.colors, 105

tile (sim.popn), 163

timevaryingcov, 147, 154, 191

timevaryingcov<- (timevaryingcov), 191

topo.colors, 105

trans3d, 104

transect (detector), 39

transectID (traps.info), 199

transectID<- (traps.info), 199

transectlength, 171

transectlength (traps.info), 199

transectX (detector), 39

transformations, 112, 192

trap (capthist.parts), 16

trap.builder, 25, 78, 80, 194, 199

traps, 5, 16, 25, 40, 76, 83, 85, 110, 121, 127,

133, 162, 175, 185, 190, 193, 196,

198, 200, 204

traps object (traps), 198

traps.info, 199

traps<- (traps), 198

trapXY (secrdemo), 156

trim, 87, 167, 201

Troubleshooting, 54, 149, 150, 202

uniroot, 12, 26, 27

unjoin (join), 69

unRMarkInput (RMarkInput), 140

usage, 12, 29, 55, 65, 100, 147, 150, 191, 198,

203, 205

usage<- (usage), 203

usagePlot, 204, 205

vcov, 207

vcov.secr, 150, 206

verify, 14, 15, 82, 124, 128, 147, 148, 150,

207

verify.capthist, 88

write.capthist, 210

218 INDEX

write.capthist (read.capthist), 128

write.captures, 130, 209

write.DA (BUGS), 13

write.SPACECAP (SPACECAP), 173

write.traps, 130

write.traps (write.captures), 209

writeGPS, 210

WSG.0 (deermouse), 32

WSG.b (deermouse), 32

WSG.h2 (deermouse), 32

WSG.t (deermouse), 32

xy (capthist.parts), 16

xy<- (capthist.parts), 16

	secr-package
	addCovariates
	addTelemetry
	AIC.secr
	autoini
	BUGS
	capthist
	capthist.parts
	circular
	closedN
	closure.test
	cluster
	coef.secr
	confint.secr
	contour
	covariates
	D.designdata
	deermouse
	derived
	details
	detectfn
	detector
	deviance
	distancetotrap
	Dsurface
	ellipse.secr
	empirical.varD
	esa.plot
	esa.plot.secr
	expected.n
	FAQ
	fxi
	head
	homerange
	hornedlizard
	housemouse
	ip.secr
	join
	LLsurface.secr
	logit
	logmultinom
	LR.test
	make.capthist
	make.mask
	make.systematic
	make.traps
	make.tri
	mask
	mask.check
	model.average
	ms
	ovenbird
	ovensong
	Parallel
	pdot
	plot.capthist
	plot.mask
	plot.popn
	plot.secr
	plot.traps
	pointsInPolygon
	polyarea
	popn
	possum
	predict.secr
	predictDsurface
	print.capthist
	print.secr
	print.traps
	randomHabitat
	rbind.capthist
	rbind.popn
	rbind.traps
	read.capthist
	read.mask
	read.traps
	rectangularMask
	reduce
	reduce.capthist
	region.N
	RMarkInput
	score.test
	secr.design.MS
	secr.fit
	secr.make.newdata
	secr.model
	secr.model.density
	secr.model.detection
	secrdemo
	session
	signalmatrix
	sim.capthist
	sim.popn
	sim.secr
	skink
	snip
	sort.capthist
	SPACECAP
	spacing
	speed
	stoatDNA
	subset.capthist
	subset.mask
	subset.popn
	subset.traps
	suggest.buffer
	summary.capthist
	summary.mask
	summary.traps
	timevaryingcov
	transformations
	trap.builder
	traps
	traps.info
	trim
	Troubleshooting
	usage
	usagePlot
	vcov.secr
	verify
	write.captures
	writeGPS
	Index

