
Polygon and transect detectors

Murray Efford

January 21, 2013

The ‘polygon’ detector type is used for data from searches of one or more

areas (polygons). Transect detectors are the linear equivalent of polygons; as the

theory and implementation are very similar we mostly refer to polygon detectors

and only briefly mention transects. Area and linear searches differ from other

modes of detection in that each detection may have different coordinates, and

the coordinates are random rather than fixed by the field design. The method

may be used with individually identifiable cues (e.g., faeces) as well as for direct

observations of individuals.

Polygons may be independent (detector type ‘polygon’) or exclusive (detec-

tor type ‘polygonX’). Exclusivity is a particular type of dependence in which

an animal may be detected at no more than one polygon on each occasion (i.e.

polygons function more like multi-catch traps than ‘count’ detectors). Transect

detectors also may be independent (‘transect’) or exclusive (‘transectX’).

Efford (2011) gives technical background on the fitting of polygon and tran-

sect models to spatially explicit capture–recapture data by maximum likelihood.

This document illustrates the methods using the R package secr 2.2.

Contents

Example data: flat-tailed horned lizards 2

Data input 3

Model fitting 3

Cue data 4

Transect search 4

1



More on polygons 8

Technical notes 8

References 9

Example data: flat-tailed horned lizards

Royle and Young (2008) reported a Bayesian analysis of data from repeated

searches for flat-tailed horned lizards (Phrynosoma mcalli) on a 9-ha square

plot in Arizona, USA. Their dataset is included in secr as hornedlizardCH and

will be used for demonstration. See ?hornedlizard for more details.

The lizards were free to move across the boundary of the plot and often

buried themselves when approached. Half of the 134 different lizards were seen

only once in 14 searches over 17 days. Fig. 1 shows the distribution of detections

within the quadrat; lines connect successive detections of the individuals that

were recaptured.

> library(secr)

> plot(hornedlizardCH, tracks = TRUE, varycol = FALSE,

lab1cap = TRUE, laboffset = 6, border = 10, title =✬✬)

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●● ●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
● ●●

●

●
●

●

●

●

●

● ●

●

●
●●

●●

● ●
●

●

●

●

● ●

●
●●

●●
●

●●

● ●

●

● ●
●

●

●
●

●●●
●

●

●
●

●●

●

●

●

●

●

●
●●

●●●
1

2

3

4

5
6

7

8

9

10

11

12

13 14

15

16

17

18

1920

21

22

23
24

25

26

272829

30

31

32

33

34

35

36

37

38

39

40

41

42 43

44
45

46

47

48

49

50
51

52

53

54

55

56

57

5859

60

61

62

63

64

65

66

67

68

14 occasions, 134 detections, 68 animals

Figure 1: Locations of horned lizards on a 9-ha plot in Arizona (Royle and

Young 2008). Grid lines are 100 m apart.

2



Data input

Input of data for polygon and transect detectors is described in ‘secr-datainput.pdf’.

It is little different to input of other data for secr. The key function is read.capthist,

which reads text files containing the polygon or transect coordinates1 and the

capture records. Capture data should be in the ‘XY’ format of Density (one row

per record with fields in the order Session, AnimalID, Occasion, X, Y). Capture

records are automatically associated with polygons on the basis of X and Y

(coordinates outside any polygon give an error). Transect data are also entered

as X and Y coordinates and automatically associated with transect lines.

Model fitting

The function secr.fit is used to fit polygon or transect models by maximum

likelihood, exactly as for other detectors. Any model fitting requires a habitat

mask – a representation of the region around the detectors possibly occupied

by the detected animals (aka the ‘area of integration’ or ‘state space’). It’s

simplest to use a simple rectangular buffer around the detectors, specified via

the ‘buffer’ argument of secr.fit. Alternatively, one can construct a mask

with make.mask and provide that in the ‘mask’ argument of secr.fit. Pre-

building the mask in this way can be more efficient as points can be dropped that

are within the rectangle but far from detectors (see Transect search). For the

horned lizard dataset it is safe to use the default buffer width (100 m) and the

default detection function (circular bivariate normal). We use trace = FALSE

to suppress intermediate output that would be untidy here.

> FTHL.fit <- secr.fit(hornedlizardCH, trace = FALSE)

> predict(FTHL.fit)

link estimate SE.estimate lcl ucl

D log 8.0577824 1.06434583 6.2268281 10.4271159

g0 logit 0.1240951 0.01332208 0.1002519 0.1526469

sigma log 18.5054497 1.19896834 16.3007666 21.0083169

The estimated density is 8.06 ha–1, somewhat less than the value given by

Royle and Young (2008); see Efford (2011) for an explanation. The parameter

labelled ‘g0’ is equivalent to p in Royle and Young (2008).

FTHL.fit is an object of class secr. Many methods are available for secr

objects (AIC, coef, deviance, print, etc.) - see the secr help index or Appendix

1For constraints on the shape of polygon detectors see More on polygons.

3



3 of ‘secr-overview.pdf’. We would use the ‘plot’ method to graph the fitted

detection function :

> plot(FTHL.fit, xv = 0:70, ylab = ✬p✬)

Cue data

By ‘cue’ in this context we mean a discrete sign identifiable to an individual

animal by means such as microsatellite DNA. Faeces and passive hair samples

may be cues. Animals may produce more than one cue per occasion. The

number of cues in a specific polygon then has a discrete distribution such as

Poisson, binomial or negative binomial.

A cue dataset is not readily available, so we simulate some cue data to

demonstrate the analysis. The text file ‘temppoly.txt’ contains the boundary

coordinates.

> temppoly <- read.traps(file = ✬temppoly.txt✬, detector =

✬polygon✬)

> tempcapt <- sim.capthist(temppoly, popn = list(D = 1, buffer =

200), detectpar = list(g0 = 5, sigma = 50), noccasions = 1)

Our simulated sampling was a single search (noccasions = 1), and the in-

tercept of the detection function (g0 = 5) is the expected number of cues that

would be found per animal if the search was unbounded. The plot is slightly

misleading because the cues are not ordered in time, but tracks = TRUE serves

to link cues from the same animal.

To fit the model by maximum likelihood we use secr.fit as before.

> cuesim.fit <- secr.fit(tempcapt, buffer = 200, trace = FALSE)

> predict(cuesim.fit)

link estimate SE.estimate lcl ucl

D log 1.8660615 0.24626880 1.4423655 2.4142185

g0 log 0.5246784 0.06045803 0.4189224 0.6571323

sigma log 54.4065890 3.45906655 48.0383748 61.6190064

4



> plot(tempcapt, tracks = TRUE, varycol = F, lab1cap = T,

laboffset = 15, title = paste("Simulated ✬polygon✬ data",

"D = 1, g0 = 5, sigma = 50"))

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●●
●●

●
●●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48
49

Simulated 'polygon' data D = 1, g0 = 5, sigma = 50
1 occasions, 176 detections, 49 animals

Figure 2: Simulated cue data from a single search of two irregular polygons.

Transect search

Transect data include the positions from which individuals are detected along

a linear route. They do not include distances from the route to the location of

the individual, at least, not yet. A route may be searched multiple times, and

a dataset may include multiple routes.

We simulate some data for an imaginary wiggly transect.

> x <- seq(0, 4*pi, length = 20)

> temptrans <- make.transect(x = x*100, y = sin(x)*300,

exclusive = FALSE)

> summary(temptrans)

Object class traps

Detector type transect

Number vertices 20

Number transects 1

5



Total length 2756.105 m

x-range 0 1256.637 m

y-range -298.9753 298.9753 m

> tempcapt <- sim.capthist(temptrans, popn = list(D = 2,

buffer = 300), detectpar = list(g0 = 1.0, sigma =

50), binomN = 0)

By setting exclusive = FALSE we signal that there may be more than one

detection per animal per occasion on this single transect (i.e. this is a ‘transect’

detector rather than ‘transectX’).

Constructing a habitat mask explicitly with make.mask (rather than relying

on buffer in secr.fit) allows us to specify the point spacing and discard

outlying points (Fig. 3 .

> tempmask <- make.mask(temptrans, type = ✬trapbuffer✬, buffer =

300, spacing = 20)

> plot(tempmask, border = 0)

> plot(temptrans, add = TRUE, detpar = list(lwd = 2))

> plot(tempcapt, tracks = TRUE, add = TRUE, title = ✬✬)

Model fitting uses secr.fit as before. We specify the distribution of the

number of detections per individual per occasion as Poisson (binomN = 0), al-

though this also happens to be the default. Setting method = ’BFGS’ is more

likely to yield valid estimates of standard errors than using the default method

(see Technical notes).

> transim.fit <- secr.fit(tempcapt, mask = tempmask, binomN = 0,

method = ✬BFGS✬, trace = FALSE)

> predict (transim.fit)

link estimate SE.estimate lcl ucl

D log 1.783498 0.19487151 1.4405984 2.208016

g0 log 1.046182 0.08538759 0.8917619 1.227342

sigma log 50.822294 1.99349386 47.0629227 54.881963

6



● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

●
●
●●●

●
●●

●

●
●

●●●
●

●●●
●

●

●●

●

●

●●
●●
●

●

●

●
●

●

●

●

●● ●

●

●
●●
●
●

●

●
●

● ●
●
●

●
●

●

●
●
●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●●

●

●● ●●●●●●

●
●

●●

●

●

●
●

●
●●●

●●
●

●●●●●

●
●

●

●

●●
●●

●
●

●●

●

●
●●

●

●

●
●●

●●
●
●●

●●
●●

●
●

●
●

●
●
●

●

●

●

●

●
●●

●●
●

●●

●●
●

●

●
●●●

●

●

●
●

●●
●●

●●
●

●
●

●
●●

●
●●●

●
●

●
●●●●
●

●●

●

●
●

●●●●

●
●

●●

●●
●●●

●

●
●●●

●●

●
●

●
●

●
●

●●

●
●●

●

●
●●●

●

●
●

●

●

●

●

●
●●

●

●●

●
●

●
●

●

●
●
●

●●
●
●

●●
●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●●●

●

●

●
●●

●
●

●

●

●●●●●●

●

●

●

●

●

●● ●

●
●

●

● ●●

●

●

●

●●●

●

●

●

●●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

5 occasions, 344 detections, 107 animals

Figure 3: Habitat mask (grey dots) and simulated transect data from five

searches of a 2.8-km transect. Colours differ between individuals, but are not

unique.

Another way to analyse transect data is to discretize it. We divide the

transect into 25-m segments and then change the detector type. In the resulting

capthist object the transect has been replaced by a series of proximity detectors,

each at the midpoint of a segment.

> newCH <- snip(tempcapt, by = 25)

> newCH <- reduce(newCH, outputdetector = ✬proximity✬)

We can fit a model using the same mask as before. The result differs in the

scaling of the g0 parameter, but in other respects is similar to that from the

transect model.

> snipped.fit <- secr.fit(newCH, mask = tempmask, trace = FALSE)

> predict(snipped.fit)

link estimate SE.estimate lcl ucl

D log 1.76233 0.1964746 1.417370 2.1912458

7



g0 logit 0.18535 0.0168882 0.154501 0.2207504

sigma log 52.07426 2.3667926 47.638234 56.9233613

More on polygons

The implementation in secr allows any number of disjunct polygons or non-

intersecting transects.

Polygons may be irregularly shaped, but there are some limitations. Poly-

gons may not be concave in an east-west direction, in the sense that there are

more than two intersections with a vertical line. Sometimes east-west concavity

may be fixed by rotating the polygon and its associated data points (see func-

tion rotate). Polygons should not contain holes, and the polygons used on any

one occasion should not overlap.

Figure 4: The polygon on the left is not allowed because its boundary is inter-

sected by a vertical line at more than two points

Technical notes

Fitting models for polygon detectors with secr.fit requires the hazard function

to be integrated in two-dimensions many times. This is done with repeated one-

dimensional gaussian quadrature using the C function Rdqags provided by R

(Rdqags is also used by R’s own function integrate) (see R manual ‘Writing

R extensions’). Error messages including ‘ier’ may be traced in the code for

Rdqags. A few such errors during maximisation may be ignored, as long as they

do not occur at the end.

8



Polygon and transect SECR models seem to be prone to numerical prob-

lems in estimating the information matrix (negative Hessian), which flow on

into poor variance estimates and missing values for the standard errors of ‘real’

parameters. At the time of writing these seem to be overcome by overriding the

default maximisation method (Newton-Raphson in ‘nlm’) and using, for exam-

ple, method = ’BFGS’. Another solution, perhaps more reliable, is to compute

the information matrix independently by setting details = list(hessian =

’fdhess’) in the call to secr.fit.

The algorithm for finding a starting point in parameter space for the nu-

merical maximisation is not entirely reliable; it may be necessary to specify the

start argument of secr.fit, remembering that the values should be on the

link scale (defaults: D log, g0 log (logit if exclusive or binomN=1), sigma log).

Data for polygons and transects are unlike those from detectors such as traps

in several respects:

The association betwqeen vertices in a ‘traps’ object and polygons or transects

resides in an attribute ’polyID’ that is out of sight, but may be retrieved

with the polyID or transectID functions. If the attribute is NULL, all

vertices are assumed to belong to one polygon or transect.

The x-y coordinates for each detection are stored in the attribute ‘detectedXY’

of a capthist object. To retrieve these coordinates use the function xy.

Detections are ordered by occasion, animal, and detector (i.e., polyID).

subset or split applied to a polygon or transect ‘traps’ object operate at the

level of whole polygons or transects, not vertices (rows).

usage also applies to whole polygons or transects. The option of specifying

varying usage by occasion is not fully tested for these detector types.

The interpretation of detection functions and their parameters is subtly dif-

ferent; the detection function must be integrated over 1-D or 2-D rather

than yielding a probability directly (see Efford 2011).

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood

methods for capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2011) Estimation of population density by spatially explicit

capture–recapture analysis of data from area searches. Ecology 92, 2202–

2207.

9



Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for

spatial capture–recapture data: Comment. Ecology 92, 526–528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–

recapture data. Ecology 89, 2281–2289.

10


	Example data: flat-tailed horned lizards
	Data input
	Model fitting
	Cue data
	Transect search
	More on polygons
	Technical notes
	References

