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At the heart of SECR there is usually a set of three primary model pa-

rameters: one for population density (D) and two for the detection function.

The detection function is commonly parameterised in terms of its intercept (the

probability g0 or cumulative hazard λ0 of detection for a detector at the centre

of the home range) and a scale parameter σ. Although this parameterisation is

simple and uncontroversial, it is not inevitable. Sometimes the biology leads us

to expect a structural relationship between primary parameters, which may be

‘hard-wired’ into the model by replacing a primary parameter with a function

of other parameter(s). This often makes for a more parsimonious model, and

model comparisons may be used to evaluate the hypothesized relationship. Here

we outline some parameterisation options in secr.
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1 Theory

The general idea is to replace a primary detection parameter with a function

of other parameter(s) in the SECR model. This shifts the level at which other

modelling applies. Specifically, it may make sense to consider a function of the

parameters to be constant, even when one of the primary parameters varies.

The new parameter also may itself be modelled as a function of covariates etc.

One published example is the case of compensatory heterogeneity of detec-

tion parameters (Efford and Mowat 2014). Combinations of λ0 and σ yield the

same effective sampling area a when the cumulative hazard of detection (λ(d))1

is a linear function of home-range utilisation. Variation in home range size then

has no effect on estimates of density. It is useful to allow σ to vary while holding

a constant, but this has some fishhooks because computation of λ0 from a and

σ is not straightforward. A simple alternative is to substitute a0 = 2πλ0σ
2;

Efford and Mowat (2014) called a0 the “single-detector sampling area”. Holding

a0 constant is almost equivalent to holding a constant. Fig. 1 illustrates the

relationship for 3 levels of a0.

Figure 1: Structural relationship between parameters λ0 and σ expressed by

holding a0 constant in λ0 = a0/(2πσ
2).

1The cumulative hazard λ(d) and probability g(d) formulations are largely interchangeable

because g(d) = 1− exp(−λ(d)); see also below
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Another biologically interesting structural relationship is that between pop-

ulation density and home range size (Efford et al. in prep.). If home ranges

have a definite edge and partition all available space then an inverse-square re-

lationship is expected D = (k/r)2 or r = k/
√
D, where r is a linear measure of

home-range size (e.g., grid cell width) and k is a constant of proportionality. In

reality, the home range model that underlies SECR detection functions does not

require a hard edge, so the language of ‘partitioning’ and Huxley’s ‘elastic discs’

does not quite fit. However, the inverse-square relationship is empirically use-

ful, and we conjecture that it may also arise from simple models for the optimal

overlap of home ranges – a topic for future research. For use in SECR we equate

r with the spatial scale of detection σ, and predict concave-up relationships as

in (Fig. 2).

The relationship may be modified by adding a constant c to represent the

lower asymptote of sigma as density increases ( σ = k/
√
D+ c; by default c = 0

in secr).

It is possible, intuitively, that once a population becomes very sparse there is

no further effect of density on home-range size. Alternatively, very low density

may reflect sparseness of resources, requiring the few individuals present to

exploit very large home ranges even if they seldom meet. If density is no longer

related to σ at low density, even indirectly, then the steep increase in σ modelled

on the left of Fig. 2 will ‘level off’ at some value of σ. We don’t know of any

empirical example of this hypothetical phenomenon, and do not provide a model.

Figure 2: Structural relationship between parameters D and σ expressed by

holding k constant in σ = k/
√
D.
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We will use the terms ‘surrogate parameter’ for a parameter that is a function

of primary parameter(s) and ‘driver parameter’ for the primary parameter(s)

(D,λ0, σ) on which it depends. Using the surrogate parameterisation is exactly

equivalent to the default parameterisation if the driver parameter(s) (σ and λ0

for a0, D for k) are constant.

2 Implementation

The internal implementation in secr of parameterisations (3)–(5) from Table

1 is straightforward: at each evaluation of the likelihood function, any novel

parameters (a0, and sigmak) are first used to compute the corresponding basic

parameter (g0, lambda0 or sigma), which is then passed to the standard code

for evaluating the likelihood. The transformation is performed independently

for each level of a0, and sigmak that appears in the model. For example, if

the model includes a learned response a0 ∼ b, there are two levels of a0 (for

naive and experienced animals) that translate to two levels of lambda0. For (4),

σ = k/
√
D. For (5), σ is first computed from D, and then λ0 is computed from

σ. As areas are expressed in hectares in ‘secr’, and 1 hectare = 10 000 m2, these

equations require σ to be expressed in multiples of 100 m.

In earlier versions of secr the options ‘scaleg0’ and ‘scalesigma’ performed

much the same function as parameterisations (3) and (4) respectively. These

remain for the moment, but will be removed eventually.

3 Interface

Users choose between parameterisations either explicitly, by setting the ‘param’

component of the secr.fit argument ‘details’, or implicitly, by including a

parameterisation-specific parameter name in the secr.fit model. Implicit se-

lection causes the value of details$param to be set automatically (with a warn-

ing).

The main parameterisation options are listed in Table 1 (other specialised

options are listed in the Appendix).

The constant c in the relationship σ = k/
√
D + c is set to zero and not

estimated unless ‘c’ appears explicitly in the model. For example, model =

list(sigmak ∼ 1) fixes c = 0, whereas model = list(sigmak ∼ 1, c ∼ 1)

causes c to be estimated. The usefulness of this model has yet to be proven! By

default an identity link is used for ‘c’, which permits negative values; negative
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Table 1: Parameterisation codes

Code Description Parameters Parameter names

0 Default

3 Single-detector sampling area a0 a0

4 Density-dependent home range k, c sigmak, c

5 3 & 4 combined k, c, a0 sigmak, c and a0

‘c’ implies that for some densities (most likely densities outside the range of

the data) a negative sigma is predicted. If you’re uncomfortable with this and

require ‘c’ to be positive then set link = list(c = ‘log’) in secr.fit and

specify a positive starting value for it in start (using the vector form for that

argument of secr.fit).

Initial values may be a problem as the scales for a0 and sigmak are not in-

tuitive. Assuming automatic initial values can be computed for a half-normal

detection function with parameters g0 and σ, the default initial value for a0 is

2πg0σ
2/10000, and for k, σ

√
D. If the usual automatic procedure (see ?au-

toini) fails then ad hoc and less reliable starting values are used. In case of

trouble, it is suggested that you first fit a very simple (or null) model using the

desired parameterisation, and then use this to provide starting values for a more

complex model. Here is an example (actually a trivial one for which the default

starting values would have been OK):

> library(secr)

> fit0 <- secr.fit(captdata, model = a0~1, detectfn = ✬HHN✬)

> fitbk <- secr.fit(captdata, model = a0~bk, detectfn = ✬HHN✬, start = fit0)

(Here we use the ‘previously fitted model’ form for the argument start).

Models for surrogate parameters

The surrogate parameters a0 and sigmak are treated as if they were full ‘real’

parameters, so they appear in the output from predict.secr, and may be

modelled like any other ‘real’ parameter. For example, model = sigmak ∼ h2

is valid.

Do not confuse this with the modelling of primary ‘real’ parameters as func-

tions of covariates, or built-in effects such as a learned response.
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Example

Among the datasets included with secr, only ovenCH provides a useful temporal

sequence - 5 years of data from mistnetting of ovenbirds (Seiurus aurocapilla) at

Patuxent Research Refuge, Maryland. A full model for annually varying density

and detection parameters may be fitted with

> oven0509b <- secr.fit(ovenCH, model = list(D ~ session, sigma ~ session,

lambda0 ~ session + bk), buffer = 300, detectfn = ✬HHN✬)

This has 16 parameters and takes some time to fit.

We hypothesize that home range (territory) size varied inversely with density,

and model this by fixing the parameter k. Efford and Mowat (2014) reported

for this dataset that λ0 did not compensate for within-year, between-individual

variation in σ, but it is nevertheless possible that variation between years was

compensatory, and we model this by fixing a0. For good measure, we also allow

for site-specific net shyness by modelling a0 with the builtin effect ‘bk’:

> oven0509bs <- secr.fit(ovenCH, model = list(D ~ session, sigmak ~ 1,

a0 ~ bk), buffer = 300, detectfn = ✬HHN✬)

The effect of including both ‘sigmak’ and ‘a0’ in the model is to force param-

eterisation (5). The model estimates a different density in each year, as in the

previous model. Annual variation in D drives annual variation in σ through the

relation σy = k/
√

Dy where k (= sigmak) is a parameter to be estimated and

the subscript y indicates year. The detection function ‘HHN’ is the hazard-half-

normal which has parameters σ and λ0. We already have year-specific σy, and

this drives annual variation in λ0: λ0y = a0X/(2πσ2

y) where a0X takes one of

two different values depending on whether the bird in question has been caught

previously in this net.

This is a behaviourally plausible and fairly complex model, but it uses just

8 parameters compared to 16 in a full annual model with net shyness. It may

be compared by AIC with the full model (the model structure differs but the

data are the same). Although the new model has higher deviance (1655.3 vs

1648.3), the reduced number of parameters results in a substantially lower AIC

(∆AIC = 9.1). In Fig. 3 we illustrate the results by overplotting the fitted curve

for σy on a scatter plot of the separate annual estimates from the full model. A

longer run of years is analysed by Efford et al. (in prep).
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Figure 3: Fitted structural relationship between parameters D and σ (curve;

k̂ = 74.71) and separate annual estimates (ovenbirds mistnetted on Patuxent

Research Refuge 2005–2009).

Limitations

Parameterisations (4) and (5) make sense only if density D is in the model; an

attempt to use these when maximizing only the conditional likelihood (CL =

TRUE) will cause an error.

4 Other notes

Detection functions 0–3, 5–8 (‘HN’,’HR’,’EX’, ‘CHN’, ‘WEX’, ‘ANN’, ‘CLN’,

‘CG’) describe the probability of detection g(d) and use g0 as the intercept

instead of λ0. Can parameterisations (3) and (5) also be used with these detec-

tion functions? Yes, but the user must take responsibility for the interpretation,

which is less clear than for detection functions based on the cumulative hazard

(14–18, or ‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). The primary parameter is

computed as g0 = 1− exp(−a0/(2πσ
2)).

In a sense, the choice between detection functions ‘HN’ and ‘HHN’, ‘EX’

and ‘HEX’ etc. is between two parameterisations, one with half-normal hazard

λ(d) and one with half-normal probability g(d), always with the relationship

g(d) = 1− exp(−λ(d)) (using d for the distance between home-range centre and

detector). It may have been clearer if this had been programmed originally as

a switch between ‘hazard’ and ‘probability’ parameterisations, but this would

now require significant changes to the code and is not a priority.
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If a detection function is specified that requires a third parameter (e.g., z in

the case of the hazard-rate function ‘HR’) then this is carried along untouched.
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6 Appendix: additional parameterisation codes

Some parameterisation options were not described in the main text because they

are not intended for general use and their implementation may be incomplete

(e.g., not allowing covariates).

During the development of SECR, Gardner et al. (2009) used a parameteri-

sation of detection in competing multi-catch traps that differed from that used

by Borchers and Efford (2008) for the same model. This was included in secr

for comparative purposes, but appears to have no particular advantages and

may be dropped in future.

Although parameterisations (2) and (6) (Table 2) promise a ‘pure’ imple-

mentation in terms of the effective sampling area a rather than the surrogate

a0, this option has not been implemented and tested as extensively as that for a0

(parameterisation 3). The transformation to determine λ0 or g0 requires numer-

ical root finding, which is somewhat slow. Also, assuming constant a does not

make sense when either the detector array or the number of sampling occasions

varies, as both of these must affect a. Use at your own risk!

Table 2: Additional parameterisation codes

Code Description Parameters Parameter names

1 Gardner et al. (2009) multi-catch trap

2 Effective sampling area a esa

6 2 & 4 combined k, c, a sigmak, c and esa
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