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Sounds recorded at an array of microphones may be analysed to provide

an estimate of the ‘population density’ of sound sources using an extension of

the usual methods for spatially explicit capture-recapture (SECR) (Efford et al.

2009; Dawson and Efford 2009). This vignette shows how the analysis may be

performed in package secr, using as an example the dataset ovensong from an

acoustic survey of ovenbirds (Seiurus aurocapilla). Input of signal data from a

text file is covered in ‘secr-datainput.pdf’.

Background to acoustic analysis with SECR

Typical SECR jointly models the 2-D distribution of animal home-range centres

and the probability an animal is detected over several time intervals at multiple

detectors (traps), given their location. Acoustic SECR models the instantaneous

2-D distribution of sound sources and the acoustic power received during a brief

recording at multiple microphones, given their location.

The acoustic analysis differs because (i) data come from a single interval

rather than several ‘occasions’ (Efford et al. 2009), and (ii) each detection has

an associated continuous measurement, a measure of ‘signal strength’. Signal

strength may be the average power associated with the recorded sound, as mea-

sured in software such as Raven Pro (Charif et al. 2008). A sound is considered

to have been ‘detected’ at a microphone when the signal strength exceeds a

threshold level. Sounds appear in the analysis only when they are detected on

at least one microphone.

The acoustic model may be fitted by numerically maximizing the likelihood.

As in SECR, the actual locations of the sound sources (= home-range centres)

are unknown, and the likelihood is evaluated by integrating over a region con-

taining all potential locations. The region is specified as a set of grid cells called

a habitat mask.
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The ovensong dataset

Over five days, four microphones were placed in a square (21-m side) centred

at each of 75 points in a regular 50-m grid. Recordings of 5 minutes duration

were made in .wav format on a 4-channel digital sound recorder. The data are

estimates of average power on each channel (microphone) for the first song of

each ovenbird distinguishable in a particular 5-minute recording. Power was

estimated using a window of 0.7 s duration for frequencies between 4200 and

5200 Hz. When song in this frequency range was obscured by insect noise,

power was measured for an alternative 1000-Hz range and the values adjusted

by regression.

As usual in package secr, the data are arranged for analysis in a capthist

object. The construction of such an object from input data is described in the

help page for make.capthist. For sound data, the core of a capthist object

is a 3-dimensional array of 0/1 codes indicating whether a sound was detected

at each microphone; the ’occasion’ (interval) dimension of the array always has

length 1 because each sound is sampled only once at any microphone.

The signal attribute of an acoustic capthist object contains the signal

strength (power) measurements in decibels as a vector with one value for each

‘detection’. A ‘detection’ occurs when the measured power on a channel exceeds

the power threshold (cutval). For the signalCH object, the power threshold

(attribute cutval = 35) is less than any signal value (range 38.4 dB to 80.4 dB)

and all detection histories are complete (1,1,1,1) across microphones. Some of

these ‘signal’ measurements will be largely noise.

> library(secr)

> summary(signalCH)

Object class capthist

Detector type signal

Detector number 4

Average spacing 21 m

x-range 0 21 m

y-range 0 21 m

Counts by occasion

1 Total

n 76 76

u 76 76

f 76 76

M(t+1) 76 76

losses 0 0

detections 304 304
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detectors visited 4 4

detectors used 4 4

Signal threshold 35

Min. 1st Qu. Median Mean 3rd Qu. Max.

38.42 50.71 54.13 55.28 59.35 80.40

Note the number of detections is 4 times the number of different sounds (n)

because every sound is detected on every microphone. For analysis we choose

a higher threshold that treats weaker signals as ‘not detected’. The choice of

threshold is somewhat ad hoc; we use 52.5 dB because this excludes 95% of false

positive signals background noise) while discarding few genuine ones (Dawson

and Efford 2009).

> signalCH.525 <- subset(signalCH, cutval = 52.5)

> summary(signalCH.525)

Object class capthist

Detector type signal

Detector number 4

Average spacing 21 m

x-range 0 21 m

y-range 0 21 m

Counts by occasion

1 Total

n 60 60

u 60 60

f 60 60

M(t+1) 60 60

losses 0 0

detections 180 180

detectors visited 4 4

detectors used 4 4

Signal threshold 52.5

Min. 1st Qu. Median Mean 3rd Qu. Max.

52.59 55.01 58.04 59.60 62.99 80.40

By applying this threshold we lose 16 of the 76 original sounds (those that

did not exceed the cutval on any microphone) and some of the remaining 60

sounds are ‘undetected’ on some microphones.

The traps attribute of signalCH and its offspring signalCH.525 holds x-y

coordinates for the relative positions of the microphones. In this example each
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5-minute recording used the same 4-microphone array (a square centred on each

point) and data are pooled across the 75 points.

> traps(signalCH.525)

x y

1 0 0

2 0 21

3 21 21

4 21 0

signal(signalCH.525) displays a vector of signal strengths, one for each

detection. The data become more intelligible if we collapse the detection histo-

ries to a matrix and replace ‘1’s with the matching signal strengths:

> temp <- signalCH.525[,1,]

> temp[temp>0] <- round(signal(signalCH.525),1)

> head(temp,8)

[,1] [,2] [,3] [,4]

1055B 63.8 57.1 56.3 64.4

1055D 68.6 66.4 74.4 74.1

1155A 70.3 63.6 67.7 71.6

1155B 57.0 53.6 0.0 55.0

1250A 0.0 0.0 0.0 54.2

1250B 76.0 70.3 67.3 80.4

1250C 0.0 0.0 0.0 54.0

1255A 67.0 66.2 60.4 60.4

Each row corresponds to a sound, identified by the point number and individ-

ual ovenbird it’s associated with (A, B, etc.), and each column to a microphone

(we display just the first 8 sounds). Signals below the threshold appear as ‘0’.

Fitting the basic model

Now we can try fitting a model with secr.fit. First we define a habitat mask

and starting values. We use a 200-m buffer rather than the default (100 m)

to ensure that sounds at the edge of the mask are very unlikely to be detected

(given what we eventually learn about attenuation). We use trace = FALSE to

suppress output of the log likelihood during numerical maximisation. Fitting is

straightforward:
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> omask <- make.mask(traps(signalCH), buffer = 200)

> ostart <- c(log(20), 80, log(0.1), log(2))

> sound.1 <- secr.fit(signalCH.525, mask = omask, start = ostart,

trace = FALSE)

(We could have dropped the mask argument of secr.fit and set its buffer

argument to construct a habitat mask ‘on the fly’ rather than as a separate step.

In this case we could also have omitted ‘start’ and used the default starting

values.)

A warning message reminds us that we have fitted the default model for

sound attenuation. This is a log-linear decline with distance from the sound

source S = β0 + β1d+ ǫ where S is the signal strength in decibels, d is distance

from the source in metres, and ǫ is a random normal error term with variance

σ2

s
dB. Detection probability is given by g(d) = F ((c − (β0 + β1d))/σs) where

F is the standard cumulative normal distribution, c is the signal threshold.

The print method for secr objects displays data summaries and parameter

estimates and other useful results:

> sound.1

secr.fit( capthist = signalCH.525, mask = omask, start = ostart,

trace = FALSE )

secr 2.3.2, 06:17:04 15 May 2012

Detector type signal

Detector number 4

Average spacing 21 m

x-range 0 21 m

y-range 0 21 m

N animals : 60

N detections : 180

N occasions : 1

Mask area : 17.7241 ha

Model : D~1 beta0~1 beta1~1 sdS~1

Fixed (real) : none

Detection fn : signal strength

Distribution : poisson

N parameters : 4

Log likelihood : -566.7545

AIC : 1141.509

AICc : 1142.236
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Beta parameters (coefficients)

beta SE.beta lcl ucl

D 2.6378555 0.17550973 2.293863 2.9818483

beta0 78.1648006 1.35818639 75.502804 80.8267970

beta1 -1.3782941 0.05813555 -1.492238 -1.2643506

sdS 0.6386267 0.08282639 0.476290 0.8009635

Variance-covariance matrix of beta parameters

D beta0 beta1 sdS

D 0.030803666 -0.08370851 0.0046641335 -0.0002065150

beta0 -0.083708507 1.84467028 0.0221276526 -0.0265022702

beta1 0.004664134 0.02212765 0.0033797424 -0.0008674601

sdS -0.000206515 -0.02650227 -0.0008674601 0.0068602106

Fitted (real) parameters evaluated at base levels of covariates

link estimate SE.estimate lcl ucl

D log 13.9831846 2.47320632 9.9131559 19.7242386

beta0 identity 78.1648006 1.35818639 75.5028042 80.8267970

beta1 neglog -0.2520081 0.01466302 -0.2248689 -0.2824227

sdS log 1.8938783 0.15713251 1.6100899 2.2276862

The fitted density ‘D’ is the estimated density of sound sources inflated by

the number of replicate points in the pooled dataset. We therefore divide by 75

to get the estimated density per hectare (0.186, SE 0.033).

The fitted parameters beta0, beta1 and sdS correspond to the parameters

β0, β1 and σs and define the detection function (see Dawson and Efford 2009 for

more on this). The ‘link’ column reminds us that the ‘beta’ parameters (all 4

of them) are maximized on their transformed (link) scales; the confidence limits

(lcl, ucl) are also computed on that scale and back-transformed. The default

link for beta1 is the unorthodox neglog(x) = log(-x); this imposes the intuitively

sensible constraint that acoustic power should decline with distance from the

source (β1 < 0).

Adding spherical spreading

Log-linear sound attenuation (x dB per 100 metres) is only a rough approxi-

mation. For greater realism we can ‘hardwire’ the inverse-square reduction in

sound energy with distance that that is expected when a sound radiates from a

point source. This is termed ’spherical spreading’ and results in 6 dB loss for

each doubling of distance. When attenuation includes spherical spreading we
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measure distances relative to a point 1 m from the sound source, rather than

true zero.

To fit a model with spherical spreading we specify detectfn = 11, rather

the default detectfn = 10 (numeric codes for detection functions are listed on

the ‘Detection functions’ help page).

> sound.2 <- secr.fit(signalCH.525, detectfn = 11,

mask = omask, start = ostart,

trace = FALSE)

We can compare the fit of the models with the AIC method for secr objects:

> AIC (sound.1, sound.2)

model detectfn npar

sound.2 D~1 beta0~1 beta1~1 sdS~1 signal strength spherical 4

sound.1 D~1 beta0~1 beta1~1 sdS~1 signal strength 4

logLik AIC AICc dAICc AICwt

sound.2 -560.4838 1128.968 1129.695 0.000 1

sound.1 -566.7545 1141.509 1142.236 12.541 0

The spherical spreading term substantially increases the log likelihood and

reduces AIC without adding any parameters. What effect does this have on the

density estimates? The collate function in secr is a convenient way to compare

parameter estimates. Here we select density estimates from the first session

(there’s only one) and adjust for replication:

> collate(sound.1, sound.2)[1,,,✬D✬]/75

estimate SE.estimate lcl ucl

sound.1 0.1864425 0.03297608 0.1321754 0.2629898

sound.2 0.1910839 0.02853758 0.1428240 0.2556508

The effect of spherical spreading on D̂ is minimal, just a slight narrowing of

the confidence interval. We consider the different fitted attenuation curves in

the next section.

Attenuation curves and detection functions

In acoustic SECR, the detection model (probability of detection as a function

of distance) follows from the model for sound attenuation, so it makes sense to

start by examining the fitted attenuation model. We extract the real coefficients
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of the log-linear and spherical-spreading models and then plot the respective

attenuation curves. We also show the effect of spherical spreading alone by

setting beta1 to zero (dashed line).

> pars1 <- predict(sound.1)[c(✬beta0✬, ✬beta1✬), ✬estimate✬]

> pars2 <- predict(sound.2)[c(✬beta0✬, ✬beta1✬), ✬estimate✬]

> attenuationplot(pars1, xval=0:150, spherical = FALSE, ylim = c(40,110))

> attenuationplot(pars2, xval=0:150, spherical = TRUE, add = TRUE, col = ✬red✬)

> pars2[2] <- 0

> attenuationplot(pars2, xval=0:150, spherical = TRUE, add = TRUE, lty = 2)
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The plot method for secr model objects is a direct way to display the de-

tection function. By default, plot.secr also shows 95% confidence limits for

the detection function. These use the asymptotic variance estimates and a first-

order delta-method approximation.

> plot(sound.2, col = ✬red✬)

>
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Local maxima in likelihood surface

Including a spherical spreading term in the sound attenuation model causes the

likelihood surface to become multimodal, at least in this example. Newton-

Raphson, the default maximization method in secr.fit, is particularly inclined

to settle on a local maximum, so care is needed. In the example above we

cheated by specifying starting values for (D,β0, β1, σs) on their respective link

scales that had been found by trial and error to yield the global maximum of

the likelihood surface. Here we investigate the issue further by plotting the log

likelihood surface for the spherical spreading model. D (0.191 / ha) and σs (1.68

dB) are held constant while β0 and β1 are varied. We use the LLsurface.secr

function with plotting suppressed to generate a data matrix that we then use

for a customised plot.

> beta0 <- seq(99, 107, 0.25)

> beta1 <- seq(-0.135, -0.085, 0.00125)

> LL <- LLsurface.secr(sound.2, betapar=c(✬beta0✬,✬beta1✬),

xval = beta0, yval = beta1, plot = FALSE)

Evaluating log likelihood across grid of 1353 points...
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> image(LL, x = beta0, y = beta1, breaks = c(-610, seq(-600, -560, 2)),

col = heat.colors(21))

> contour(LL, x = beta0, y = beta1, add = TRUE, levels = seq(-610, -560, 0.5),

drawlabels = FALSE)

> points(103.77, -exp(-2.169), pch=16)

> points(100.73, -exp(-2.339), pch=2)

>
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Contours are at spacings of one half a log-likelihood unit. The plotted points

correspond to the global maximum likelihood (solid dot) and a local maximum

(triangle).

Other approaches to acoustic analysis with SECR

Our example used measurements of relative acoustic power. The same method

may be used with signal strength defined in other ways, so long as the measure

is expected to decline steadily with distance from the source. For example,

spectrogram cross correlation scores may be suitable.

One can also model signal attributes that encode source location in ways

other than scalar ‘signal strength’. Time of arrival of sounds at different micro-

phones is one such attribute, and the intersection of bearings to each source is

another (bearings may be obtained from multiple arrays of closely spaced micro-
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phones, under some conditions). These analyses are not yet provided in secr.

It is not difficult to include time delays and bearings in the likelihood, but the

resulting models are less elegant than those based on signal strength because

an additional component is needed to explain detection and nondetection as a

function of distance (the signal strength model serves both purposes). Time and

bearing data are often more difficult to collect than signal strengths, and our

unpublished simulations suggest the resulting estimates of density are typically

no better than those based on signal strength.
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