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Variation in detection probability among individuals (‘individual heterogeneity’) is a persistent problem in
capture–recapture studies. Ideally, such variation is modelled by grouping individuals into homogeneous
classes (males and females) or including continuous predictors such as body weight. Finite mixture models are
an option when unmodelled heterogeneity remains (Pledger 2000; Borchers and Efford 2008). The population
is assumed to comprise 2 or more latent classes differing in detection parameters, with an unknown proportion
in each class. The likelihood is a weighted sum over the classes.

Mixture models are prone to fitting problems caused by multimodality of the likelihood. Some comments are
offered below, but a fuller investigation is needed.

The distinction between a finite mixture model and one in which the classes of individuals are known is
removed in a hybrid model added in secr 2.6.0 and documented here.

Implementation in secr

secr allows 2- or 3-class finite mixture models for any ‘real’ detection parameter (e.g., g0 or sigma of a
halfnormal detection function). Consider a simple example in which we specify a 2-class mixture by adding
the predictor ‘h2’ to the model formula.

library(secr)

captdata <- reduce(captdata, output = 'multi') ## to get rid of distracting warning

model.0 <- secr.fit(captdata, model = g0~1, buffer = 100, trace = FALSE)

model.h2 <- secr.fit(captdata, model = g0~h2, buffer = 100, trace = FALSE)

model.h2

##

## secr.fit(capthist = captdata, model = g0 ~ h2, buffer = 100,

## trace = FALSE)

## secr 2.9.1, 12:30:13 17 Nov 2014

##
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## Detector type multi

## Detector number 100

## Average spacing 30 m

## x-range 365 635 m

## y-range 365 635 m

## N animals : 76

## N detections : 235

## N occasions : 5

## Mask area : 21.2271 ha

##

## Model : D~1 g0~h2 sigma~1 pmix~h2

## Fixed (real) : none

## Detection fn : halfnormal

## Distribution : poisson

## N parameters : 5

## Log likelihood : -758.747

## AIC : 1527.49

## AICc : 1528.35

##

## Beta parameters (coefficients)

## beta SE.beta lcl ucl

## D 1.705391 0.1190352 1.47209 1.938696

## g0 -0.810890 0.5359465 -1.86133 0.239546

## g0.h22 -0.820129 1.3451813 -3.45664 1.816378

## sigma 3.380752 0.0449147 3.29272 3.468783

## pmix.h22 -1.284682 5.1105934 -11.30126 8.731897

##

## Variance-covariance matrix of beta parameters

## D g0 g0.h22 sigma pmix.h22

## D 0.01416939 -0.00508170 -0.02039282 -0.00106973 -0.0589376

## g0 -0.00508170 0.28723869 0.53893518 -0.00146283 2.5803754

## g0.h22 -0.02039282 0.53893518 1.80951286 0.00483585 6.0965468

## sigma -0.00106973 -0.00146283 0.00483585 0.00201733 0.0190893

## pmix.h22 -0.05893758 2.58037542 6.09654683 0.01908930 26.1181645

##

## Fitted (real) parameters evaluated at base levels of covariates

##

## session = 1, h2 = 1

## link estimate SE.estimate lcl ucl

## D log 5.503539 0.657443 4.35831974 6.949684

## g0 logit 0.307701 0.114168 0.13454863 0.559602

## sigma log 29.392867 1.320839 26.91599621 32.097666

## pmix logit 0.783246 0.867635 0.00016133 0.999988

##

## session = 1, h2 = 2

## link estimate SE.estimate lcl ucl

## D log 5.503539 0.657443 4.35832e+00 6.949684

## g0 logit 0.163691 0.243914 5.92178e-03 0.865430

## sigma log 29.392867 1.320839 2.69160e+01 32.097666

## pmix logit 0.216754 0.867635 1.23572e-05 0.999839

From the output you can see that secr.fit has expanded the model to include an extra ‘real’ parameter,
‘pmix’ for the proportions in the respective latent classes. You could specify this yourself as part of the
‘model’ argument, but secr.fit knows to add it. The link function for ‘pmix’ defaults to ‘mlogit’ (after the
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mlogit link in MARK), and any attempt to change the link is ignored.

There are two extra ‘beta’ parameters: g0.h22 which is the difference in g0 between the classes on the link
(logit) scale, and pmix.h22 which is the proportion in the second class, also on the logit scale. Fitted (real)
parameter values are reported separately for each mixture class (h2 = 1 and h2 = 2). An important point is
that exactly the same estimate of total density is reported for both mixture classes; the actual abundance of
each class is D × pmix.

We can compare a 2-class finite mixture model to the null (constant) model using AIC:

AIC (model.0, model.h2)

## model detectfn npar logLik AIC AICc dAICc

## model.0 D~1 g0~1 sigma~1 halfnormal 3 -759.026 1524.05 1524.38 0.000

## model.h2 D~1 g0~h2 sigma~1 pmix~h2 halfnormal 5 -758.747 1527.49 1528.35 3.966

## AICcwt

## model.0 0.879

## model.h2 0.121

In this case there is no reason to prefer the mixture model.

More complex models are allowed. For example, one might, somewhat outlandishly, fit a learned response to
capture that differs between two latent classes, while also allowing sigma to differ between classes:

model.h2xbh2s <- secr.fit(captdata, model = list(g0~h2*b, sigma~h2), CL = FALSE)

Number of classes

The theory of finite mixture models in capture–recapture (Pledger 2000) allows an indefinite number of
classes – 2, 3 or perhaps more. Programmatically, the extension to more classes is obvious (e.g., h3 for a
3-class mixture). The appropriate number of latent classes may be determined by comparing AIC for the
fitted models1

Looking on the bright side, it is unlikely that you will ever have enough data to support more than 2 classes.
For the data in the example above, the 2-class and 3-class models have identical log likelihood to 4 decimal
places, while the latter requires 2 extra parameters to be estimated (this is to be expected as the data were
simulated from a null model with no heterogeneity).

Multimodality

The likelihood of a finite mixture model may have multiple modes (e.g. Brooks et al. 1997, Pledger 2000).
The risk is ever-present that the numerical maximization algorithm will get stuck on a local peak, and in this
case the estimates are simply wrong. Slight differences in starting values or numerical method may result in
wildly different answers. (See Dawson and Efford (2009) and the vignette secr-sound.pdf for another example
of a multimodal likelihood in SECR).

The problem has not been explored fully for SECR models, and care is needed. Pledger (2000) recommended
fitting a model with more classes as a check in the non-spatial case, but this is not proven to work with
SECR models. It is desirable to try different starting values. This can be done simply using another model
fit. For example:

1score tests (e.g. McCrea, R. S. and Morgan, B. J. T. (2011) Multistate mark-recapture model selection using score tests
Biometrics 67, 234–241) are not appropriate because the models are not nested, at least that’s how it seems to me.
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model.h2.2 <- secr.fit(captdata, model = g0~h2, start = model.0, CL = TRUE, trace = FALSE)

A more time consuming, but illuminating, check on a 2-class model is to plot the profile log likelihood for a
range of mixture proportions (Brooks et al. 1997). For this we use the ‘fixedbeta’ feature of secr.fit:

## fit CL model with range of fixed beta values for mixing proportion

pmixProfileLL <- function (CH, mask, pmvals = seq(0.01, 0.99, 0.01)) {

npm <- length(pmvals)

outCL <- vector('list', npm)

for (pm in 1:npm) {

outCL[[pm]] <- secr.fit(CH, CL = TRUE, model = list(g0~h2, sigma~h2),

details = list(fixedbeta = c(rep(NA,4), logit(pmvals[pm]))),

mask = mask, trace = FALSE)

}

outCL

}

## run function for one year of ovenbird data and plot results

pmvals <- seq(0.01,0.99,0.01)

mask <- make.mask(traps(ovenCH[[1]]), nx = 32, buffer = 100)

outCL <- pmixProfileLL(ovenCH[[1]], mask, pmvals) ## slow!

plot(pmvals, sapply(outCL, logLik), xlim = c(0,1),

xlab = 'Fixed pmix', ylab = 'Profile log-likelihood')

Fig. Profile log-likelihood for mixing proportion between 0.01 and 0.99 in a 2-class finite mixture model
(ovenbird data 2005).

Multimodality is likely to show up as multiple rounded peaks in the profile likelihood. Label switching (e.g.,
Stephens 2000) may cause some ghost reflections about pmix = 0.5 that can be ignored. If multimodality is
found one should accept only estimates for which the maximized likelihood matches that from the highest
peak. In the ovenbird example, the maximized log likelihood of the fitted h2 model was -163.6 and the
estimated mixing proportion was 0.67, so the correct maximum was found.

Maximization algorithms (argument ‘method’ of secr.fit) differ in their tendency to settle on local maxima;
‘Nelder-Mead’ is probably better than the default ‘Newton-Raphson’. Simulated annealing is sometimes
advocated, but it is slow and has not been tried with SECR models.
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Hybrid ‘hcov’ model

The hybrid mixture model accepts a categorical (factor) individual covariate for class membership that may
be missing (NA) for any fraction of animals. The name of the covariate to use is specified as argument ‘hcov’
in secr.fit. If the covariate is missing for all individuals then a full finite mixture model will be fitted
(i.e. mixture as a random effect). Otherwise, the random effect applies only to the animals of unknown class;
others are modelled with detection parameter values appropriate to their known class. If class is known for
all individuals the model is equivalent to a covariate (CL = TRUE) or grouped (CL = FALSE) model. When
many or all animals are of known class the mixing parameter may be treated as an estimate of population
proportions (probability a randomly selected individual belongs to class m). This is obviously useful for
estimating sex ratio free of detection bias. See the hcov help page (?hcov) for implementation details, and
the Appendix for the theory.

Notes

It’s worth mentioning a perennial issue of interpretation: Do the latent classes in a finite mixture model have
biological reality? The answer is ‘Probably not’ (although the hybrid model blurs this issue). Fitting a finite
mixture model does not require or imply that there is a matching structure in the population (discrete types
of animal). A mixture model is merely a convenient way to capture heterogeneity.

When more than one real parameter is modelled as a mixture, there is an ambiguity: is the population split
once into latent classes common to all real parameters, or is the population split separately for each real
parameter? The second option would require a distinct level of the mixing parameter for each real parameter.
secr implements only the ‘common classes’ option, which saves one parameter.
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Appendix. SECR finite mixture model in which some individuals are of known class

Borchers and Efford (2008 p. 381) gave the likelihood for a Poisson SECR model with U latent classes in
proportions ψ = (ψ1, . . . , ψU ). For each class u there is an associated vector of detection parameters θu

(collectively θ). In their notation, n is the number of individuals detected at least once, δ. > 0 refers to
animals detected at least once, ωi is the detection history of animal i, and X is a point within the potential
habitat of the animal (see below for Pr{ωi} and p·(·)). If the density at point X is given by D(X), and
we omit a constant multinomial term (shown by Borchers and Efford 2008 on p. 378, but dropped without
comment on p. 381),

L(θ, φ, ψ) ∝
λne−λ

n!

n
∏

i=1

U
∑

u=1

∫

Pr{ωi | X, θu}

p·(X, θu)
f(X, u | δ· > 0)dX

where

λ =

U
∑

u=1

ψu

∫

D(X)p·(X, θu) dX,

and

f(X, u | δ· > 0) =
D(X)p·(X, θu)ψu

∑U

u=1

∫

D(X)p·(X, θu)ψudX

.

Integration is over points within the potential habitat. The probability of each observed history Pr{ωi | X, θu}
depends on the detection function and other details of the probability model (Borchers and Efford 2008;
Efford, Borchers and Byrom 2009; Efford, Dawson and Borchers 2009), and need not be specified here. The
probability of an animal with centre at X being detected at least once (p·) is one minus the probability of
observing a null history, computed as for Pr(ωi).

Under this model, class membership is an unobserved random variable. We now modify the likelihood for data
in which the class membership of some or all individuals is known. Indicate the class membership of the i-th
individual by a variable ui that may take values 0, 1, . . . , U , where ui = 0 indicates an individual of unknown
class, and the class frequencies are n0, n1, . . . , nU (not to be confused with n1,. . . ,nC in Borchers and Efford
p. 378). We assume detection histories are sorted by class membership, starting with the unknowns.

The Poisson term and the expression for λ remain unchanged, but we must split the product over detected
individuals and include a multinomial term for the observed distribution over classes:

L(θ, φ, ψ) ∝
λne−λ

n!

n0
∏

i=1

U
∑

u=1

∫

Pr{ωi | X, θu}

p·(X, θu)
f(X, u | δ· > 0)dX

×

n
∏

i=n0+1

∫

Pr{ωi | X, θui
}

p·(X, θui
)

f ′(X | δ· > 0;ui)dX

×

(

n− n0

n1, ..., nU

) U
∏

u=1

[

λu

λ

]nu

,

where λu = ψu

∫

D(X)p·(X, θu)dX, and the multinomial coefficient
(

n−n0

n1,...,nU

)

is a constant that can be

omitted. Rather than representing the joint probability density of X and ui as in f(·) previously, f ′(·) is the
probability density of X for given ui:

f ′(X | δ· > 0;ui) =
D(X)p·(X, θui

)
∫

D(X)p·(X, θui
)dX

.

The likelihood conditions on the number of known-class animals detected (n− n0), rather than modelling
class identification as a random process. It assumes that the probability that class will be recorded does not
depend on class, and that such recording when it happens is without error.
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For homogeneous density D the likelihood simplifies to

L(θ, φ, ψ) ∝
λne−λ

n!

n0
∏

i=1

U
∑

u=1

∫

Pr{ωi | X, θu}ψu
∑

u a(θu)ψu

dX

×

n
∏

i=n0+1

∫

Pr{ωi | X, θui
}

a(θui
)

dX

U
∏

u=1

[

a(θu)ψu
∑

u a(θu)ψu

]nu

,

where a(θu) =
∫

p·(X, θu)dX.

For computation it is convenient to treat the integration as a summation over M small cells, and to compute
the log likelihood l. If D is expressed relative to cell area, and we use λu = ψu

∑M

m=1
D(Xm)p·(Xm, θu) and

λ =
∑U

u=1
λu, then

l(θ, φ, ψ) ∝ log

(

λne−λ

n!

)

+

n0
∑

i=1

log

(

U
∑

u=1

M
∑

m=1

Pr{ωi | Xm, θu}D(Xm)ψu

)

− n0log(λ)

+

n
∑

i=n0+1

log

(

M
∑

m=1

Pr{ωi | Xm, θui
}D(Xm)

)

−

U
∑

u=1

nulog(λu/ψu)

+
U
∑

u=1

nulog(λu/λ),

or, after some cancellation,

l(θ, φ, ψ) ∝ log

(

λne−λ

n!

)

− nlog(λ)

+

n0
∑

i=1

log

(

U
∑

u=1

M
∑

m=1

Pr{ωi | Xm, θu}D(Xm)ψu

)

+

n
∑

i=n0+1

log

(

M
∑

m=1

Pr{ωi | Xm, θui
}D(Xm)

)

+

U
∑

u=1

nulog(ψu).
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